arxiv: v2 [math.nt] 9 Apr 2015

Similar documents
arxiv: v1 [math.co] 25 Nov 2018

THE FIRST POSITIVE RANK AND CRANK MOMENTS FOR OVERPARTITIONS

FOUR IDENTITIES FOR THIRD ORDER MOCK THETA FUNCTIONS

4-Shadows in q-series and the Kimberling Index

SELF-CONJUGATE VECTOR PARTITIONS AND THE PARITY OF THE SPT-FUNCTION

IDENTITIES FOR OVERPARTITIONS WITH EVEN SMALLEST PARTS

Integer Partitions With Even Parts Below Odd Parts and the Mock Theta Functions

The spt-crank for Ordinary Partitions

NEW IDENTITIES INVOLVING SUMS OF THE TAILS RELATED TO REAL QUADRATIC FIELDS KATHRIN BRINGMANN AND BEN KANE

Alexander Berkovich and Frank G. Garvan Department of Mathematics, University of Florida, Gainesville, Florida

arxiv: v2 [math.co] 16 Jan 2018

On an identity of Gessel and Stanton and the new little Göllnitz identities

RANK DIFFERENCES FOR OVERPARTITIONS

COMBINATORICS OF RAMANUJAN-SLATER TYPE IDENTITIES. James McLaughlin Department of Mathematics, West Chester University, West Chester, PA 19383, USA

OVERPARTITIONS AND GENERATING FUNCTIONS FOR GENERALIZED FROBENIUS PARTITIONS

= (q) M+N (q) M (q) N

arxiv: v1 [math.co] 25 Dec 2018

On a certain vector crank modulo 7

COMBINATORICS OF RAMANUJAN-SLATER TYPE IDENTITIES

COMBINATORIAL PROOFS OF RAMANUJAN S 1 ψ 1 SUMMATION AND THE q-gauss SUMMATION

arxiv: v2 [math.co] 3 May 2016

Singular Overpartitions

The Bhargava-Adiga Summation and Partitions

Cranks in Ramanujan s Lost Notebook

arxiv: v1 [math.nt] 22 Jan 2019

MOCK THETA FUNCTIONS AND THETA FUNCTIONS. Bhaskar Srivastava

Combinatorial Analysis of the Geometric Series

CONGRUENCES FOR GENERALIZED FROBENIUS PARTITIONS WITH AN ARBITRARILY LARGE NUMBER OF COLORS

ANALOGUES OF THE TRIPLE PRODUCT IDENTITY, LEBESGUE S IDENTITY AND EULER S PENTAGONAL NUMBER THEOREM

REFINEMENTS OF SOME PARTITION INEQUALITIES

DYSON'S CRANK OF A PARTITION

PARTITION IDENTITIES INVOLVING GAPS AND WEIGHTS

CONGRUENCES IN ORDERED PAIRS OF PARTITIONS

#A22 INTEGERS 17 (2017) NEW CONGRUENCES FOR `-REGULAR OVERPARTITIONS

ON CONGRUENCE PROPERTIES OF CONSECUTIVE VALUES OF P(N, M) Brandt Kronholm Department of Mathematics, University at Albany, Albany, New York, 12222

Arithmetic properties of overcubic partition pairs

arxiv: v4 [math.co] 7 Nov 2016

m=1 . ( bzq; q2 ) k (zq 2 ; q 2 ) k . (1 + bzq4k 1 ) (1 + bzq 2k 1 ). Here and in what follows, we have made use of the standard notation (a) n = j=0

SOME CONGRUENCES FOR PARTITION FUNCTIONS RELATED TO MOCK THETA FUNCTIONS ω(q) AND ν(q) S.N. Fathima and Utpal Pore (Received October 13, 2017)

FOUR IDENTITIES RELATED TO THIRD ORDER MOCK THETA FUNCTIONS IN RAMANUJAN S LOST NOTEBOOK HAMZA YESILYURT

CONGRUENCES RELATED TO THE RAMANUJAN/WATSON MOCK THETA FUNCTIONS ω(q) AND ν(q)

THE BAILEY TRANSFORM AND CONJUGATE BAILEY PAIRS

Nearly Equal Distributions of the Rank and the Crank of Partitions

RANK AND CONGRUENCES FOR OVERPARTITION PAIRS

CONGRUENCES MODULO 2 FOR CERTAIN PARTITION FUNCTIONS

ASYMPTOTICS FOR RANK AND CRANK MOMENTS

MODULAR FORMS ARISING FROM Q(n) AND DYSON S RANK

CONGRUENCES RELATED TO THE RAMANUJAN/WATSON MOCK THETA FUNCTIONS ω(q) AND ν(q)

q GAUSS SUMMATION VIA RAMANUJAN AND COMBINATORICS

A PARTITION IDENTITY AND THE UNIVERSAL MOCK THETA FUNCTION g 2

PARITY OF THE PARTITION FUNCTION. (Communicated by Don Zagier)

THE METHOD OF WEIGHTED WORDS REVISITED

ELEMENTARY PROOFS OF VARIOUS FACTS ABOUT 3-CORES

= i 0. a i q i. (1 aq i ).

The part-frequency matrices of a partition

Counting k-marked Durfee Symbols

Two truncated identities of Gauss

COMBINATORIAL INTERPRETATIONS OF RAMANUJAN S TAU FUNCTION

11-Dissection and Modulo 11 Congruences Properties for Partition Generating Function

Generating Functions of Partitions

On m-ary Overpartitions

Polynomial analogues of Ramanujan congruences for Han s hooklength formula

A Note on the Transcendence of Zeros of a Certain Family of Weakly Holomorphic Forms

An Involution for the Gauss Identity

SP T -FUNCTION AND ITS PROPERTIES

arxiv: v1 [math.co] 18 Sep 2014

arxiv: v1 [math.nt] 28 Dec 2018

A PERIODIC APPROACH TO PLANE PARTITION CONGRUENCES

Part II. The power of q. Michael D. Hirschhorn. A course of lectures presented at Wits, July 2014.

RAMANUJAN S LOST NOTEBOOK: COMBINATORIAL PROOFS OF IDENTITIES ASSOCIATED WITH HEINE S TRANSFORMATION OR PARTIAL THETA FUNCTIONS

Elementary proofs of congruences for the cubic and overcubic partition functions

Some congruences for Andrews Paule s broken 2-diamond partitions

Eulerian series in q-series and modular forms. Youn Seo Choi

Mock Theta Function Identities Deriving from Bilateral Basic Hypergeometric Series

COMBINATORIAL PROOFS OF GENERATING FUNCTION IDENTITIES FOR F-PARTITIONS

Some theorems on the explicit evaluations of singular moduli 1

RAMANUJAN S LOST NOTEBOOK: COMBINATORIAL PROOFS OF IDENTITIES ASSOCIATED WITH HEINE S TRANSFORMATION OR PARTIAL THETA FUNCTIONS

A Fine Dream. George E. Andrews (1) January 16, 2006

A generalisation of the quintuple product identity. Abstract

A GENERALIZATION OF THE FARKAS AND KRA PARTITION THEOREM FOR MODULUS 7

SOME IDENTITIES RELATING MOCK THETA FUNCTIONS WHICH ARE DERIVED FROM DENOMINATOR IDENTITY

Arithmetic Relations for Overpartitions

New congruences for overcubic partition pairs

Generating Function for M(m, n)

arxiv: v1 [math.nt] 23 Jan 2019

Congruences in ordered pairs of partitions

RAMANUJAN-TYPE CONGRUENCES MODULO POWERS OF 5 AND 7. D. Ranganatha

HENG HUAT CHAN, SONG HENG CHAN AND SHAUN COOPER

DIVISIBILITY AND DISTRIBUTION OF PARTITIONS INTO DISTINCT PARTS

On q-series Identities Arising from Lecture Hall Partitions

CHIRANJIT RAY AND RUPAM BARMAN

arxiv:math/ v2 [math.co] 19 Sep 2005

New modular relations for the Rogers Ramanujan type functions of order fifteen

What is the crank of a partition? Daniel Glasscock, July 2014

Congruence Properties of Partition Function

RAMANUJAN S MOST BEAUTIFUL IDENTITY

arxiv: v1 [math.co] 8 Sep 2017

HECKE OPERATORS ON CERTAIN SUBSPACES OF INTEGRAL WEIGHT MODULAR FORMS.

New Multiple Harmonic Sum Identities

An Algebraic Identity of F.H. Jackson and its Implications for Partitions.

Transcription:

CONGRUENCES FOR PARTITION PAIRS WITH CONDITIONS arxiv:408506v2 mathnt 9 Apr 205 CHRIS JENNINGS-SHAFFER Abstract We prove congruences for the number of partition pairs π,π 2 such that π is nonempty, sπ sπ 2, and lπ 2 < 2sπ where sπ is the smallest part and lπ is the largest part of a partition The proofs use Bailey s Lemma and a generalized Lambert series identity of Chan We also discuss how a partition pair crank gives combinatorial refinements of these congruences Introduction We recall that a partition of a non-negative integer n is a non-decreasing sequence of positive integers that sum to n For a partition π we denote the sum of parts by π, the number of parts by #π, the smallest part by sπ, and the largest part by lπ We denote the empty partition by and use the convention that the empty partition has smallest part and largest part 0 A partition pair of n is an ordered pair of partitions π,π 2 such that n π π 2 In this paper, we consider the set of partition pairs π,π 2 such that π, sπ sπ 2, and lπ 2 < 2sπ That is, π is non-empty and each part of π 2 is in the interval sπ,2sπ We denote the set of all such partition pairs by PP As we will see from the generating function, the number of such partition pairs of n can also be viewed as the number of occurrences of the smallest parts in the partition pairs π,π 2 of n such that π, sπ < sπ 2, and lπ 2 < 2sπ We let ppn denote the number of partition pairs π,π 2 from PP of n As an example, pp5 5 since the partition pairs are: 5,, 4,, 2 3,, 3,, 2 2,, 2,,,, 3,, 2,,,, 2,,,, 2,3,,, and, These partition pairs actually came from considering smallest parts partition functions We recall that sptn is the number of occurrences of the smallest part in each partition of n An overpartion of n is a partition of n in which the first occurrence of a part may be overlined; the number of smallest parts among the overpartitions of n where the smallest part is not overlined is sptn We use the convention of not including overpartitions when the smallest part is overlined, otherwise if we did include these overpartitions, then we would exactly double sptn Additionally we have spt n and spt 2 n denoting the restriction of sptn to overpartitions where the smallest part is odd and even, respectively In Section 3 of 8, Garvan and the author considered the partition pairs π,π 2 such that π is non-empty, sπ sπ 2, and if a part of π 2 is larger than 2sπ then it must be odd It turns out the number of such partition pairs of n is sptn Additionally restricting sπ to an odd or even number gives spt n or spt 2 n, respectively The partition pairs here are those were we additionally do not allow the parts of π 2 to be larger than 2sπ The smallest parts functions satisfy a wide array of congruences For example, for n 0 we have spt5n4 0 mod 5, 200 Mathematics Subject Classification Primary P83, 05A7, P82 Key words and phrases Andrews spt-function; congruences; partitions; smallest parts function

spt7n5 0 mod 7, spt3n6 0 mod 3, spt3n 0 mod 3, spt 3n 0 mod 3, spt 5n 0 mod 5, spt 2 3n 0 mod 3, spt 2 3n 0 mod 3, spt 2 5n3 0 mod 5 The congruences for sptn were first proved by Andrews in 2 and the congruences for sptn, spt n, and spt 2 n were first proved by Bringmann, Lovejoy, and Osburn in 5 The function ppn satisfies similar congruences Theorem For n 0 is pp3n2 0 mod 3, pp5n3 0 mod 5, pp5n4 0 mod 5 To start, by summing according to the smallest part of π we see a generating function for ppn PPq ppnq n q n q n ;q q n ;q n n0 n n q n q 2n ;q q n,q n ;q q By rewriting the summand as n q n 2 q n ;q q n ;q, we see that ppm is also the number of n occurrences of the smallest parts in the partition pairs π,π 2 of m where each part of π 2 is strictly between sπ and 2sπ 2 It is not clear if ppn can easily be phrased in terms of the smallest parts of any sort of restricted partitions or overpartitions, rather than partition pairs Here and throughout, we use the following standard q-hypergeometric notation n z;q n zq k, z;q k0 zq k, k0 z,,z n ;q z ;q z n ;q, z;q z,q/z;q, z,,z n ;q z ;q z n ;q We consider a two-variable generalization of PPq given by q PPz,q n q 2n ;q zq n,z q n ;q n so that PP,q PPq We define Ck,t,n m k mod t 2 nm Cm,n, Cm,nz m q n,

and so for any positive t ppn m t Cm,n Ck,t,n We prove Theorem with the following strategy If ζ t is a primitive t th root of unity with t 3 or 5, then t PPζ t,q Cm,nζt m q n q n ζt k Ck,t,n nm As the minimal polynomial for ζ t is t k0 xk, if the coefficient of q N in PPζ t is zero, then C0,t,N C,t,N Ct,t,N Thus, by, ppn t C0,t,N and so ppn 0 mod t Theorem nowfollows from showingthat the coefficient of q 3n2 in PPζ 3,q and the coefficient of q 5n3 and q 5n4 in PPζ 5,q are zero In stating our theorems, we need to first define the series: For integers a,b,c, we will write Σz,w,q n k0 n q 2nn w n zq n Σa,b,c Σq a,q b,q c We will prove the following theorems about PPζ 3,q and PPζ 5,q Theorem 2 k0 PPζ 3,q A 0 q 3 qa q 3 q 2 A 2 q 3, where A 0 q q 9 ;q 9 q 3 ;q 9 q;q 9 2 q4 ;q 9 q 9 ;q 9 q 2 ;q 9 Σ, 4,9qΣ, 5,9 qσ, 8,9q 5 q 9 ;q 9 q 4 ;q 9 Σ4,,9, Theorem 3 where q 3 ;q 3 A q q;q 3, A 2 q 0 PPζ 5,q B 0 q 5 qb q 5 q 2 B 2 q 5 q 3 B 3 q 5 q 4 B 4 q 5, B 0 q ζ 5 ζ 4 5 q 5 ;q 5 q 5 Σ7,0,5q 25 Σ3,25,5, B q q 3 q 5 ;q 5 Σ0,0,5q 23 Σ0,25,5 B 2 q ζ 5 ζ 4 5 q 5 ;q 5 Σ, 20,5q 4 Σ4, 5,5, B 3 q 0, 3 q 3 ;q 3 3 q;q q 5 ;q 5,

B 4 q 0 The partition pairs from Section 3 of 8, were an intermediate step to defining a crank on the smallest parts of overpartitions This crank gave a combinatorial interpretation of the congruences for sptn, spt n, and spt 2 n In 8 we let kπ,π 2 denote the number of parts of π 2 that are between sπ and 2sπ and defined { # of parts of π if kπ crankπ,π 2,π 2 0 # of parts of π sπ kπ,π 2 kπ,π 2 if kπ,π 2 > 0 For the partition pairs in this article, kπ,π 2 is #π 2 and so we define { # of parts of π if #π paircrankπ,π 2 2 0 # of parts of π sπ #π 2 #π 2 if #π 2 > 0 This paircrank yields a combinatorial refinement of the congruences for ppn Theorem 4 i The residue of the paircrank mod 3 divides the partition pairs from PP of 3n2 into 3 equal classes ii The residue of the paircrank mod 5 divides the partition pairs from PP of 5n3 into 5 equal classes iii The residue of the paircrank mod 5 divides the partition pairs from PP of 5n4 into 5 equal classes In Section 2, we provide an alternative expression for PPz,q In Sections 3 and 4, we prove Theorems 2 and 3, respectively In Section 5, we prove Theorem 4 by showing that Cm,n is the number of partition pairs from PP of n with paircrank m 2 Preliminaries Before proving Theorems 2 and 3, we require another form for PPz,q We recall a pair of sequences α,β are a Bailey pair relative to a,q if n α k β n q;q n k aq;q nk k0 A limiting case of Bailey s lemma states that if α,β are a Bailey pair for a,q, then n0 n aq ρ,ρ 2 ;q n β n aq/ρ,aq/ρ 2 ;q ρ ρ 2 aq,aq/ρ ρ 2 ;q Proposition 2 The pair α, β where β n n0 ρ,ρ 2 ;q n aq ρ ρ 2 nαn aq/ρ,aq/ρ 2 ;q n, α 3n 0, α 3n± q 6n 2 ±n q 6n2 ±7n2, q;q 2n is a Bailey pair relative to,q Here α 0 β 0 0 Proof The following is 2 of 3, aq 2n b,c,d,e;q n a 2n q n aaq/b,aq/c,aq/d,aq/e;q n b n c n d n e n n q,q/a,qa,aq/bc,aq/,bd,aq/be,aq/cd,aq/de;q q/b,q/c,q/d,q/e,aq/b,aq/c,aq/d,aq/e,a 2 q/bcde;q 4

With q q 3, b q N, c q 2 N, d q 3 N, a q 2, and e, this becomes q 6n2 q N ;q 3n n q 3nn 2 n3nn q 3,q,q 5 ;q 3 q 2N ;q q 2 q 2N ;q 3n q N,q N2 ;q n Here the sum is actually finite as we see the summands are eventually zero for large positive and large negative values of n With this in mind, we have for N > 0 N n0 α n q;q Nn q;q N n α q;q N q;q N n n n q 6n2 n q 6n2 7n2 q;q N 3n q;q N3n α 3n q;q N 3n q;q N3n q 6n2 n q 6n2 q N ;q 3n n q 3n 2 3nN q;q N q;q N q N2 ;q 3n α 3n q;q N 3n q;q N3n q 6n2 n q 6n2 q N ;q 3n n q 3nn 2 n3nn q;q N q;q N q N2 ;q n 3n q 2 q 3,q,q 5 ;q 3 q 2N ;q q;q N q;q N q N,q N2 ;q q,q 2N ;q q,q;q q;q 2N Thus, the result follows Corollary 22 PPz,q q;q n Proof By Proposition 2, we have PPz,q q;q z,z ;q n qn z,z ;q q;q n 2n q;q z,z z,z ;q ;q n qn β n n0 z,z ;q n qn α n z z q;q zq,z q;q n0 n q n α n q;q zq n z q n n0 q 6n2 4n q 6n2 zq 3n z q 3n 5

q;q q;q q;q n0 n0 q 3n α 3n zq 3n z q 3n q 3n α 3n zq 3n z q 3n n n q 6n2 4n q 6n2 zq 3n z q 3n q 6n2 4n q 6n2 zq 3n z q 3n n q 6n2 2n q 6n2 zq 3n z q 3n Next we define U l b We use the additional product notation n jz;q z;q q;q q 6n2 bn q l3n n n z n q nn /2 We now provide properties of z;q, jz,q, and Σz,w,q The proofs are routine and thus omitted Proposition 23 z;q q/z;q, 2 z;q zqz;q, 22 z;q z z ;q, 23 Σz,w,q z Σ z,w q 3,q, 24 Σz,w,q z w qσ z q,w q,q, 25 Σ z,z 4 /q 2,q zσ z,z 4 /q,q z Σ z,z 4 /q 3,q z 2 Σ z,z 4,q z jq/z 2 ;q 26 Lemma 3 3 Proof of Theorem 2 q;q 2 b,/b,b 3,b 4 ;q b 4 /b 2,b Σ b,,q 3/b,b 4 /b ;q b 3 b 4 Σ b 3, b3 3,q b /b 3,/b b 3,b 4 /b 3 ;q b 4 Proof We will use the s 4, r 0 case of Theorem 2 in 6: q;q 2 b,b 2,b 3,b 4 ;q Σ b 2 /b,b 3 /b,b 4 /b ;q b, b 3,q b 2 b 3 b 4 6 b b 2,b Σ b, b4 b 3b 4 3b,b 4 b ;q b /b 4,/b b 4,b 3 /b 4 ;q Σ Σ b 2, b /b 2,b 3 /b 2,b 4 /b 2 ;q q 3,q b 4, b3 4 b 3,q b 3 2,q b b 3 b 4

Σ b 3, b /b 3,b 2 /b 3,b 4 /b 3 ;q Setting b 2 b we get q;q 2 b 3 3,q b b 2 b 4 Σ b 4, b /b 4,b 2 /b 4,b 3 /b 4 ;q b 3 4,q b b 2 b 3 By 24 b,/b,b 3,b 4 ;q b 4 /b 2,b Σ b,,q 3/b,b 4 /b ;q b 3 b 4 Σ b 3, b3 3,q b /b 3,/b b 3,b 4 /b 3 ;q b 4 and so the result follows b 2,b Σ b 3b,b 4 b ;q, b /b 4,/b b 4,b 3 /b 4 ;q Σ Σ b, b 4 b,q b Σ b, b4 b 3b 4 3b 4 q 3,q, b 4 b,q 3b 4 b 4, b3 4 b 3,q Additionally setting b 4 b 3 gives the following Lemma Lemma 32 q;q 2 b,/b,b 3,/b 3 ;q /b 2,b Σ b,b 4 3/b,/b b 3 ;q,q b b 2,b Σ b, b4 3b,b /b 3 ;q q 3,q b /b 3,/b b 3,/b 2 3 ;q Σ b 3,b 4 3,q b 3 b b 3,b 3 /b,b 2 3 ;q Σ b 3, b4 3 q 3,q We now require the following Propositions Proposition 33 Σ,,9q 5 Σ7,6,9 q 9 ;q 9 2 q 3 ;q 9 q;q 9 q;q 9 q 4 ;q 9 qσ, 8,9q 5 q 4 ;q 9 Σ4,,9, 3 q 6 Σ4,4,9q 3 Σ7,3,9 q 9 ;q 9 2 q 3 ;q 9 q 2 ;q 9 q q 4 ;q 9 2 qσ, 8,9q 5 q 4 ;q 9 Σ4,,9 32 Proof For 3 we move all Σz,w,q terms to one side, divide by q,q 2,q 3 ;q 9, and use that Σ4,,9 q 4 Σ5,8,9 by 25 Equation 3 is then equivalent to q 9 ;q 9 2 q,q,q 2,q 4 ;q 9 q,q 2,q 3 ;q 9 Σ,,9 q 5 q,q 2,q 3 ;q 9 Σ7,6,9 q q 9 q 2,q 3,q 4 ;q 9 Σ, 8,9 q 2,q 3,q 4 ;q 9 Σ5,8,9 33 7

In Lemma 3 we use q q 9, b q,b 3 q 7,b 4 q 5 to get q 9 ;q 9 2 q q,q,q 7,q 5 ;q 9 q 2,q 6,q 4 ;q 9 Σ, 8,9 q 2,q 8,q 6 ;q 9 Σ,,9 q 6,q 8,q 2 ;q 9 Σ7,6,9 q 4,q 6,q 2 ;q 9 Σ5,8,9 Simplifying the products with Proposition 23 yields 33 For 32 we move all Σz,w,q terms to one side, divide by q q,q 2,q 3 ;q 9, and use that Σ, 8,9 q 6 Σ8,7,9 by 25 Equation 32 is then equivalent to q 9 ;q 9 2 q 6 q 4 q,q 2,q 4,q 4 ;q 9 q,q 3,q 4 ;q 9 Σ8,7,9 q,q 3,q 4 ;q 9 Σ4,,9 q 5 q 2 q,q 2,q 3 ;q 9 Σ4,4,9 q,q 2,q 3 ;q 9 Σ7,3,9 34 In Lemma 3 we use q q 9, b q 4,b 3 q 8,b 4 q 7 to get q 9 ;q 9 2 q 4 q 4,q 4,q 7,q 8 ;q 9 q 8,q 4,q 3 ;q 9 Σ4,,9 q 8,q 2,q ;q 9 Σ4,4,9 Simplifying the products with Proposition 23 yields 34 Proposition 34 q Σ7,0,9q 8 Σ7,9,9 q 9 ;q 9 2 q 3 ;q 9 q 4 ;q 9 q;q 9 q 2 ;q 9 2 q 3 Σ4, 2,9q 7 Σ4,7,9 q 9 ;q 9 2 q 3 ;q 9 q;q 9 q 4 ;q 9 q 4,q 2,q ;q 9 Σ8,7,9 q 3,q,q;q 9 Σ7,3,9 q 4 ;q 9 q 2 ;q 9 Σ, 4,9qΣ, 5,9, 35 q;q 9 q 2 ;q 9 Σ, 4,9qΣ, 5,9 36 Proof For 35, we move all Σz,w,q terms to one side and multiply by q 2 ;q 9, so that 35 is equivalent to q 9 ;q 9 2 q 3,q 4 ;q 9 q,q 2 ;q 9 q 2 ;q 9 q Σ7,0,9q 8 Σ7,9,9 q 4 ;q 9 Σ, 4,9qΣ, 5,9 37 However by 26 and the definition of jz;q, we find that the right hand side of 37 is q 2 ;q 9 q 4 Σ7,,9q 25 Σ7,28,9 q 4 j q 5 ;q 9 q 4 ;q 9 q Σ, 23,9q 2 Σ,4,9 q j q 7 ;q 9 q 2 ;q 9 q 4 Σ7,,9q 25 Σ7,28,9 q 4 ;q 9 q Σ, 23,9q 2 Σ,4,9 With the above and dividing 37 by q,q 2,q 3,q 4 ;q 9, we have that 35 is equivalent to q 9 ;q 9 2 q,q,q 2,q 2 ;q 9 q 4 q,q 3,q 4 ;q 9 Σ7,,9 8 q 25 q,q 3,q 4 ;q 9 Σ7,28,9

q q 2 q,q 2,q 3 ;q 9 Σ, 23,9 q,q 2,q 3 ;q 9 Σ,4,9 38 Setting q q 9,b q 7,b 3 q in Lemma 32 gives q 9 ;q 9 2 q 7 q,q,q 7,q 7 ;q 9 q 4,q 6,q 8 ;q 9 Σ7,28,9 q 4,q 8,q 6 ;q 9 Σ7,,9 q q 6,q 8,q 2 ;q 9 Σ,4,9 q 8,q 6,q 2 ;q 9 Σ, 23,9 Simplifying the products gives 38 For 36, we move all Σz,w,q terms to one side and multiply by q 2 ;q 9, so that 36 is equivalent to q 9 ;q 9 2 q 2,q 3 ;q 9 q,q 4 ;q 9 q;q 9 Σ, 4,9qΣ, 5,9 q 2 ;q 9 q 3 Σ4, 2,9 q 7 Σ4,7,9 39 However, by 26, the right hand side of 39 is q;q 9 q Σ, 23,9q 2 Σ,4,9 q j q 7 ;q 9 q 2 ;q 9 q Σ4,,9 q Σ4,6,9q j q;q 9 q;q 9 q Σ, 23,9q 2 Σ,4,9 q 2 ;q 9 q Σ4,,9 q Σ4,6,9 With the above and dividing 39 by q,q 2,q 3,q 4 ;q 9, we have that 36 is equivalent to q 9 ;q 9 2 q,q,q 4,q 4 ;q 9 q q 2,q 3,q 4 ;q 9 Σ, 23,9 q 2 q 2,q 3,q 4 ;q 9 Σ,4,9 q q q,q 3,q 4 ;q 9 Σ4,,9 q,q 3,q 4 ;q 9 Σ4,6,9 30 Setting q q 9,b q,b 3 q 4 in Lemma 32 gives q 9 ;q 9 2 q q,q,q 4,q 4 ;q 9 q 2,q 3,q 5 ;q 9 Σ,4,9 q 2,q 5,q 3 ;q 9 Σ, 23,9 Simplifying the products gives 30 Next we make use of q 4 q 3,q 5,q 8 ;q 9 Σ4,6,9 q 5,q 3,q 8 ;q 9 Σ4,,9 q;q q 27 ;q 27 q 2 ;q 27 q q 6 ;q 27 q2 q 3 ;q 27, 3 which follows from Euler s pentagonal number theorem and the Jacobi triple product identity Proposition 35 q 27 ;q 27 2 q 9 ;q 27 q 2 ;q 27 q 27 q 3 ;q 27 q 6 ;q 27 2 2q 2 ;q 27 2 q 9 ;q 27 q 27 q 3 ;q 27 q 2 ;q 27 q 4 ;q 27 2 q 9 ;q 27 q 2 ;q 27 2 q;q q 27 ;q 27 q 9 ;q 27 q 3 ;q 27 2 q q;q q 9 ;q 9 q2 ;q 27 q 3 ;q 9 9

q 3,q 2 ;q 27 Proof Multiplying both sides by q 27 ;q 27 q 9 ;q 27, we find this proposition is equivalent to q 27 ;q 27 q 2 ;q 27 2 q 3 q 6 ;q 27 2 2q 2 q 4 ;q 27 q q 2 ;q 27 q;q q 3 ;q 27 q 3 ;q 27 q 6 ;q 27 32 By 3 we see 32 reduces to proving q 2 ;q 27 2 q 2 ;q 27 q 3 q 6 ;q 27 2 q 3 ;q 27 q 3 ;q 27 q 6 ;q 27, 33 q 3 q 4 ;q 27 q 6 ;q 27 q 2 ;q 27 q 2 ;q 27 q q 3 ;q 27 q q 6 ;q 27 34 However 33 follows from multiplying 34 by q q6 ;q 27 q 2 ;q 27 and elementary rearrangements In 34 we replace q by q /3 and clear denominators to see we need only prove that q q,q,q 2 ;q 9 q 2,q 2,q 4 ;q 9 q,q 4,q 4 ;q 9 35 However, this follows from the q q 9,x q,t y z q 2 case of equation 2 from 9, which is an identity of Jacobi: z x y,x,xt/z,zty;q z,t,xty,zy/x;q xt,zy,ty,z/x;q Letting ζ 3 be a primitive third root of unity, we find that q PPζ 6n2 4n q 6n2 q 3n 3,q q;q q 9n3 n qu3 4 q 2 U 3 7 q 3 U 3 0q 4 U3 36 q;q Using this form of PPζ 3,q in terms of the U 3 b, we proceed in a manner similar to how Atkin and Swinnerton-Dyer in 4 determined rank difference formulas for Dyson s rank of a partition This was also used to determine crank difference formulas by Ekin in 7 and various rank difference formulas related to overpartitions by Lovejoy and Osburn in 0,, 2 Here the major difference is that in Σz,w,q we never use z and so we do not have to introduce an extra function to avoid the issue at n 0 To begin we note that U 3 b n 2 k0n 2 k0 q 6n2 bn q 9n3 q 6k2 bk q 63nk2 b3nk q 93nk3 n q 54nn q 36nk3nb 54n q 9k3 q 27n 2 q 6k2 bk Σ9k3,36k3b 54,27 k0 0

Thus qu 3 4 q 2 U 3 7 q 3 U 3 0q 4 U 3 3 qσ3, 42,27q Σ2, 6,27q 33 Σ2,30,27 q 2 Σ3, 33,27 q 5 Σ2,3,27 q 40 Σ2,39,27 q 3 Σ3, 24,27 q 9 Σ2,2,27 q 47 Σ2,48,27q 4 Σ3, 5,27 q 54 Σ2,57,27q 23 Σ2,2,27 qσ3, 42,27q 4 Σ3, 5,27 q 3 Σ3, 24,27 q 5 Σ2,3,27 q 33 Σ2,30,27q 54 Σ2,57,27q 23 Σ2,2,27q Σ2, 6,27 q 2 Σ3, 33,27 q 47 Σ2,48,27 q 9 Σ2,2,27 q 40 Σ2,39,27 In the last line we have ordered the terms to apply Propositions 33 and 34 with q q 3 With these identities we have that qu 3 4 q 2 U 3 7 q 3 U 3 0q 4 U 3 3 Σ3, 42,27q 3 Σ3, 5,27 q 3 q q 2 ;q 27 q 2 ;q 27 q 6 ;q 27 q 6 ;q 27 q 3 Σ3, 24,27q 5 Σ2,3,27 q 6 ;q 27 q 3 q q 2 ;q 27 q 2 ;q 27 q 2 ;q 27 q 27 ;q 27 2 q 9,q 2 ;q 27 q 27 q 3,q 6,q 6 ;q 27 2q 2 ;q 27 2 q 9 ;q 27 q 27 q 3,q 2 ;q 27 q 4 ;q 27 2 q 9 ;q 27 q 2,q 2 ;q 27 Next by 3 and Proposition 35 we have that qu 3 4 q 2 U 3 7 q 3 U 3 0q 4 U 3 3 q;q Σ3, 42,27q 3 q 27 ;q 27 q 6 ;q 27 Σ3, 5,27 q;q q 3 q 27 ;q 27 q 2 ;q 27 Σ3, 24,27q 5 Σ2,3,27 q;q q 27 ;q 27 q 9 ;q 27 q 3 ;q 27 2 q q;q q 9 ;q 9 q2 ;q 27 q 3 ;q 9 37 Theorem 2 now follows by equations 36 and 37 4 Proof of Theorem 3 We require the following two Lemmas Both are applications of Theorem 2 of 6, namely we take s 6, r 2, b 4 b, b 5 b 2, b 6 b 3 to obtain Lemma 4 and take s 0, r 6, b 6 b, b 7 b 2, b 8 b 3, b 9 b4, and b 0 b 5 to obtain Lemma 42 Lemma 4 a,a 2 ;q q;q 2 b,b,b 2,b 2,b 3,b 3 ;q a b,a 2b ;q b b 2,b b 3,b b 2,b b 3,b 2 ;q b a b,a 2 b ;q b b 2,b b 3,b b 2,b b 3,b2 ;q Σ Σ b,a a 2 b 4,q b, b 4 a a 2 q 3,q

Lemma 42 a b 2,a 2b 2 ;q b b 2,b 2 b 3,b b 2,b 2 b 3,b 2 2 ;q Σ b 2,a a 2 b 4 2,q b 2 a b 2,a 2 b 2 ;q b b 4 2 b 2,b 2 b 3,b b 2,b 2 b 3,b2 2 ;q Σ b 2, a a 2 q 3,q a b 3,a 2b 3 ;q b b 3,b 2b 3,b b 3,b 2 b 3,b 2 b 3 a b 3,a 2 b 3 ;q b b 3,b 2 b 3,b b 3,b 2 b 3,b 2 3 ;q Σ 3 ;q b 3, Σ b 3,a a 2 b 4 3,q b 4 3 a a 2 q 3,q a,a 2,a 3,a 4,a 5,a 6 ;q q;q 2 b,b,b 2,b 2,b 3,b 3,b 4,b 4,b 5,b5 ;q a b,a 2b,a 3b,a 4b,a 5b,a 6b ;q b b 2,b b 3,b b 4,b b 5,b b 2,b b 3,b b 4,b b b a b,a 2 b,a 3 b,a 4 b,a 5 b,a 6 b ;q b b 2,b b 3,b b 4,b b 5,b b 2,b b 3,b b 4,b b 5,b2 ;q 5,b 2 a b 2,a 2b 2,a 3b 2,a 4b 2,a 5b 2,a 6b 2 ;q b b 2,b 2 b 3,b 2 b 4,b2 b 5,b b 2,b 2 b 3,b 2 b 4,b b 2 a b 2,a 2 b 2,a 3 b 2,a 4 b 2,a 5 b 2,a 6 b 2 ;q b b 2,b 2 b 3,b 2 b 4,b 2 b 5,b b 2,b 2 b 3,b 2b 4,b 2b 5,b2 2 ;q a b 3,a 2b 3,a 3b 3,a 4b 3,a 5b 3,a 6b 3 ;q b b 3,b 2b 3,b 3 b 4,b3 b 5,b b 3,b 2 b 3,b 3 b 4,b b 3 a b 3,a 2 b 3,a 3 b 3,a 4 b 3,a 5 b 3,a 6 b 3 ;q b b 3,b 2 b 3,b 3 b 4,b 3 b 5,b b 3,b 2 b 3,b 3 b 4,b 3b 5,b2 3 ;q a b 4,a 2b 4,a 3b 4,a 4b 4,a 5b 4,a 6b 4 ;q b b 4,b 2b 4,b 3b 4,b 4 b 5,b b 4,b 2 b 4,b 3 b 4,b b 4 a b 4,a 2 b 4,a 3 b 4,a 4 b 4,a 5 b 4,a 6 b 4 ;q b b 4,b 2 b 4,b 3 b 4,b 4 b 5,b b 4,b 2 b 4,b 3 b 4,b 4 b 5,b2 4 ;q a b 5,a 2b 5,a 3b 5,a 4b 5,a 5b 5,a 6b 5 ;q b b 5,b 2b 5,b 3b 5,b 4b5,b b 5,b 2 b 5,b 3 b 5,b b 5 a b 5,a 2 b 5,a 3 b 5,a 4 b 5,a 5 b 5,a 6 b 5 ;q b b 5,b 2 b 5,b 3 b 5,b 4 b 5,b b 5,b 2 b 5,b 3 b 5,b 4 b 5,b 2 5 ;q Σ ;q b, 2 b 5,b 2 Σ b 2, 3 b 5,b 2 Σ b 3, 4 b 5,b 2 Σ b 4, 4 b 5,b 2 Σ b 5, Σ b,a a 2 a 3 a 4 a 5 a 6 b 4,q b 4 a a 2 a 3 a 4 a 5 a 6 q 3,q Σ b 2,a a 2 a 3 a 4 a 5 a 6 b 4 3,q 2 ;q b 4 2 a a 2 a 3 a 4 a 5 a 6 q 3,q Σ b 3,a a 2 a 3 a 4 a 5 a 6 b 4 3,q 3 ;q b 4 3 a a 2 a 3 a 4 a 5 a 6 q 3,q Σ b 4,a a 2 a 3 a 4 a 5 a 6 b 4 4,q 4 ;q b 4 4 a a 2 a 3 a 4 a 5 a 6 q 3,q Σ b 5,a a 2 a 3 a 4 a 5 a 6 b 4 5,q 5 ;q b 4 5 a a 2 a 3 a 4 a 5 a 6 q 3,q In the following Propositions we will repeatedly use that q,q 4,q 6 ;q 5 q;q 5 and q 2,q 3,q 7 ;q 5 q 2 ;q 5 in reducing the products The proofs of these Propositions are similar to the proofs of Propositions 33 and 34 By moving the Σz,w,q terms all to one side and multiplying by the appropriate product, we find the identities are equivalent to a specialization of Lemma 4 or 42 Proposition 43 Σ7, 2,5q 7 Σ7,3,5q 6 Σ3,22,5q 29 Σ3,37,5 2

q;q 5 q 7 q 2 ;q 5 Σ0,0,5q 7 Σ0,25,5 q 3 q 6 ;q 3 3 q 5 ;q 5 q 2 ;q 5 2, 4 Σ, 26,5qΣ,,5q 2 Σ4, 4,5q 6 Σ4,,5 q 2 ;q 5 q 3 q;q 5 Σ0,0,5q 23 Σ0,25,5 q 3 ;q 3 3 q 5 ;q 5 q;q 5 2 42 Proof In Lemma 4 we use q q 5, a q 9, a 2 q 2, b q 7, b 2 q 0, b 3 q 3 to get q 9,q 2 ;q 5 q 5 ;q 5 2 q 7,q 0,q 3,q 7,q 0,q 3 ;q 5 q 6,q 28 ;q 5 q 2 q 3,q 6,q 4,q 7,q 20 ;q 5 Σ7, 2,5 q 7,q 4 ;q 5 q 4,q 7,q 20,q 3,q 6 ;q 5 Σ7,3,5 q 9,q 3 ;q 5 q q 3,q 3,q 7,q 20,q 23 ;q 5 Σ0,0,5 q 0 ;q 5 q 7,q 20,q 23,q 3,q 3 ;q 5 Σ0,25,5 q 22,q 34 ;q 5 q 4 q 6,q 3,q 20,q 23,q 26 ;q 5 Σ3,22,5 q 3,q 8 ;q 5 q 20,q 23,q 26,q 6,q 3 ;q 5 Σ3,37,5 Simplifying the products yields q 6 q 6,q 6 ;q 5 q 5 ;q 5 2 q 2,q 2,q 5,q 5,q 7,q 7 ;q 5 q 3,q 5,q 6 ;q 5 Σ7, 2,5 q 7 q 3,q 5,q 6 ;q 5 Σ7,3,5 q,q 4 q 7 ;q 5 q,q 4 q 2,q 3,q 3,q 5,q 7 ;q 5 Σ0,0,5q 7 ;q 5 q 2,q 3,q 3,q 7 ;q 5 Σ0,25,5 q 6 q 3,q 5,q 6 ;q 5 Σ3,22,5 q 29 q 3,q 5,q 6 ;q 5 Σ3,37,5 43 We see that multiplying both sides of 43 by q 3,q 5,q 6 ;q 5 implies 4 upon noting that q 3,q 6,q 6,q 6 ;q 5 q 5 ;q 5 2 q q 2,q 2,q 5,q 7,q 7 ;q 5 3 ;q 3 3 q 5 ;q 5 q 2 ;q 5 2 In Lemma 4 we use q q 5, a q 2, a 2 q 8, b q, b 2 q 4, b 3 q 0 to get q 2,q 8 ;q 5 q 5 ;q 5 2 q,q 4,q 0,q,q 4,q 0 ;q 5 q 3,q 9 ;q 5 q,q 7 ;q 5 q 3,q 9,q 2,q 5,q ;q 5 Σ, 26,5 q q 2,q 5,q,q 3,q 9 ;q 5 Σ,,5 q 6,q 22 ;q 5 q 8 q 3,q 6,q 5,q 8,q 4 ;q 5 Σ4, 4,5 q 4,q 4 ;q 5 q 5,q 8,q 4,q 3,q 6 ;q 5 Σ4,,5 q 22,q 28 ;q 5 q 2 q 9,q 6,q,q 4,q 20 ;q 5 Σ0,0,5 q 0,q 8 ;q 5 q,q 4,q 20,q 9,q 6 ;q 5 Σ0,25,5 3

Simplifying the products yields q 3 q 8,q 3 ;q 5 q 5 ;q 5 2 q,q,q 4,q 4,q 5,q 5 ;q 5 q 8 q 3,q 5,q 6 ;q 5 Σ, 26,5q 7 q 3,q 5,q 6 ;q 5 Σ,,5 q 6 q 3,q 5,q 6 ;q 5 Σ4, 4,5q 2 q 3,q 5,q 6 ;q 5 Σ4,,5 q 2 q 5,q 7 ;q 5 q 2 q,q 4,q 5,q 6,q 6 ;q 5 Σ0,0,5q 5,q 7 ;q 5 q,q 4,q 5,q 6,q 6 ;q 5 Σ0,25,5 44 We see that multiplying both sides of 44 by q 8 q 3,q 5,q 6 ;q 5 implies 4 upon noting that q 3,q 3,q 3,q 6 ;q 5 q 5 ;q 5 2 q,q,q 4,q 4,q 5 ;q 5 Proposition 44 q 3 ;q 3 3 q 5 ;q 5 q;q 5 2 Σ, 7,5q 3 Σ4, 8,5q 0 Σ7,7,5q 27 Σ3,28,5 q;q 5 Σ, 20,5q 4 q 2 ;q 5 Σ4, 5,5, 45 Σ7,4,5q 8 Σ0,6,5q 0 Σ0,9,5q 2 Σ3,3,5 q 2 ;q 5 q 9 q;q 5 Σ, 20,5q 5 Σ4, 5,5 q 3 q 9 ;q 3 3 46 q;q Proof In Lemma 42 we use q q 5, a q 5, a 2 q 3, a 3 q 0, a 4 q 8, a 5 q 0, a 6 q 2, b q, b 2 q 4, b 3 q 7, b 4 q 0, b 5 q 3 and note both the product on the left and four terms on the right in Lemma 42 are immediately zero, yielding q 6,q 4,q,q 9,q 9,q ;q 5 0 q 3,q 6,q 9,q 2,q 2,q 5,q 8,q,q 4 ;q 5 Σ, 20,5 q 4,q 2,q 9,q 7,q,q 3 ;q 5 q q 2,q 5,q 8,q,q 4,q 3,q 6,q 9,q 2 ;q 5 Σ, 7,5 q 9,q 7,q 4,q 2,q 6,q 8 ;q 5 q 3,q 3,q 6,q 9,q 5,q 8,q,q 4,q 7 ;q 5 Σ4, 8,5 q q 4,q 9,q 6,q 4,q 4,q 6 ;q 5 q 5,q 8,q,q 4,q 7,q 3,q 3,q 6,q 9 ;q 5 Σ4, 5,5 q 8 q 7,q 6,q 3,q,q 7,q 9 ;q 5 q 8,q,q 4,q 7,q 20,q 6,q 3,q 3,q 6 ;q 5 Σ7,7,5 q 28,q 26,q 23,q 2,q 3,q ;q 5 q 2,q 9,q 6,q 3,q 4,q 7,q 20,q 23,q 26 ;q 5 Σ3,28,5 Simplifying the products yields q,q 4 0 q ;q 5 q 2,q 3,q 3,q 5,q 7 ;q 5 Σ, 20,5 q q 3,q 5,q 6 ;q 5 Σ, 7,5 q 8 q,q 4 q 3,q 5,q 6 ;q 5 Σ4, 8,5q 7 ;q 5 q 2,q 3,q 3,q 5,q 7 ;q 5 Σ4, 5,5 4

q q 3,q 5,q 6 ;q 5 Σ7,7,5 q 6 q 3,q 5,q 6 ;q 5 Σ3,28,5 47 We see multiplying both sides of 47 by q q 3,q 5,q 6 ;q 5 implies 45 In Lemma 42 we use q q 5, a q 2, a 2 q, a 3 q 7, a 4 q 6, a 5 q 2, a 6 q 4, b q, b 2 q 4, b 3 q 7, b 4 q 0, b 5 q 3 and note four terms on the right in Lemma 42 are immediately zero, yielding q 2,q,q 7,q 6,q 2,q 4 ;q 5 q 5 ;q 5 q,q 4,q 7,q 0,q 3,q,q 4,q 7,q 0,q 3 ;q 5 q 3,q 2,q 8,q 7,q 3,q 3 ;q 5 q 3,q 6,q 9,q 2,q 2,q 5,q 8,q,q 4 ;q 5 Σ, 20,5 q 8 q 4,q 7,q 3,q 2,q 2,q 8 ;q 5 q 5,q 8,q,q 4,q 7,q 3,q 3,q 6,q 9 ;q 5 Σ4, 5,5 q 9,q 8,q 4,q 3,q 9,q 7 ;q 5 q 6,q 3,q 3,q 6,q 8,q,q 4,q 7,q 20 ;q 5 Σ7,4,5 q 22,q 2,q 7,q 6,q 2,q 4 ;q 5 q 9,q 6,q 3,q 3,q,q 4,q 7,q 20,q 23 ;q 5 Σ0,6,5 q 2 q 0,q,q 3,q 4,q 8,q 24 ;q 5 q,q 4,q 7,q 20,q 23,q 9,q 6,q 3,q 3 ;q 5 Σ0,9,5 q,q 2 q 3,q 6,q 7,q,q 27 ;q 5 q 4,q 7,q 20,q 23,q 26,q 2,q 9,q 6,q 3 ;q 5 Σ3,3,5 Simplifying the products yields q 3 q 3,q 6 ;q 5 q 5 ;q 5 2 q,q 2,q 4,q 5,q 5,q 7 ;q 5 q 2 q 3,q 7 ;q 5 q 2,q 7 ;q 5 q,q 4,q 5,q 6,q 6 ;q 5 Σ, 20,5q q,q 4,q 5,q 6,q 6 ;q 5 Σ4, 5,5 q 6 q 3,q 5,q 6 ;q 5 Σ7,4,5q 4 q 3,q 5,q 6 ;q 5 Σ0,6,5 q 6 q 3,q 5,q 6 ;q 5 Σ0,9,5q 27 q 3,q 5,q 6 ;q 5 Σ3,3,5 48 We see multiplying 48 by q 6 q 3,q 5,q 6 ;q 5 q 3,q 3,q 6,q 6 ;q 5 q 5 ;q 5 2 q,q 2,q 4,q 5,q 7 ;q 5 q3 ;q 3 3 q;q implies 46, upon noting that Proposition 45 Σ, 4,5q 2 Σ4,,5q 7 Σ7,,5q 32 Σ3,34,5 q 2 ;q 5 q;q 5 q Σ7,0,5q 24 Σ3,25,5, 49 Σ, 23,5q 5 Σ4, 2,5q 5 Σ0,3,5q 2 Σ0,22,5 5

q;q 5 q 2 ;q 5 q 2 Σ7,0,5q 25 Σ3,25,5 q 3 ;q 3 3 q;q 40 Proof In Lemma 42 we use q q 5, a q 5, a 2 q 4, a 3 q 0, a 4 q 9, a 5 q 0, a 6 q, b q, b 2 q 4, b 3 q 7, b 4 q 0, b 5 q 3 and note both the product on the left and four terms on the right in Lemma 42 are immediately zero, yielding q 4,q 3,q 9,q 8,q,q 2 ;q 5 0 q q 2,q 5,q 8,q,q 4,q 3,q 6,q 9,q 2 ;q 5 Σ, 4,5 q 9,q 8,q 4,q 3,q 6,q 7 ;q 5 q 3,q 3,q 6,q 9,q 5,q 8,q,q 4,q 7 ;q 5 Σ4,,5 q 22,q 2,q 7,q 6,q 3,q 4 ;q 5 q 6,q 3,q 3,q 6,q 8,q,q 4,q 7,q 20 ;q 5 Σ7,,5 q 8 q 7,q 7,q 3,q 2,q 7,q 8 ;q 5 q 8,q,q 4,q 7,q 20,q 6,q 3,q 3,q 6 ;q 5 Σ7,0,5 q 28,q 27,q 23,q 22,q 3,q 2 ;q 5 q 2,q 9,q 6,q 3,q 4,q 7,q 20,q 23,q 26 ;q 5 Σ3,25,5 q 2 q 3,q,q 3,q 4,q 23,q 24 ;q 5 q 4,q 7,q 20,q 23,q 26,q 2,q 9,q 6,q 3 ;q 5 Σ3,34,5 Simplifying the products yields 0 q 3 q 3,q 5,q 6 ;q 5 Σ, 4,5 q q 3,q 5,q 6 ;q 5 Σ4,,5 q 6 q 2 q 3,q 5,q 6 ;q 5 Σ7,,5 q 2,q 7 ;q 5 q,q 4,q 5,q 6,q 6 ;q 5 Σ7,0,5 q 2 q,q 7 ;q 5 q,q 4,q 5,q 6,q 6 ;q 5 Σ3,25,5 q 9 q 3,q 5,q 6 ;q 5 Σ3,34,5 4 We see multiplying 4 by q 3 q 3,q 5,q 6 ;q 5 implies 49 In Lemma 42 we use q q 5, a q 3, a 2 q, a 3 q 8, a 4 q 6, a 5 q 3, a 6 q 4, b q, b 2 q 4, b 3 q 7, b 4 q 0, b 5 q 3 and note four terms on the right in Lemma 42 are immediately zero, yielding q 3,q,q 8,q 6,q 3,q 4 ;q 5 q 5 ;q 5 q,q 4,q 7,q 0,q 3,q,q 4,q 7,q 0,q 3 ;q 5 q 4,q 2,q 9,q 7,q 4,q 3 ;q 5 q 3,q 6,q 9,q 2,q 2,q 5,q 8,q,q 4 ;q 5 Σ, 23,5 q 9 q 4,q 7,q 4,q 2,q,q 8 ;q 5 q 5,q 8,q,q 4,q 7,q 3,q 3,q 6,q 9 ;q 5 Σ4, 2,5 q 6 q 7,q 4,q,q,q 4,q 2 ;q 5 q 8,q,q 4,q 7,q 20,q 6,q 3,q 3,q 6 ;q 5 Σ7,0,5 q 23,q 2,q 8,q 6,q 3,q 4 ;q 5 q 9,q 6,q 3,q 3,q,q 4,q 7,q 20,q 23 ;q 5 Σ0,3,5 6

q 3 q 0,q,q 2,q 4,q 7,q 24 ;q 5 q,q 4,q 7,q 20,q 23,q 9,q 6,q 3,q 3 ;q 5 Σ0,22,5 q 26,q 24,q 2,q 9,q 6,q;q 5 q 2,q 9,q 6,q 3,q 4,q 7,q 20,q 23,q 26 ;q 5 Σ3,25,5 Simplifying the products yields q 3 q 6,q 6 ;q 5 q 5 ;q 5 2 q,q 2,q 4,q 5,q 5,q 7 ;q 5 q 6 q 3,q 5,q 6 ;q 5 Σ, 23,5q q 3,q 5,q 6 ;q 5 Σ4, 2,5 q,q 4 q 6 ;q 5 q 2,q 3,q 3,q 5,q 7 ;q 5 Σ7,0,5q 9 q 3,q 5,q 6 ;q 5 Σ0,3,5 q 5 q,q 4 q 3,q 5,q 6 ;q 5 Σ0,22,5 q 9 ;q 5 q 2,q 3,q 3,q 5,q 7 ;q 5 Σ3,25,5 42 We see multiplying 42 by q 6 q 3,q 5,q 6 ;q 5 implies 40, again noting that q 3,q 3,q 6,q 6 ;q 5 q 5 ;q 5 2 q,q 2,q 4,q 5,q 7 ;q 5 q3 ;q 3 3 q;q Similar to the proof of Theorem 2, we begin with expressing PPζ 5,q in terms of U 5 b With ζ 5 a primitive fifth root of unity, we have q PPζ 6n2 4n q 6n2 q 3n ζ 5,q 5q 2 3n ζ5q 3 3n q;q q 5n5 n qu5 4ζ 5 ζ5 4 q;q q2 U 5 7 ζ 5 ζ5 4 q3 U 5 0 ζ 5 ζ5 4 q4 U 5 3 Thus We find that U 5 b ζ 5 ζ 4 5 q5 U 5 6q 6 U 5 9 43 n 4 k0 4 k0 q 6n2 bn q 5n5 q 6k2 bk q 6k2 bk qu 5 4 q 3 U 5 0 q 4 U 5 3q 6 U 5 9 n n q 50nn q 60nk5bn 50n q 5k5 q 75n Σ5k5,60k5b 50,75 qσ5, 30,75q Σ20, 70,75q 33 Σ35, 0,75q 67 Σ50,50,75q 3 Σ65,0,75 q 3 Σ5, 00,75 q 9 Σ20, 40,75 q 47 Σ35,20,75 q 87 Σ50,80,75 q 39 Σ65,40,75 q 4 Σ5, 85,75 q 23 Σ20, 25,75 q 54 Σ35,35,75 q 97 Σ50,95,75 q 52 Σ65,55,75 q 6 Σ5, 55,75q 3 Σ20,5,75q 68 Σ35,65,75q 7 Σ50,25,75q 78 Σ65,85,75, 7

and q 2 U 5 7 q 3 U 5 0 q 4 U 5 3q 5 U 5 6 q 2 Σ5, 5,75q 5 Σ20, 55,75q 40 Σ35,5,75q 77 Σ50,65,75q 26 Σ65,25,75 q 3 Σ5, 00,75 q 9 Σ20, 40,75 q 47 Σ35,20,75 q 87 Σ50,80,75 q 39 Σ65,40,75 q 4 Σ5, 85,75 q 23 Σ20, 25,75 q 54 Σ35,35,75 q 97 Σ50,95,75 q 52 Σ65,55,75 q 5 Σ5, 70,75q 27 Σ20, 0,75q 6 Σ35,50,75q 07 Σ50,0,75q 65 Σ65,70,75 Next we reorder the Σz,w,q terms and apply Propositions 43 and 44 with q q 5 to get that qu 5 4 q 3 U 5 0 q 4 U 5 3q 6 U 5 9 q 67 Σ50,50,75q 7 Σ50,25,75 q 3 Σ5, 00,75 q 23 Σ20, 25,75 q 33 Σ35, 0,75q 35 Σ35,65,75q 80 Σ65,0,75q 45 Σ65,85,75 q Σ5, 30,75q 5 Σ5, 55,75q 0 Σ20, 70,75q 30 Σ20,5,75 q 4 Σ5, 85,75q 5 Σ20, 40,75q 50 Σ35,35,75q 35 Σ65,40,75 q 47 Σ35,20,75q 40 Σ50,80,75q 50 Σ50,95,75q 05 Σ65,55,75 q 66 Σ50,50,75q 6 Σ50,25,75 q 0 ;q 5 q 5 q 5 ;q 5 q q 2 ;q 5 q 0 ;q 5 q 2 Σ5, 00,75q 22 Σ20, 25,75 q 0 ;q 5 q 5 q 5 ;q 5 q q 2 ;q 5 q 0 ;q 5 q 5 q 3 ;q 5 3 q 5 ;q 5 3 q 5 q 25 ;q 25 q 0 ;q 25 2 q q 25 ;q 25 q 5 ;q 25 2 q 2 ;q 5 3 q 5 ;q 5 q 66 Σ50,50,75q 6 Σ50,25,75 q 0 ;q 5 q 5 q 5 ;q 5 q q 2 ;q 5 q 0 ;q 5 q 2 Σ5, 00,75q 22 Σ20, 25,75 q 0 ;q 5 q 5 q 5 ;q 5 q q 2 ;q 5 q 0 ;q 5 q 5 ;q 5 3 q 0 ;q 5 q 5 q q 5 ;q 5 q 5 ;q 5 q q 2 ;q 5 q 0 ;q 5 44 However, by Euler s pentagonal number theorem and the Jacobi triple product identity, we have that q;q q 25 ;q 25 q 0 ;q 25 q 5 q 5 ;q 25 q q 2 ;q 25 q 0 ;q 25 Thus, qu 5 4 q 3 U 5 0 q 4 U 5 3q 6 U 5 9 q;q q 2 q 25 ;q 25 Σ5, 00,75q 22 Σ20, 25,75 q 66 Σ50,50,75 q 6 Σ50,25,75 q q;q q 5 ;q 5 3 q 5 ;q 5 q 25 ;q 25 45 8

Similarly we reorder the Σz,w,q terms and apply Propositions 44 and 45 with q q 5 to get that q 2 U 5 7 q 3 U 5 0 q 4 U 5 3q 5 U 5 6 q 6 Σ35,50,75q 26 Σ65,25,75 q 3 Σ5, 00,75 q 23 Σ20, 25,75 q 2 Σ5, 5,75q 25 Σ20, 0,75q 75 Σ50,65,75q 05 Σ50,0,75 q 5 Σ5, 70,75q 0 Σ20, 55,75q 35 Σ35,5,75q 60 Σ65,70,75 q 4 Σ5, 85,75q 5 Σ20, 40,75q 50 Σ35,35,75q 35 Σ65,40,75 q 47 Σ35,20,75q 40 Σ50,80,75q 50 Σ50,95,75q 05 Σ65,55,75 q 60 Σ35,50,75q 25 Σ65,25,75 q 0 ;q 5 q 5 q 5 ;q 5 q q 2 ;q 5 q 0 ;q 5 q 2 Σ5, 00,75q 22 Σ20, 25,75 q 0 ;q 5 q 5 q 5 ;q 5 q q 2 ;q 5 q 0 ;q 5 q 5 q 2 ;q 5 3 q 5 q 5 ;q 5 q 2 ;q 5 3 q 5 ;q 5 q;q q 25 ;q 25 q 2 Σ5, 00,75q 22 Σ20, 25,75 q 60 Σ35,50,75 q 25 Σ65,25,75 Theorem 3 follows by equations 43, 45, and 46 n 5 Proof of Theorem 4 46 Proof Using Theorem 2 of we find that q PPz,q n zq;q k z k q nk zq n ;q n q;q k0 k z k q nkn zq nk ;q nk0 q;q k q n z k q nkn zq n ;q n zq nk ;q nk q;q k q n q n zq n ;q q n ;q k zq nk z k q kn q;q nk 5 ;q q;q n q;q k nk The first term in 5 is the generating function for non-empty partitions with the power of q giving the number being partitioned and the power of z giving one less than the number of parts of the partition This is the generating function for partition pairs from PP where π 2 is empty, the power of q gives the number being partitioned and the power of z gives the paircrank q n q n ;q k zq nk ;q In the second term in 5, we interpret the summands as follows We have that is the generating function for non-empty partitions π where n is the smallest part, the power of q counts the number being partitioned, and the power of z counts the number of parts that are at least nk We have that z k q kn q;q nk q;q n q;q is the generating function for partitions π 2 with exactly k parts k with each part between n and 2n, where the power of q counts the number being partitioned 9

and the power of z counts the negative of the number of parts Thus the second term in 5 is the generating function for partition pairs from PP, with both π and π 2 non-empty, with the power of q giving the number being partitioned and the power of z giving the paircrank This proves that Cm,n is the number of partition pairs from PP of n with paircrank m These rearrangements and interpretations are essentially what was done in 8 as an intermediate step in getting an spt-crank defined on marked overpartitions Also this is quite similar to the steps in 3 where Andrews and Garvan gave the ordinary partition crank after the vector partition crank Acknowledgments The author would like to thank Frank Garvan for suggesting this problem and for his help and encouragement References G E Andrews The theory of partitions Addison-Wesley Publishing Co, Reading, Mass-London-Amsterdam, 976 Encyclopedia of Mathematics and its Applications, Vol 2 2 G E Andrews The number of smallest parts in the partitions of n J Reine Angew Math, 624:33 42, 2008 3 G E Andrews and F G Garvan Dyson s crank of a partition Bull Amer Math Soc NS, 82:67 7, 988 4 A O L Atkin and P Swinnerton-Dyer Some properties of partitions Proc London Math Soc 3, 4:84 06, 954 5 K Bringmann, J Lovejoy, and R Osburn Rank and crank moments for overpartitions J Number Theory, 297:758 772, 2009 6 S H Chan Generalized Lambert series identities Proc London Math Soc 3, 93:598 622, 2005 7 A B Ekin Some properties of partitions in terms of crank Trans Amer Math Soc, 3525:245 256, 2000 8 F G Garvan and C Jennings-Shaffer The spt-crank for overpartitions Acta Arith, 662:4 88, 204 9 F G Garvan and H Yesilyurt Shifted and shiftless partition identities II Int J Number Theory, 3:43 84, 2007 0 J Lovejoy and R Osburn Rank differences for overpartitions Q J Math, 592:257 273, 2008 J Lovejoy and R Osburn M 2 -rank differences for partitions without repeated odd parts J Théor Nombres Bordeaux, 22:33 334, 2009 2 J Lovejoy and R Osburn M 2 -rank differences for overpartitions Acta Arith, 442:93 22, 200 3 L J Slater A new proof of Rogers s transformations of infinite series Proc London Math Soc 2, 53:460 475, 95 Department of Mathematics, University of Florida, Gainesville, Florida 326, USA cjenningsshaffer@ufledu 20