Feedback Principle :-

Similar documents
Introduction to Electronic circuits.

55:041 Electronic Circuits

CHAPTER 3: FEEDBACK. Dr. Wan Mahani Hafizah binti Wan Mahmud

Circuits Op-Amp. Interaction of Circuit Elements. Quick Check How does closing the switch affect V o and I o?

CHAPTER 3 ANALYSIS OF KY BOOST CONVERTER

Department of Electrical and Computer Engineering FEEDBACK AMPLIFIERS

PHYSICS 536 Experiment 12: Applications of the Golden Rules for Negative Feedback

Design of Analog Integrated Circuits

III. Operational Amplifiers

Wp/Lmin. Wn/Lmin 2.5V

IGEE 401 Power Electronic Systems. Solution to Midterm Examination Fall 2004

EE 204 Lecture 25 More Examples on Power Factor and the Reactive Power

EE 221 Practice Problems for the Final Exam

CIRCUIT ANALYSIS II Chapter 1 Sinusoidal Alternating Waveforms and Phasor Concept. Sinusoidal Alternating Waveforms and

FYSE400 ANALOG ELECTRONICS

Faculty of Engineering

Chapter 7. Systems 7.1 INTRODUCTION 7.2 MATHEMATICAL MODELING OF LIQUID LEVEL SYSTEMS. Steady State Flow. A. Bazoune

Linear Amplifiers and OpAmps

Waveshapping Circuits and Data Converters. Lesson #17 Comparators and Schmitt Triggers Section BME 373 Electronics II J.

PT326 PROCESS TRAINER

ME2142/ME2142E Feedback Control Systems. Modelling of Physical Systems The Transfer Function

55:141 Advanced Circuit Techniques Two-Port Theory

The Operational Amplifier and Application

FE REVIEW OPERATIONAL AMPLIFIERS (OP-AMPS)( ) 8/25/2010

FEEDBACK AMPLIFIERS. v i or v s v 0

The three major operations done on biological signals using Op-Amp:

55:041 Electronic Circuits

Module B3. VLoad = = V S V LN

55:041 Electronic Circuits

MAE140 - Linear Circuits - Winter 16 Final, March 16, 2016

Lecture 2 Feedback Amplifier

Introduction of Two Port Network Negative Feedback (Uni lateral Case) Feedback Topology Analysis of feedback applications

Complex Numbers, Signals, and Circuits

Copyright Paul Tobin 63

WYSE Academic Challenge 2004 Sectional Physics Solution Set

MAE140 - Linear Circuits - Fall 13 Midterm, October 31

Chapter 6. Operational Amplifier. inputs can be defined as the average of the sum of the two signals.

ANALOG ELECTRONICS 1 DR NORLAILI MOHD NOH

CHAPTER 13. Exercises. E13.1 The emitter current is given by the Shockley equation:

Section 3: Detailed Solutions of Word Problems Unit 1: Solving Word Problems by Modeling with Formulas

Conduction Heat Transfer

CHAPTER 11. Solutions for Exercises. (b) An inverting amplifier has negative gain. Thus L

Linearity. If kx is applied to the element, the output must be ky. kx ky. 2. additivity property. x 1 y 1, x 2 y 2

Thermodynamics of Materials

MAE140 - Linear Circuits - Winter 16 Midterm, February 5

SIMULATION OF THREE PHASE THREE LEG TRANSFORMER BEHAVIOR UNDER DIFFERENT VOLTAGE SAG TYPES

A New Method for Solving Integer Linear. Programming Problems with Fuzzy Variables

Lesson #14. Section BME 373 Electronics II J.Schesser

Is current gain generally significant in FET amplifiers? Why or why not? Substitute each capacitor with a

V. Electrostatics Lecture 27a: Diffuse charge at electrodes

55:141 Advanced Circuit Techniques Two-Port Theory

ANALOG ELECTRONICS I. Transistor Amplifiers DR NORLAILI MOHD NOH

Bipolar-Junction (BJT) transistors

CTN 2/23/16. EE 247B/ME 218: Introduction to MEMS Design Lecture 11m2: Mechanics of Materials. Copyright 2016 Regents of the University of California

The two main types of FETs are the junction field effect transistor (JFET) and the metal oxide field effect transistor (MOSFET).

ELECTRONICS. EE 42/100 Lecture 4: Resistive Networks and Nodal Analysis. Rev B 1/25/2012 (9:49PM) Prof. Ali M. Niknejad

_J _J J J J J J J J _. 7 particles in the blue state; 3 particles in the red state: 720 configurations _J J J _J J J J J J J J _

Shell Stiffness for Diffe ent Modes

( ) = ( ) + ( 0) ) ( )

Two Port Characterizations

(b) i(t) for t 0. (c) υ 1 (t) and υ 2 (t) for t 0. Solution: υ 2 (0 ) = I 0 R 1 = = 10 V. υ 1 (0 ) = 0. (Given).

ELG4139: Op Amp-based Active Filters

Transfer Characteristic

Relationships Between Frequency, Capacitance, Inductance and Reactance.

Spring 2002 Lecture #17

Big Data Analytics! Special Topics for Computer Science CSE CSE Mar 31

CHAPTER 3 QUASI-RESONANT BUCK CONVERTER

Copyright 2004 by Oxford University Press, Inc.

Diodes Waveform shaping Circuits. Sedra & Smith (6 th Ed): Sec. 4.5 & 4.6 Sedra & Smith (5 th Ed): Sec. 3.5 & 3.6

Chapter 10 Diodes. 1. Understand diode operation and select diodes for various applications.

LEAP FROG TECHNIQUE. Operational Simulation of LC Ladder Filters ECEN 622 (ESS) TAMU-AMSC

Diodes Waveform shaping Circuits

T-model: - + v o. v i. i o. v e. R i

Novel current mode AC/AC converters with high frequency ac link *

Exercises for Frequency Response. ECE 102, Winter 2011, F. Najmabadi

element k Using FEM to Solve Truss Problems

Concurrent Adaptive Cancellation of Quantization Noise and Harmonic Distortion in Sigma Delta Converter

ANALYSIS OF TRANSISTOR FEEDBACK AMPLIFIERS

1. Transformer A transformer is used to obtain the approximate output voltage of the power supply. The output of the transformer is still AC.

OP AMP CHARACTERISTICS

Water vapour balance in a building moisture exposure for timber structures

Chapter 6 : Gibbs Free Energy

Approach: (Equilibrium) TD analysis, i.e., conservation eqns., state equations Issues: how to deal with

COLLEGE OF ENGINEERING PUTRAJAYA CAMPUS FINAL EXAMINATION SPECIAL SEMESTER 2013 / 2014

Final Exam Spring 2014 SOLUTION

Physics 107 HOMEWORK ASSIGNMENT #20

Lesson 5. Thermomechanical Measurements for Energy Systems (MENR) Measurements for Mechanical Systems and Production (MMER)

Part III Lectures Field-Effect Transistors (FETs) and Circuits

Week 11: Differential Amplifiers

FE REVIEW OPERATIONAL AMPLIFIERS (OP-AMPS)

Synchronous Motor V-Curves

Improved Bridgeless Interleaved Boost PFC Rectifier with Optimized Magnetic Utilization and Reduced Sensing Noise

General Amplifiers. Analog Electronics Circuits Nagamani A N. Lecturer, PESIT, Bangalore 85. Cascade connection - FET & BJT

Chapter II Circuit Analysis Fundamentals

UNIT I BASIC CIRCUIT CONCEPTS

II. PASSIVE FILTERS. H(j ω) Pass. Stop

Ch5 Appendix Q-factor and Smith Chart Matching

Prof. Paolo Colantonio a.a

Selected Student Solutions for Chapter 2

1.4 Small-signal models of BJT

Transcription:

Feedback Prncple : Feedback amplfer s that n whch a part f the utput f the basc amplfer s returned back t the nput termnal and mxed up wth the nternal nput sgnal. The sub netwrks f feedback amplfer are: Blck dagram f a feedback netwrk (a) SAMPLNG NETWOK: Ths netwrk samples ut a part f utput n rder t send t t the nput. t may cnsst f resstr, cndenser, nductr and als electrnc cmpnents. (b) FEEDBACK NETWOK: Feedback netwrk s used t get a desred magntude f utput and als desred phase t send t t the nput sutably. (c) MXE NETWOK: The functn f ths netwrk s t mx up the feedback entty wth external nput sutably. Pstve feedback : f the feed back entty mxed up wth external sgnal s n same phase then the feedback s called pstve feedback feedback. Negatve feedback: f the feedback entty mxed up wth the external sgnal s n ppste phase then feedback s called negatve feedback. 1

Gan wth feedback: Let, S, X = external nput sgnal. X O = utput sgnal. Xf = feedback entty. X = sum f nput sgnal and feedback entty. X =X ± X f (1) X f β = = fractn f utput feedback t the nput. XO X A = = gan f basc amplfer. X A f = X X = vltage gan wth feedback. Dvdng equatn (1) by X O we get, X' X X f = ± X X X 1 1 = ± β A A 1 1 = m β Af A 1 1m β = Af A A Af = 1m β Fr, A Pstve feedback; Af =. 1 Aβ A Negatve feedback; Af = 1 Aβ f 2

Fur tptges f feedback amplfer: (a) Vltage amplfer wth vltage seres feedback : Here the feedback netwrk s cnnected n seres wth the nput sgnal. (b) Current amplfer wth current shunt feedback: Here feedback termnal s cnnected n parallel t the external nput sgnal. (c) Transcnductance amplfer wth current seres feedback: Here the feedback netwrk s cnnected n seres wth the (samplng netwrk) utput sgnal. (d) Transresstance amplfer wth vltage shunt feedback : Here the feedback netwrk s cnnected n parallel wth the samplng netwrk (utput sgnal). 3

(a) Vltage amplfer: Fr a vltage amplfer the utput vltage (V O ) s prprtnal t the nput vltage (V ). V O V V O = A V V Where A V s called the vltage gan. Thevenn s equvalent crcut f a tw prt netwrk whch represents a vltage amplfer s gven n fgure belw; Here, V S = sgnal vltage S = surce resstance = nput resstance s V V Vs n the absence f lad.e. pen ckt. utput vltage 1 V. = AvV = Av Vs = AvVs s 1 s As ncreases V O als n creases. V = VS s Nw f ; V O = A V V S. S nput resstance f an deal vltage amplfer shuld be very hgh. n the presence f lad resstance the utput f the amplfer, V = V L = V L as 0; V V s V Vs V L V' S a gd vltage amplfer shuld have very lw utput resstance. 4

(b) Current amplfer: n an deal current amplfer the utput current s prprtnal t the nput current. O O = A Where, A s called the current gan. Open ckt. utput current, = A. = A s s s s s f decreases then O ncreases. When 0; O = A S the max m utput s = s s current. S nput resstance f a gd current amplfer shuld very lw. f the ut termnal s cnnected t sme lad L then the current thught the L s gven by, L = 2 1 L s s L As O ncreases the L ncreases and attans the maxmum value L = O when O S a gd current amplfer shuld very hgh utput resstance. 5

(c) Transcnductance amplfer: An deal transcnductance amplfer prduces an utput current whch s prprtnal t the nput vltage. O V O =g m V Here g m s called transcnductance. Nw n the absence f any lad, O = g m V = g m.v S s 1 = g m V S. S 1 s V Vs V = Vs s As ncreases O als ncreases and attans the maxmum value O g m V S when. S fr an deal transcnductance amplfer the nput resstance shuld be very hgh. n the presence f lad the current thrugh the lad s L = = O L 1 O 1 L s Vs V L ' L As O ncreases L als ncreases and reaches ts maxmum L O when O. S fr an deal transcnductance amplfer the utput resstance shuld be very hgh. 6

(d) Transresstance amplfer: An deal transresstance amplfer supples an utput vltage whch hs prprtnal t the nput current. V O Where s called transresstance. V O = n the absence f any lad the utput vltage, V O =. = s s s s s s = s s V V O ncreases as decreases and V O s maxmum when 0. S fr an deal Transresstance amplfer nput resstance shuld be very lw. Cnsder a lad L s cnnected t the utput termnal. utput vltage, V L = L L O V O s s L VL As fr an deal ncreases and reaches the maxmum value V L V O when O 0. S fr an deal Transresstance amplfer the utput resstance shuld be very lw. 7

Nature f and O fr dfferent feedback tplges (deal case): Feedback tplgy O Vltage amplfer 0 Current amplfer 0 Transcnductance amplfer Transresstance amplfer 0 0 8

Effect f negetve feedback n nput and utput resstances f amplfers: (a) Vltage seres feedback : (Vltage amplfer) () nput resstance wth negatve feedback : V=Vs V' AvV' L V f Vf f f' f the negatve feedback sgnal s returned t the nput n seres wth the appled vltage, t gves rse t an ncrease n nput resstance. t s because f the fact that feedback vltage V f ppses the nput vltage V S (sgnal vltage) as they are n ppste phase. As a result the nput current s less then that whch wuld be f V f s absent. And hence the nput resstance appears t ncrease. Applyng KVL at the equvalent nput ckt. We can wrte, V f V S = V f = βv O (1) [Q β = ] V Nw frm utput crcut we can wrte, AV V O = v L Av V L = = = AVL (2)[ Q V = ] L L A Where, A VL = v L (3) L Nw usng the value f V O frm (2) n (1) we get, V S = βa VL V s = (1 β AVL) f = (1 β AVL ) f = nput resstance n presence f feedback. Hence we see that the nput resstance ncreases by a factr (1βA VL ) due t negatve vltage seres feedback. 9

() Output resstance wth negatve feedback: The effete f negatve seres vltage feedback s t decreases the utput resstance f an amplfer. Nw we cnsder tw cases: n the frst case here remve L : T fnd ut utput resstance wthut L we remve external sgnal Vs s that V = V f. We mpse a vltage V acrss the utput termnal and then calculate the current delvered by V. as shwn n ckt. Belw.n ths case, V f = (4) V' AvV' V Vf f Nw frm the utput ckt, V AvV = V AvVf = V Av βv = [ V f = β V ] V = 1 β Av Of = 1 β Av Of O. n the 2 nd case we cnsder the presence f L : Nw we cnsder the presence f lad resstance L acrss utput termnal. n ths case L becmes parallel t Of and the effectve utput resstance s gven by, f = f L 10

V' AvV' L V Vf f f' f = f L f. L f = f L. L f = 1 β Av L 1 β A v = L L Lβ Av L ( L) = 1 β A L v L f = 1 β AVL where = L = L L AV and A L VL = L 11

(b) Current shunt feedback: (current amplfer) () nput resstance wth negatve feedback: s f s f V A Negatve feedback, n whch feedback sgnal s returned t the nput by the methd f current shunt feedback, gves rse t decrease n nput resstance. Frm the nput ckt applyng KCL we have, s f = => f s = f = β (5) [ β = ] Nw frm utput termnal the current thugh L s A = = AL (6) = L A Where, A L = (7) L Usng equatn (6) n (5) we get, s = AL = (1 A L) (8) nput resstance wthut feedback, V = And nput resstance wth feedback, V f = = s ( 1 β AL) f = ( 1 β AL ) < f Current shunt negatve feedback causes a decrease n the nput resstance. L V 12

FEEDBACK PNCPLES & AMPLFES 1 (a) Draw the equvalent crcut fr vltage amplfer. (b) fr the deal vltage amplfer what are the values f what s the dmensn f gan. 2 (a) Draw the equvalent crcut fr current amplfer. (b) fr the deal current amplfer what are the values f and and what s the dmensn f gan. 3 (a) Draw the equvalent crcut fr Transcnductance amplfer. (b) fr the deal Transcnductance amplfer what are the values f what s the dmensn f gan. 4 (a) Draw the equvalent crcut fr Transresstance amplfer. (b) fr the deal Transresstance amplfer what are the values f.. and and what s the dmensn f gan. 5. wrte dwn the basc characterstcs f a feedback amplfer. 6. what are the dfferent netwrks n feedback amplfer? What are the functns f each netwrk? 7. (a) what are the fur pssble tplges f a feedback amplfer? (b) dentfy utput sgnal X and the feedback sgnal f.. X each tplges. Defne the feedback factr β. 8. fnd s the relatnshp between transfer gan wth feedback and wth ut feedback. 9. what are the advantages f negatve feedback ver pstve feedback? 10. Lst fve characterstcs f an amplfer whch are mdfed by negatve feedback. 99 11. State hw and change n the case f negatve feedback vltage amplfers,current amplfer, transcnductanu amplfer and Transresstance amplfer. 12. Fnd ut the factrs mdfyng and n the case f (1) vltage seres feedback and (2) current shunt feedback. 13. Explan hw an amplfer utput s made stable by negatve feedback. 14. What s autmatc gan cntrl? Hw des t wrk? 15. Defne senstvty fnd ut ts expressn. 16. Defne Desenstvty fnd ut ts expressn.99 17. Dscuss the effect f negatve feedback n bandwdth f an amplfer. 18. Fr scllatr we requre pstve feedback and fr stablty we requre negatve feedback why? 19. What s the effect f negatve feedback n the nn lnear dstrtn f an amplfer.99 20. Mentn fur uses f pstve feedback? Why s t called regeneratve feedback? 13