TOPIC 4 STATIC ELECTRICITY

Similar documents
ELECTRICAL Quantities

Electrostatics is the study of non-moving electric charges, sometimes called static electricity.

CLASS X- ELECTRICITY

UNIT 3 ELECTRIC CHARGE ELECTRIC CIRCUITS: ELECTRIC CHARGE:

A negatively charged object has more electrons than protons. A negatively charged object has more electrons than protons

Electric Charges & Current. Chapter 12. Types of electric charge

STUDY GUIDE CHAPTER 5 ELECTRICITY AND MAGNETISM 1) ASSOCIATE ELEMENTARY PARTICLES WITH THEIR ELECTRICAL CHARGE

Electron Theory of Charge. Electricity. 1. Matter is made of atoms. Refers to the generation of or the possession of electric charge.

5. ELECTRIC CURRENTS

Section 1 Electric Charge and Force

Unit 3 BLM Answers UNIT 3 BLM 3-46

SNC1DI Unit Review: Static & Current Electricity

ISLAMABAD ACADEMY PHYSICS FOR 10TH CLASS (UNIT # 15)

What is electricity? Charges that could be either positive or negative and that they could be transferred from one object to another.

uncharged and charged objects Electrostatic induction

Test Review Electricity

Chapter 19, Electricity Physical Science, McDougal-Littell, 2008

Read Chapter 7; pages:

8. Electric circuit: The closed path along which electric current flows is called an electric circuit.

Electricity Review completed.notebook. June 13, 2013

Name: Class: Date: 1. Friction can result in the transfer of protons from one object to another as the objects rub against each other.

Electric charges. Basics of Electricity

Electric Charge. Electric Charge ( q ) unbalanced charges positive and negative charges. n Units Coulombs (C)

Electricity. Chapter 21

Chapter 20. Static Electricity

ELECTRICITY UNIT REVIEW

9. Which of the following is the correct relationship among power, current, and voltage?. a. P = I/V c. P = I x V b. V = P x I d.

Electricity Courseware Instructions

Electricity MR. BANKS 8 TH GRADE SCIENCE

Theme 5: Electricity in the Home

EXTENSION 6. Chapter 3 Encounters with Electricity: Electrical Energy in the Home Unit 3.2 Electric Circuits and Electric Charge

Electricity. Part 1: Static Electricity

Electrostatics and Charge. Creating Electric Fields

Chapter 19. Electric Charges, Forces and Electric Fields

G E F D. 1. The diagram shows an electronic circuit. Write down the names of the components in the list below. A =... B =... C =... D =...

AP Physics C - E & M

What does it mean for an object to be charged? What are charges? What is an atom?

[This is Unit 2 Physics, Additional Physics. This section comes after Core Physics in an AQA Course (Unit 1)]

What Is Static Electricity? A stationary electrical charge that is built up on the surface of a material

7.9.4 Static Electricity

Section 1: Electric Charge and Force

Preliminary Course Physics Module 8.3 Electrical Energy in the Home Summative Test. Student Name:

Electricity. dronstudy.com

Physics Module Form 5 Chapter 2- Electricity GCKL 2011 CHARGE AND ELECTRIC CURRENT

NAME:... SCHOOL: ELECTROSTATICS INSTRUCTIONS TO CANDIDATES. Answer ALL questions in this paper in the spaces provided.

Electricity. Prepared by Juan Blázquez, Alissa Gildemann. Electric charge is a property of all objects. It is responsible for electrical phenomena.

Conceptual Physical Science 6 th Edition

Magnets attract some metals but not others

Properties of Electric Charge

ELECTROSTATICS. When two materials rub together the contact between their surfaces may cause: a) the surfaces to become hot and show wear and tear.

People experience static electricity everyday.

Electric charge is conserved the arithmetic sum of the total charge cannot change in any interaction.

Symbol Meaning unit. 2. k 3. q. 4. r. 5. E 6. R Total 7. 1/R Total 8. P 9. V 10. I 11. R. 12. Q 13. N 14. e 15. F magnetic 16. v 17.


Basic Electricity. Chapter 2. Al Penney VO1NO

Electromagnetism Review Sheet

Unit 3. Electrostatics

2 (Total 1 mark) D. 30 N kg 1 (Total 1 mark)

ELECTRICITY Electric Fence Experiment.

Electric Charge and Static Electricity

CHAPTER 1 ELECTRICITY

Electric Current & DC Circuits

HW Chapter 16 Q 6,8,10,18,19,21 P 1,2,3,4. Chapter 16. Part 1: Electric Forces and Electric Fields. Dr. Armen Kocharian

SOWETO/DIEPKLOOF P.O.BOX BOOYSENS 2016!!! " /7 #

Physics Module Form 5 Chapter 2- Electricity GCKL 2011 CHARGE AND ELECTRIC CURRENT

Electromagnetism Checklist

Electricity Worksheet (p.1) All questions should be answered on your own paper.

Unit 3 Lesson 1 Electric Charge and Static Electricity. Copyright Houghton Mifflin Harcourt Publishing Company

Electricity and Electromagnetism SOL review Scan for a brief video. A. Law of electric charges.

AP Physics-B ElectroStatics Electric Charges: Subatomic Particles and Electricity: atoms subatomic particles protons neutrons electrons nucleus

Chapter 3 Static and Current Electricity

Circuit Analysis I (ENGR 2405) Chapter 1 Review: Charge, Current, Voltage, Power

Unit 2: Fields. Substances that possessed an electric charge were noticed to show two different states; these were classified as either negative or

Dynamic Electricity. All you need to be an inventor is a good imagination and a pile of junk. -Thomas Edison

Conceptual Questions. Fig.8.51 EXERCISES. 8. Why can t electric field lines cross? 9. In which direction do charges always move in an electric field?

Electricity. Year 10 Science

PSC1341 Chapter 5 Electricity and Magnetism

Lesson Plan: Electric Circuits (~130 minutes) Concepts

Electricity Electrostatics Types of materials Charging an Object Van de Graaff Generator

Electric Charge. Labs, Activities & Demonstrations: Notes: Unit: Electricity & Magnetism NGSS Standards: N/A

STATIC ELECTRICITY. I. Tick ( ) the most appropriate answer. 1. When an ebonite rod is rubbed with fur, the charge acquired by the fur is:

Materials can become electrically charged.

Static Electricity. Lyzinski Physics. These notes will be on Mr. L s website for your studying enjoyment!!! Not moving or stationary

Chapter 23. Electric Fields

Note on Posted Slides

PHYSICS 30 ELECTRIC FIELDS ASSIGNMENT 1 55 MARKS

TSOKOS LSN 5-1 TO 5-5 TEST REVIEW

LESSON 5: ELECTRICITY II

Chapter.16 / Section.1: Electric Charge. Q=Ne Total Charge=number of electrons transferred fundamental charge

Chapter 15. Electric Forces and Electric Fields

TRADE OF HEAVY VEHICLE MECHANIC

Revision checklist SP10. SP10 Electricity and Circuits. SP10a Electric circuits. SP10b Current and potential difference

ELECTRICITY. This chain is similar to the fire fighter's bucket brigades in olden times. But

Static Electricity Class Practice

Chapter Assignment Solutions

Chapter 12 Electrostatic Phenomena

Name: Block: Date: NNHS Introductory Physics: MCAS Review Packet #4 Introductory Physics, High School Learning Standards for a Full First-Year Course

Part 4: Electricity & Magnetism

3. The figure above shows two pith balls suspended by threads from a support. In the figure,

CHARGE AND ELECTRIC CURRENT:

Transcription:

IGCSE Physics 0625 notes Topic 4: Static Electricity 1 TOPIC 4 STATIC ELECTRICITY ELECTRICITY: Electricity is the flow of electrical charges or power. The charges could be in the form of electrons or ions. Electricity or electrical energy is a secondary energy source which means that we get it from the conversion of other sources of energy, like by burning coal, natural gas, oil or from nuclear power and other natural sources, which are called primary energy sources. 1 (Note: this is only the brief introduction of electricity. It will be discussed in detail in next section.) STATIC ELECTRICITY: a. The electricity so produced by friction (rubbing) is called frictional electricity or static electricity. The word static means stationary or not moving since the charges do not flow through the conductor but only transfer from one substance to another. b. The material acquires positive or negative charge it is called charged or electrified bodies. c. The branch of physics that deals with the study of electrified or charged bodies, on which the electric charge is at rest, is called electrostatics physics. d. When a strip of polythene rod is rubbed with cloth it becomes negatively charged and when a strip of cellulose acetate rubbed with a cloth it becomes positively charged. See the table for different examples that create static electricity by rubbing. Material Rubbed with Charge acquired Behavior Polythene rod Woolen cloth Negative attract each other Perspex or cellulose acetate Woolen cloth Positive Ebonite Fur Negative attract each other Glass Silk cloth Positive Glass Flannel cloth Negative e. It is the substance that is being used for rubbing that is responsible for inducing the positive or negative charge on the material and not the type of material used. For example if the glass rod is rubbed with flannel cloth, it becomes negatively charged, but when it rubbed with silk it becomes positively charged. f. Like charges + and + or and repel each other and unlike charges + and attract each other. ELECTRIC FIELD AROUND A CHARGED BODY: Electric field around a charged body exists if electric forces are exerted by it on another charged body in that region. The direction of electric field at a point is the direction in which a small positive charge would experience or move (under the influence of the field) if placed at that point. The electric field intensity or electric field strength (E) of an electric field at a point is defined as the force exerted by the field on a unit charge placed at that point. Unit is newton per coulomb or N/C. 1 http://www.eia.doe.gov/kids/energyfacts/sources/electricity.html

2 Prepared by Faisal Jaffer, Emirates Private School, Al Ain Uniform electric field due to charged parallel metal plates: If the electric force felt by a charge is same everywhere in a region then the field is called uniform. A uniform electric field is produced between two oppositely charged parallel metal plates connected to the terminals of a battery. It can be represented by evenly spaced parallel lines, drawn perpendicular to the metal surface, from positive to negative plate. Radial electric field due to point charge: The electric field lines radiating from an isolated positively charged conducting sphere are the field lines emerging at right angles to its surface as shown in the figure. CURRENT (I): Current (I) is defined as the rate of flow of electric charge in a conductor. The unit of current is ampere (A). It is measured by ammeter. Q I = t Electric charge (Q) in a conductor is carried by subatomic particles electrons and protons. Electrons carry negative charge and protons carry positive charge. Unit of electric charge is coulomb (C). It is a charge passing through any point in a circuit when a steady current of 1ampere maintained for 1 second, that is 1Coulomb = 1Ampere -second. Measuring current: The size of the current in the circuit can be measured by using an ammeter. It can be digital or analogue. It is always connected in series in the circuit. It is important that the positive terminal of the ammeter is connected to the positive terminal of the battery and negative terminal to the negative; otherwise the pointer of the ammeter will move in the opposite direction. Conventional current: The electric current is really a flow of electrons from negative to positive terminal of the battery. However when it was first discovered, scientists wrongly guessed that the something that carry charges flows from positive to negative terminal and therefore they describe it as conventional current.

IGCSE Physics 0625 notes Topic 4: Static Electricity 3 Conductors and insulators: Insulators Conductors In an insulator all electrons are bound In a conductor somee electrons can move firmly to their atoms. freely from atom to atom or molecule to molecule An insulator can be charged by rubbing. Conductor will become charged only if In insulator the electric charge is static it is held with an insulating handle that is it cannot move from where the otherwise charge cann transfer to earth rubbing occurs. through human s body. Plastic, wood, glass nylon, rubber and Most metals are good conductors for acetate are good insulators. examplee silver, copper, aluminium etc POTENTIAL DIFFERENCE: An electric potential difference (V) must exist for current to flow in electricc circuit. It is the work done per unit charge as thee charge is moved between two points in an electric circuit. The potential difference (p.d.) between two points in a circuit is 1 volt if 1 joule of electrical energy (W) is transferred to another form of energy when 1 coulomb of charge passes from one point to another. W = I x t x V Electromotive force (e.m.f.): In energy terms the e.m.f. is defined as the energy (chemical or mechanical in joules) transferred to electrical energy and when one coulomb of charge passes through a circuit. e.m.f. is the amount of energy required to move thee unit charge through a circuit. e.m.f. = lost volts + terminal potential difference To measure e.m.f. or potential difference (p.d.) in a circuit the voltmeter should be connected in parallel. Voltmeter should always have high internal resistance. Measuring potential difference: A voltmeter is used to measure the electric potential difference between two points in an electric circuit. It is connected in parallel acrosss a resistor inn the circuit. It has a very high internal resistance. The unit of potential difference or voltage is volts. Ohms Law: W V = Q Or Q = I t As the potential difference (V) is increased across a given material (ohmic material) in a circuit, the current (I) flow through the material also increases. V I

4 Prepared by Faisal Jaffer, Emirates Private School, Al Ain Or The potential difference (V) between any two points in a conductor is directly proportional to the current (I) flows through it if the temperature, resistance of the conductor and other conditions are constant. V I RESISTANCE: V = IR Where R is the resistance of a conductor. The opposition of to the flow of current in a conductor is called resistance of that conductor. The unit of resistance is ohm (symbol omega Ω). One ohm is the resistance when current is one ampere and potential difference of one volt is applied. A resistance of a cylinder or wire of certain material: increases if its length (L) increases, increases if its cross-section area (A) decreases, L depends upon the type of material R = ρ A Where ρ is the resistivity of the conductor which is constant for every material. Measuring resistance: The resistance (R) of a conductor is measured by ohmmeter. Alternatively the resistance of a conductor can be found by measuring the current (I) through it when the potential difference (V) applied across it and using the V formula R =. Multiple values of (A) and (I) can be found I by changing the resistance of a variable resistor or rheostat. The ratio between V and I should be constant and equal to the value of resistance R. ELECTRIC POWER (P): Rate of doing work is called power. It is define as but or or work done (W) Power (P) = = time taken (t) W P = t W = I x t x V P = I x V P = I 2 x V P = R 2 R energy transfer (E) time taken (t)

IGCSE Physics 0625 notes Topic 4: Static Electricity 5 also the larger units of power are 1 kilowatt (kw) = 1000 W 1megawatt (MW) = 1000 000 W The power of electrical appliances can be calculated by multiplying the current (I) passing through it by the potential difference (V) across it. Electrostatic induction: The diagram above shows a process called "charging by electrostatic induction" in which a neutral metal sphere is supported on an insulating stand. When a negatively charged rod is placed close to the neutral metal sphere the (negatively) charged electrons in the sphere are repelled to the far side of the sphere, leaving the atoms on the near side positively charged owing to their missing electrons. If we then connect a copper wire to the negative side of the sphere and an electrical ground some of the free electrons will flow into the ground. When we then remove the copper wire and the negatively charged rod what remains is a metal sphere with a uniform distributed positively charge. The attraction of an uncharged object by a charged object near it is due to electrostatic induction. The common example is the attraction between small pieces of aluminium foil and negatively charged polythene held just above them. Dangers of static electricity: 1. Lightning is static electricity due to charges in clouds, and it can damage buildings and harm people. 2. Static electricity can damage sensitive electrical components, such as the parts inside computers. To prevent this, these parts are handled with anti-static bags and wrist straps, which drain the static charge off the person. 3. Static electricity can be responsible for the ignition of flammable gases, such as the vapors produced by petrol (gasoline) when you are filling your car at the petrol- station. 4. Dusts and germs are attracted by charged objects and so it is essential to ensure that equipment and medical personal are well earthed allowing electrons to flow to and from the ground e.g. by conducting rubber.

6 Prepared by Faisal Jaffer, Emirates Private School, Al Ain Use of static electricity 1. Static electricity is used to paint cars. Special powder paints that have been charged positively spread out to form a very even coating of paint on an earthed metal body of a car. 2. It is used in computer printers to distribute toner or ink to go at the right place. 3. Static electricity is also used to remove pollution from smoke-chimneys. Electrostatic plates are placed in the chimneys of the factories that attract all the polluted dust.