X-RAY SCATTERING AND MOSELEY S LAW. OBJECTIVE: To investigate Moseley s law using X-ray absorption and to observe X- ray scattering.

Similar documents
X-RAY SPECTRA. Theory:

X-ray Absorption Spectroscopy

X-ray spectroscopy: Experimental studies of Moseley s law (K-line x-ray fluorescence) and x-ray material s composition determination

X-ray practical: Crystallography

X-ray Spectroscopy. Danny Bennett and Maeve Madigan. October 12, 2015

UNIVERSITY OF SURREY DEPARTMENT OF PHYSICS. Level 1: Experiment 2F THE ABSORPTION, DIFFRACTION AND EMISSION OF X- RAY RADIATION

CASSY Lab. Manual ( )

LAB 01 X-RAY EMISSION & ABSORPTION

Radioactivity APPARATUS INTRODUCTION PROCEDURE

X-ray Spectroscopy. c David-Alexander Robinson & Pádraig Ó Conbhuí. 14th March 2011

Atomic and nuclear physics

Atomic and nuclear physics

Chemistry Instrumental Analysis Lecture 19 Chapter 12. Chem 4631

hν' Φ e - Gamma spectroscopy - Prelab questions 1. What characteristics distinguish x-rays from gamma rays? Is either more intrinsically dangerous?

4. Inelastic Scattering

Atomic and nuclear physics

Chapter 30 X Rays GOALS. When you have mastered the material in this chapter, you will be able to:

EDS User School. Principles of Electron Beam Microanalysis

Shell Atomic Model and Energy Levels

Absorption of X-rays

Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy. Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy

Basic physics Questions

Chapter Six: X-Rays. 6.1 Discovery of X-rays

RADIOACTIVITY IN THE AIR

Production of X-rays. Radiation Safety Training for Analytical X-Ray Devices Module 9

Radioactivity INTRODUCTION. Natural Radiation in the Background. Radioactive Decay

Higher -o-o-o- Past Paper questions o-o-o- 3.6 Radiation

X-RAY PRODUCTION. Prepared by:- EN KAMARUL AMIN BIN ABDULLAH

Electron probe microanalysis - Electron microprobe analysis EPMA (EMPA) What s EPMA all about? What can you learn?

Andrew D. Kent. 1 Introduction. p 1

Physics 102: Lecture 26. X-rays. Make sure your grade book entries are correct. Physics 102: Lecture 26, Slide 1

X-ray absorption. 4. Prove that / = f(z 3.12 ) applies.

X-Ray Fluorescence and Natural History

X-Rays Edited 2/19/18 by DGH & Stephen Albright

Physics 23 Fall 1989 Lab 5 - The Interaction of Gamma Rays with Matter

Ba (Z = 56) W (Z = 74) preferred target Mo (Z = 42) Pb (Z = 82) Pd (Z = 64)

Physics 102: Lecture 26. X-rays. Make sure your grade book entries are correct. Physics 102: Lecture 26, Slide 1

Analytical Methods for Materials

LAB REPORT ON XRF OF POTTERY SAMPLES By BIJOY KRISHNA HALDER Mohammad Arif Ishtiaque Shuvo Jie Hong

Basic principles of x-ray production

In today s lecture, we want to see what happens when we hit the target.

X-ray fluorescence analysis - calibration of the X-ray energy detector

Decay Mechanisms. The laws of conservation of charge and of nucleons require that for alpha decay, He + Q 3.1

ESTIMATION OF 90 SCATTERING COEFFICIENT IN THE SHIELDING CALCULATION OF DIAGNOSTIC X-RAY EQUIPMENT

Rad T 290 Worksheet 2

THE NATURE OF THE ATOM. alpha particle source

X-ray Absorption and Emission Prepared By Jose Hodak for BSAC program 2008

X-Ray Emission and Absorption

MT Electron microscopy Scanning electron microscopy and electron probe microanalysis

Determination of the Rydberg constant, Moseley s law, and screening constant (Item No.: P )

Photoelectron Spectroscopy

Generation of X-Rays in the SEM specimen

Student Exploration: Bohr Model of Hydrogen

Dual Nature of Radiation and Matter-I

The Franck-Hertz Experiment Physics 2150 Experiment No. 9 University of Colorado

Nuclear Decays. Alpha Decay

Atomic Physics. Chapter 6 X ray. Jinniu Hu 24/12/ /20/13

FXA UNIT G485 Module X-Rays. Candidates should be able to : I = I 0 e -μx

Lab NUC. Determination of Half-Life with a Geiger-Müller Counter

ATOMIC PHYSICS PHOTOELECTRIC EFFECT Practical 2 DETERMINATION OF PLANCK S CONSTANT BY MEANS OF THE STOPPING POTENTIAL

CHAPTER 12 TEST REVIEW

PHYS2627/PHYS2265 Introductory quantum physics LABORATORYMANUAL Experiment 1: Experiments of Thermal Radiation

Experiment objectives: measure the ratio of Planck s constant to the electron charge h/e using the photoelectric effect.

Atom Physics. Chapter 30. DR JJ UiTM-Cutnell & Johnson 7th ed. 1. Model of an atom-the recent model. Nuclear radius r m

Jazan University College of Science Physics Department. Lab Manual. Nuclear Physics (2) 462 Phys. 8 th Level. Academic Year: 1439/1440

Higher Physics. Particles and Waves

EXPERIMENT FOUR - RADIOACTIVITY This experiment has been largely adapted from an experiment from the United States Naval Academy, Annapolis MD


Absorption and Backscattering ofβrays

EXPERIMENT #5 The Franck-Hertz Experiment: Electron Collisions with Mercury

Franck-Hertz Experiment

XRF books: Analytical Chemistry, Kellner/Mermet/Otto/etc. 3 rd year XRF Spectroscopy Dr. Alan Ryder (R222, Physical Chemistry) 2 lectures:

Atoms with More than One Electron

LECTURE 4 PRINCIPLE OF IMAGE FORMATION KAMARUL AMIN BIN ABDULLAH

Particle Nature of Matter. Solutions of Selected Problems

Number of x-rays Energy (kev)

Photoluminescence Spectrometer (FLS980)

PC1144 Physics IV. Atomic Spectra

Absorption and Backscattering of β-rays

X-Ray Physics. that N [the atomic number] is the same as the number of the place occupied by the element in the periodic system.

Experiment #9. Atomic Emission Spectroscopy

Physics 1000 Half Life Lab

Diffraction of Electrons

RADIOACTIVITY MATERIALS: PURPOSE: LEARNING OBJECTIVES: DISCUSSION:

LECTURE 6: INTERACTION OF RADIATION WITH MATTER

Electron and electromagnetic radiation

MT Electron microscopy Scanning electron microscopy and electron probe microanalysis

PHYS 3650L - Modern Physics Laboratory

X-ray Interaction with Matter

Chemical Analysis in TEM: XEDS, EELS and EFTEM. HRTEM PhD course Lecture 5

print first name print last name print student id grade

Experiment 1: The Periodic Behavior of Metals

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney

This experiment is included in the XRP 4.0 X-ray solid state, XRS 4.0 X-ray structural analysis, and XRC 4.0 X-ray characteristics upgrade sets.

GAMMA RAY SPECTROSCOPY

Rb, which had been compressed to a density of 1013

Atomic Structure and Processes

Determination of Planck s constant and work function of metals using photoelectric effect

PHYSICS 176 UNIVERSITY PHYSICS LAB II. Experiment 13. Radioactivity, Radiation and Isotopes

Section 11: Electron Configuration and Periodic Trends

Transcription:

X-RAY SCATTERING AND MOSELEY S LAW OBJECTIVE: To investigate Moseley s law using X-ray absorption and to observe X- ray scattering. READING: Krane, Section 8.5. BACKGROUND: In 1913, Henry Moseley measured the frequencies of the X rays emitted by the elements and showed that X-ray frequencies could be used to deduce the atomic number Z of the element. This was the first experiment that allowed a direct determination of the atomic number. Prior to Moseley s work, the periodic table was arranged according to the atomic weight of the elements, which does not always give the same ordering as atomic number. For example, potassium (Z = 19) has atomic weight 39.1, while argon (Z = 18) has atomic weight 39.9. If the elements were ordered by atomic weight, potassium would come before argon and would fall in the inert gas column of the periodic table, while argon would be placed in the first column, among the most reactive of elements. Ordering by atomic number gives the proper positions of these elements. X-rays are emitted when an inner atomic electron is removed and an electron from a higher energy levels fill the vacancy. The X- ray series are labeled according to the level in which the original vacancy was created. Figure 1 shows the K and L series. If an electron is removed from the n = 1 atomic level (which is also known as the K shell), for example by bombarding the atom with electrons or photons, electrons from the n = 2 levels (2s or 2p, known as the L shell) can fill the vacancy. When an electron makes the transition from n = 2 to n = 1, a photon is emitted of energy E 2 E 1. This is called a K α X-ray. It is also possible for a n = n = 4 (N shell) n = 3 (M shell) n = 2 (L shell) n = 1 (K shell) Kα Kβ Kγ K series Figure 1 L α L β L series 3 electron (3s, 3p, or 3d, known as the M shell) to make the transition. This gives the K β X-ray. Electrons that jump to the K shell from successively higher shells are then called Kγ (n = 4 to n = 1), Kδ (n = 5 to n = 1), and so forth. Note that the series are labeled by the shell to which the electron jumps, not from which the electron jumps. The L series of X- rays corresponds to jumps from higher levels to n = 2. Grouping these X-rays into series ignores the small energy differences between orbitals within the shells. For example, the energy difference between 2s and 2p is small and can be neglected. We thus can consider the K α energy to represent all transitions from any n = 2 state to the n = 1 state (the 1s level). Page 1 of 5

Consider the K α X-ray. If an electron is removed from the n = 1 shell, the n = 2 electron that makes the jump to fill the vacancy sees an effective nuclear charge of Z 1 (due to Z positive charges in the nucleus and one remaining n = 1 electron). Under this assumption, the frequency of the K α X-ray is: ν 3cR 4 2 = ( Z 1) (1) where R is the Rydberg constant (1.097 10 7 m -1 ). Measuring the frequency of the X- ray thus allows the atomic number to be calculated. In this experiment, a beam of electrons is accelerated through 30 kv and hits a copper target, where X-rays are produced by bremsstahlung with energies up to 30 kev. These X-rays then strike a metal target, which we shall call the X-ray production target. The X- rays can knock loose K electrons from the target atoms, following which the target emits K-series X-rays of discrete wavelengths. These X-rays then strike an absorber, and a detector counts the number of X-rays that pass through the absorber. A schematic diagram of the process is shown in Figure 2. Bremsstrahlung X rays Detector 30 kv electrons Copper target X-ray production target Absorber Figure 2 Consider for example Fe as the X-ray production target. It takes 7.11 kev (see Table 1) to remove a K electron from Fe (the K electron binding energy). The bremsstrahlung beam extends up to 30 kev, so there is enough energy in the beam to produce K-shell vacancies in the Fe atoms. When those vacancies are filled, Fe emits Kα and Kβ X-rays with energies 6.40 kev and 7.06 kev, respectively. Suppose we also use Fe as the absorber. The K α and K β X-rays emitted by the production target have too little energy to remove a K electron from the absorber (they can remove L electrons, which are much less tightly bound to the atom). If we replace the Fe absorber with Cr (keeping the Fe production target), the Fe X-rays have enough energy to eject a K electron from Cr (which requires only 5.99 kev). Thus there should be much more absorption of the Fe X-rays by Cr than by Fe, and the detector should record a lower counting rate with Cr than Fe. Page 2 of 5

The following table shows the Kα and Kβ X-ray energies and the K electron binding energy of the elements that you will use for either production targets or absorbers in this experiment. Table 1 Element Z Kα energy (kev) Kβ energy (kev) K binding energy (kev) V 23 4.95 5.43 5.47 Cr 24 5.41 5.95 5.99 Mn 25 5.90 6.49 6.54 Fe 26 6.40 7.06 7.11 Co 27 6.93 7.65 7.71 Ni 28 7.48 8.26 8.33 Cu 29 8.05 8.91 8.98 Zn 30 8.64 9.57 9.66 Typically the intensity of the K α X-rays is about an order of magnitude larger than the K β X-rays, so most of your data in this experiment comes from the Kα X-rays. APPARATUS: Figure 3 shows a diagram of the X-ray apparatus for this experiment. Figure 3 The rotary radiator has two windows. One, called the irradiation window, will contain the X-ray production foil (one of 8 elements). In the other window is displayed the symbol for the element in the irradiation window. A cable attached to the rotary radiator allows you to place one of the 8 elements in the irradiation window. Page 3 of 5

WARNING: X-rays are a health hazard. The equipment has been designed to shield the user from direct exposure to X-rays. A safety interlock prevents the lid of the apparatus from being raised when the X-ray beam is on. Do not force the lid open or attempt to tamper with or to defeat the purpose of the safety interlock. EACH X-RAY UNIT HAS A LOG BOOK. EVERY STUDENT USING THE APPARATUS MUST SIGN WITH THE DATE AND TIME THE APPARATUS HAS BEEN USED. PROCEDURE: By turning the keylock switch to the horizontal, turn on the filament power. Set the front timer on the X-ray unit to 50 minutes. The purpose of this timer is to preserve the life of the X-ray tube by avoiding its being left operating for too long. During the experiment you can periodically reset the timer to keep the unit from turning off while you are taking data. With the filament on, allow the X-ray tube to warm up for at least 15 minutes. This is necessary in order to eliminate condensation in the tube. WARNING: Failure to allow proper warm-up time will damage the tube. Units A,B,C,D: Turn on the scaler and the GM tube high-voltage supply. Check that the high-voltage setting for the GM tube is the same as the operating voltage posted just above the control knob. Units E,F: Check the high voltage reading on the GM tube using channel 4 of the display unit. Return the display to channel 1 for counting. The counting unit reads out the count rate per second. To get the actual number of counts, multiply the rate by the counting interval. Pause the count cycle to allow you to move the detector by pressing and releasing the Hold button. Restore the counting cycle by pressing Hold again. Open the cover of the X-ray apparatus and set the accelerating voltage switch to the 30 kv position. Close the cover of the X-ray apparatus and slide the cover toward the center locked position. This allows the X-ray tube to be energized. Depress the X-ray tube power switch and observe that the red light inside the apparatus comes on. If it does not, make sure the cover is centered and try again. Observe the X-ray tube current on the microammeter. It should be 50 µa. Adjust if necessary. The current has a tendency to drift. During the experiment, monitor the current and adjust it to keep it at 50 µa. DO NOT ALLOW THE CURRENT TO EXCEED 80 µa, BECAUSE DAMAGE TO THE TUBE WILL RESULT. Page 4 of 5

DATA AND ANALYSIS: Before taking data, make sure that: (1) the voltage switch is set to 30 kv; (2) the carriage arm is at 90 o ; (3) the irradiating window is at an angle of 45 o with respect to the X-ray beam; and (4) the GM tube is at position 22 on the carriage arm. Best results are usually obtained in this experiment using the five elements with the largest atomic numbers: Fe, Co, Ni, Cu, Zn. Do the best you can with all 8 elements, but focus your efforts on these 5 elements. Place the blank slide at position 13 in the carriage arm. For each foil in the radiator, determine the intensity I 0 in counts/second. The foils in the radiator can be changed using the cable connected to the radiator, so it is not necessary to raise the lid of the X- ray unit. Replace the blank slide with one of the 5 filters and measure the intensity I for each of the 5 foils in the radiator. Record your data and repeat for each of the 5 filters. For each filter, calculate I/I 0 for each of the X-ray production targets in the rotary radiator. Then plot I/I 0 against the atomic number. Do this for each of the filters. If you do only the 5 heaviest elements, you should have 5 separate plots, each with 5 points. Compare your results with what is expected based on the data given in Table 1. Interesting historical note - Moseley s original data are displayed here: http://www.physics.ox.ac.uk/history.asp?page=exhibit12 Page 5 of 5