Numbers and Counting. Number. Numbers and Agriculture. The fundamental abstraction.

Similar documents
EGYPTIAN MATHEMATICS

EGYPTIAN RELIGION. Section 3

JOURNEY OF IDEAS: INTRODUCTION CHAPTER 2 THE BIRTH OF THE ASTRONOMICAL IDEAS. awareness.org

In Ancient Egypt, precious materials like gold and ivory were usually used in making

Measuring the Gardens of Eden, by Jenia Tevelev

LIFE IN ANCIENT EGYPT LESSON 2 PG. 191

Lecture 1. The Dawn of Mathematics

Mesopotamia Here We Come

AMA1D01C Egypt and Mesopotamia

Today s Objectives: S.W.B.A.T.

Number Systems. There are 10 kinds of people those that understand binary, those that don t, and those that expected this joke to be in base 2

DIRECTIONS: Complete each of the enclosed activities and then use what you learn along with prior knowledge to fill in the outline below:

How Long Does it Take to Complete the Lapbook? SAMPLE PAGE

Mesopotamian Writing Mesopotamian Mathematics Conclusion. Mesopotamia. Douglas Pfeffer

CO480. Lecture 7. Alain Gamache. May 25th, University of Waterloo

The Ancient Egyptian Pyramids of Giza

SOCIAL STUDIES MID-TERM EXAM REVIEW. Please use the review notes on my website as a basis for the answer.

Written in Stone UNIT 2 WEEK 1. Read the article Written in Stone before answering Numbers 1 through 5. Weekly Assessment Unit 2, Week 1 Grade 6 61

Egyptian Mathematics

Section 4.2. Place-Value or Positional- Value Numeration Systems. Copyright 2013, 2010, 2007, Pearson, Education, Inc.

HISTORY OF ASTRONOMY, PART 1. How our understanding of the Universe has changed

MATHEMATICS AND ITS HISTORY. Jimmie Lawson

1 st Term Worksheet Subject History & Civics Class VI Name : Sec. :

Life and Death in Ancient Egypt

A COMPARATIVE STUDY OF EARLY EGYPTIAN, BABYLONIAN AND MAYAN NUMBER SYSTEM. *K. C. Chowdhury 1 and A. Baishya 2

Chapter 1 Primitive Man

Mathematics in Ancient Egypt. Amber Hedgpeth. June 8, 2017

MATCHING: Match the word to the meaning.

A Chronicle of Timekeeping

Study Guide for Exam 1

Making Math: A Hands on History Beth Powell

4.6 Stars. Star Patterns

The History and Philosophy of Astronomy

Babylon/Mesopotamia. Mesopotamia = between two rivers, namely the Tigris and Euphrates.

Grade 6 Math Circles. Ancient Mathematics

Ancient Astronomy. Kickin it old school

World Book Online: The trusted, student-friendly online reference tool. Name: Date:

Mastering New Jersey s 15 Most Chal enging Skil s Mastering New Jersey s 15 Most Chal enging Skil s New Jersey

The Origins of Mathematics. Mesopotamia

Mesopotamia 101 By Vickie Chao

New City Primary School Curriculum 2017/18. Year 5- History Medium Term Plans

Grade 6 Math Circles November 1 st /2 nd. Egyptian Mathematics

Document A: Herodotus (Modified)

Designer(s): Emily Potts. Show-Me Standards

PHYSICS 107. Lecture 4 Ancient Astronomy

The History of Time-Keeping

The Four World Zones Become Connected

Grade 8 Chapter 7: Rational and Irrational Numbers

The Old Kingdom. If YOU were there... Early Egyptian Society. How do you feel about working for the pharaoh?

A100 Exploring the Universe: The Invention of Science. Martin D. Weinberg UMass Astronomy

Scientific Notation. Scientific Notation. Table of Contents. Purpose of Scientific Notation. Can you match these BIG objects to their weights?

than meets the eye. Without the concept of zero, math as we know it would be far less

18.2 Earth Cycles Days and years Calendars Years and days Leap years Calendars throughout human history 20,000 years ago. 7,000 BC. 4,000 BC.

You ve probably heard the word algebra on many occasions, and you

Traces and Ancient Egypt

SECTION 89: ARCHITECTURE PYRAMIDS

passport to Ancient egypt

Grade 7/8 Math Circles Winter March 20/21/22 Types of Numbers

History of Math For the Liberal Arts CHAPTER 2. Egyptian Mathematics. Lawrence Morales. Seattle Central Community College

Astronomy- The Original Science

ABE Math Review Package

Measurement: Things To Know Vocabulary: units dimension US Customary System Metric System

Maya Achievements WRITING

2 OBSERVING THE SKY: THE BIRTH OF ASTRONOMY

2 1 History of Astronomy

The Ancient World. Chapter 1 The Beginnings of Human Society. What historical accomplishments is each civilization known for?

4 th Grade Hinojosa Math Vocabulary Words

1/14/16 SENATUS POPULUSQUE ROMANUS. PHONETIC ALPHABET > phonograms ARTH 4573 HISTORY OF GRAPHIC DESIGN. } = The Senate and the people of Rome

17. Describe the basic features of religious, political, and social life in ancient Egypt.

Today FIRST HOMEWORK DUE. Ancient Astronomy. Competing Cosmologies. Geocentric vs. Heliocentric. Ptolemy vs. copernicus.

, even though the number of paintings he produced wasn t large.

Math 016 Lessons Wimayra LUY

Extending The Natural Numbers. Whole Numbers. Integer Number Set. History of Zero

Math Round. Any figure shown may not be drawn to scale.

Exam 1 is Feb. 1 (next Tuesday) This will cover everything we have done so far Earth motions The celestial sphere and observations from Earth Seasons

Finding Prime Factors

Egypt Test # Name Date. Score: 1. Fill in the diagram to show major social cases: (5pts)

Exploring the Rhind Papyrus

Chapter 3 The Science of Astronomy

History of the Pythagorean Theorem

Social Studies: The World Post Test Study Guide

Curriculum Overview Year 5. Autumn Term

Where, on Earth, are you?

St. Ann s Academy - Mathematics

Comparing and Contrasting Ancient Number Systems

I named this section Egypt and Babylon because the surviving documents from Egypt are older. But I m going to discuss Babylon first so sue me.

Greece In 700 BC, Greece consisted of a collection of independent city-states covering a large area including modern day Greece, Turkey, and a multitu

Indiana Academic Super Bowl. Math Round Senior Division Invitational 1. A Program of the Indiana Association of School Principals

Accelerated Math. Class work 3. Algebra.

The number of Kings that lie in this tomb is, and the number of slaves that lie in this tomb is, where

These maps also show the path of the sun and moon movements in the sky.

Upon Whose Shoulders We Stand: A History of Astronomy Up to 200 A.D. Dick Mallot 3/17/2005

Sample file. Contents

FOR DISCUSSION TODAY: THE ANNUAL MOTION OF THE SUN

8th Grade Scientific Notation

8th Grade Scientific Notation

What is the name of the continent that is labeled #1 on the map?

Introduction to the Night Sky

Today FIRST HOMEWORK DUE NEXT TIME. Phases of the Moon. Eclipses. Lunar, Solar. Ancient Astronomy

Physical Quantities- Measurements and Units

Transcription:

Numbers and Counting Number The fundamental abstraction. There is archaeological evidence of counters and counting systems in some of the earliest of human cultures. In early civilizations, counting and measuring became necessary for administration. 2 Numbers and Agriculture Keeping track of the amount of land allocated to a farmer, the quantity of the harvest, and any taxes or duty to be paid required a well- developed system of measuring and counting. 3

Numbers are abstractions It is something to know that three sheep plus two sheep always equals five sheep. Or that three urns and two urns are five urns. It is a big step to realize that 3 of anything plus 2 more of them makes 5 of them, or, that 3+2=5. The pure numbers are abstractions. Contention Only a civilization that has a well- developed written number system and has discovered rules for manipulating those numbers has the chance of moving on to science. 5 A look at the number systems and rules of arithmetic of two of the great ancient civilizations: Egypt Babylonia 6 2

Egypt 7 Egypt Egypt is one of the world s s oldest civilizations. The Ancient period was from about 3000-300 BCE, during which this civilization had agriculture, writing, and a number system. 8 The Gift of the Nile The settled area of Egypt is a narrow strip of land along the shores of the Nile River. Egypt would not be possible without the waters of the Nile. 9 3

An insular, protected country Because of Egypt s s isolation from possible invaders, it was able to develop into a stable, prosperous country through agriculture. 0 The Predictable Nile The Nile river flooded every year in July. The floods provided rich nutrients and silt that made very productive soil. Farmers and Scribes Egypt subsisted on organized and centralized farming in the area flooded annually by the Nile. Tracking and managing the allocation of land required extensive record-keeping, and written language. 2

Hieroglyphics Egypt developed a pictorial writing system called hieroglyphics. (This is from the entrance to the Great Pyramid at Giza.) 3 Ceremonial Writing Hieroglyphics were used for permanent messages. Some were carved inscriptions on monuments and buildings. Others were painted on the inside walls of buildings and tombs. Hieratic For everyday use, a script form of hieroglyphics evolved called hieratic. This is from a letter written about 790 BCE. 5 5

Papyrus Rolls Egyptians developed a sort of paper made from the pith of the papyrus reeds growing on the side of the Nile. These were made into long strips and then rolled and unrolled for use. 6 Egyptian Technology Egyptian know-how reflected their beliefs and needs. Many inventions, devices, and procedures supported their system of agriculture and the building of their many monuments. 7 The Cult of Death Much attention was paid to preparation for death and the life that would follow. Pharaohs and other important officials spent great sums on their tombs and the preparation of their bodies (mummification) for entry into the afterlife. 8 6

The Pyramids Most famous were the pyramids, built as tombs for great pharaohs. The great pyramids contain as many as 2,300,000 limestone blocks, each weighing 2.5 tonnes. 9 Practical Science Topics that would later be part of science were studied and mastered for practical ends: Anatomy: for embalming, mummifying Chemistry: for making cosmetics, paints, dyes, and food preservatives Astronomy: for establishing a calendar for agriculture 20 Egyptian Astronomy The flooding of the Nile is so regular that it coincides with an astronomical event. When the star Sirrius appears in the sky just before dawn, the flooding of the Nile was imminent. 2 7

Egyptian Calendars The beginning of the year was when the Nile was predicted to flood, July on our calendars. Like most calendars, there was some coordination of the cycle of the sun and the moon. 22 The Earliest Egyptian Calendar This calendar had 2 months, alternating 29 days and 30 days. The actual cycle of the moon is about 29 ½ days. The year was therefore 35 days. So, every 2 or 3 years, an additional month was added. 23 The Second Egyptian Calendar This had a 365-day year. All 2 months were 30 days long. Then an extra 5 days was added at the end. This calendar worked better for tracking the solar year, but the coordination with the moon cycle was lost. 2 8

The Seasons The year was divided into three seasons, as suited what was important: Inundation (the flooding of the Nile) Emergence (of the crops) Harvest 25 Egyptian Numbers A system of writing numbers emerged from hieroglyphics. A number was written as a picture of its components. The base of the system was 0, like ours, but the notation was completely different. 26 The Notation System Each power of 0 had a separate symbol. The order in which the symbols of a number was written was not important; i.e. no place value. 27 9

Examples of Written Numbers: 28 Fractions All fractions represented a single part of a larger whole, e.g. /3 and /5, as above. (There was an exception made for 2/3.) The symbol for a fraction was to place an open mouth above the denominator. 29 Hieratic numbers The number system was cumbersome, so a shorthand version was developed for use in Hieratic. But the Hieratic version had even more symbols, and still no place value., 2, 3,,, 0, 20, 30,, 00, 200, 300, all were separate symbols. 30 0

Egyptian Arithmetic Despite the cumbersome notation system, the Egyptians developed an extraordinarily efficient method of doing arithmetical calculations. 3 Multiplication and Division by Doubling Calculations were done by a series of steps requiring doubling numbers, and then adding up some of the results. Knowledge required: how to add, and how to multiply by two. Not required: how to multiply by 3, or, or 5, or any other number. 32 Example: 3 x 2 In two columns, write the number in the left column and one of the above numbers in the right column. Generally choosing the larger number to write down works best. In this example, the 3 will be called the other number. 2 33

Example: 3 x 2, contd. Double each of the numbers in the first line, and write the result in the next line. Do the same to the numbers in the new line. Continue until the number in the bottom left position is more than one half the other number (in this case, 3). 2 8 2 8 96 92 3 Example: 3 x 2, contd. Now, place a tick mark by numbers in the left column that add up to the other number. The best procedure is to start from the bottom. Here 8, and are chosen, because 8++=3. 2 8 2 8 96 92 35 Example: 3 x 2, contd. For every line with a tick mark, copy the number in the second column out to the right. Add up the numbers in the right-hand hand column. 2 8 2 8 96 92 2 96 92 32 36 2

Example: 3 x 2, contd. This works because ( x 2) + ( x 2) + (8 x 2) = 2 2 8 2 ( + + 8) x 2 = 96 96 3 x 2. 8 92 92 32 37 Now consider a more complicated example This works well for larger numbers too, and compares favourably with our manual system of multiplication. Try the numbers 26 x 7635. 38 Example: 26 x 7635 Choose the larger number to double. The doubling is more difficult, but manageable. 2 8 6 32 6 28 7 635 5 270 30 50 6 080 22 60 2 320 88 60 977 280 39 3

Example: 26 x 7635, contd. Tick off the entries in the left column that add to 26, write the corresponding right column entries off to the side and add them up. 2 8 6 32 6 28 7 635 5 270 30 50 6 080 22 60 2 320 88 60 977 280 5 270 30 50 22 60 2 320 88 60 977 280 878 20 0 Division via Doubling Use the same process for division, but go about it somewhat differently. This time you double the divisor successively, stopping just before the number reached would be greater than the dividend. Terminology: For 00 25=, 00 is the dividend, 25 is the divisor, and is the quotient. Example: 300 In two columns, write the number in the left column and the divisor in the right. Now, double the numbers in both columns until the last entry on the right is more than half of the dividend. Here, the last entry is 22, since doubling it gives more than 300. 2 8 6 28 56 2 22 2

Example: 300 Place tick marks beside the entries in the right column that add up as close as possible to the dividend, without exceeding it. Then copy the numbers in the left column on the same line as the ticks into a separate column and add them up. This gives the quotient 2. 6 2 2 8 6 28 56 2 22 3 Example: 300 As a check, add up the ticked numbers in the right column. This gives 29. So goes into 300 a full 2 times, with a remainder of 6. The division process does not give exact answers but it is good enough. 6 2 2 8 6 28 56 2 22 56 22 29 An arithmetic system for practical use The main problems that a scribe would have to solve were such things as determining the area of a plot of land assigned to a farmer a multiplication problem. Or dividing up some commodity into equal portions a division problem. 5 5

Babylonia 6 Babylonia Babylonia is a civilization that developed in Mesopotamia around 800 BCE, succeeding the Sumerian civilization, which had collapsed by then. The Babylonians used the cuneiform system of writing on clay tablets with reed styluses. 7 Babylonian Interests The Babylonians had a complex and prosperous culture, and pursued many interests. Because of the durability of cuneiform tablets, much is known about their civilization. 8 6

Babylonian Astronomy Some of the earliest, reasonably reliable records of the positions of the stars and planets were made by Babylonians, who developed a complex system of recording them. 9 Mespotamian Numbers Throughout the Mesopotamian civilizations, from Sumer to Babylonia, a unique number system was used based on the number 60, not on the familiar base 0 used in most other cultures. 50 Sexagesimal Numbers In the sexagesimal,, i.e. 60-based, system, there are different combinations of characters for each number from to 59. Then the symbol for is used again, but this time meaning 60. The symbol for 2 also means 20. The symbol for 3 also means 80, etc. 5 7

A Place-Value System Compared to the Egyptians, who had totally separate symbols for 2 and 20 and 200 and 2000, etc., the Mesopotamian/Babylonian system used the same symbols over for the next higher level. Note that we do the same, but we place zeros behind them to indicate the level. 52 Using the marsh reeds as a stylus Mesopotamian writing was done on wet clay tablets, by pushing the end of a reed stalk into the clay. 53 Two Characters Only Though there are 59 separate symbols for the numerals in a sexagesimal system, the Babylonian numbers are all written with only two different characters, but put together in different combinations. 5 8

Vertical the Character for If the reed is turned with the thick end up and the pointed end down, it is the symbol for. 55 The Numbers from to 9 56 Horizontal the Character for 0 If the reed is turned with the thick end to the right and the pointed end to the left, it is the symbol for 0. 57 9

Counting by Tens: 0, 20, 30, 0, 50 58 The Numbers from to 59 59 What comes after 59? 60 in the sexagesimal number system is the basic unit at the next place value. So it looks just like. That is, 60 = x 60 60 20

Example: A 9 times multiplication table. 6 Why choose a base of 60? Most cultures have number systems based on 0, or perhaps 5, related to the digits on our hands. But 0 is a poor choice for dividing evenly into parts. It is only divisible by, 2 and 5. 62 Factors of 60 The number 60 can be evenly divided by many more smaller numbers:, 2, 3,, 5, 6, 0, 2, 5, 20, 30. Fractional parts are much easier to express exactly. 63 2

Fractions Any unit can be divided into parts of a lower place value, by dividing it by 60. Just as: minute = 60 seconds ½ of a minute = 30 seconds Seconds is the next lower division of time after minutes. 6 The Sexagesimal System Today We still use the 60-based counting system in two places Keeping time in hours, minutes, and seconds. Measuring angles in degrees, minutes and seconds. 65 Why? Time-keeping and detailed astronomical observation came from the Babylonians. Greek science made use of Babylonian data and kept their number system for that purpose. 66 22

Place Value, with Place Holder In our decimal base system, we use the same numerals over and over again to mean numbers of different sizes. But we can tell which size is intended by the use of zeros and decimal places. E.g., 27900 is bigger than 279 98.6 is smaller than 986 67 Place Value, but No Place Holder In the Mesopotamian/ Babylonian system, numbers that are 60 times larger or 60 times smaller are all written the same way. 68 Ambiguous in principle, but rarely in practice Because the orders of magnitude are separated by factors of 60, there was rarely confusion in the early centuries. But ultimately, this was a severe drawback in the system, as society became more complex. 69 23