High energy factorization in Nucleus-Nucleus collisions

Similar documents
High energy factorization in Nucleus-Nucleus collisions

Factorization in high energy nucleus-nucleus collisions

Initial conditions in heavy ion collisions

Initial particle production in high-energy nucleus-nucleus collisions

The early stages of Heavy Ion Collisions

QCD in Heavy-ion collisions

Electromagnetic emission from the CGC at early stages of heavy ion collisions

Introduction to Saturation Physics

QCD Collinear Factorization for Single Transverse Spin Asymmetries

Classical YM Dynamics and Turbulence Diffusion

Improving the kinematics in BK/BFKL to resum the dominant part of higher orders

The initial stages of heavy ion collisions

Factorization, Evolution and Soft factors

Longitudinal thermalization via the chromo-weibel instability

Chemical composition of the decaying glasma

High Energy QCD and Pomeron Loops

Many body QCD, the Glasma and a near side ridge in heavy ion. Raju Venugopalan Brookhaven National Laboratory

Zhong-Bo Kang Los Alamos National Laboratory

Instability in an expanding non-abelian system

Opportunities with diffraction

Matching collinear and small x factorization calculations for inclusive hadron production in pa collisions

arxiv: v1 [hep-ph] 1 Feb 2010

Long-range angular correlations by strong color fields in hadronic collisions

Di-hadron Angular Correlations as a Probe of Saturation Dynamics

Charm production in AA collisions

Probing small-x gluons in hadrons and nuclei. Kazuhiro Watanabe. Old Dominion University. Jan 4, 2017 Jefferson Lab

Understanding Parton Showers

Based on work in progress in collaboration with: F. Scardina, S. Plumari and V. Greco

arxiv: v1 [nucl-th] 7 Jan 2019

Color Glass Condensate

Classical Initial Conditions for Ultrarelativistic Heavy Ion. Collisions

Evolution of 3D-PDFs at Large-x B and Generalized Loop Space

Resumming large collinear logarithms in the non-linear QCD evolution at high energy

Generalizing the DGLAP Evolution of Fragmentation Functions to the Smallest x Values

Testing Saturation Physics with pa collisions at NLO Accuracy

arxiv: v1 [hep-ph] 27 Dec 2018

Toward the QCD Theory for SSA

Universal Parton Distri. Fn s (non-pert.; QCD evolved)

arxiv: v1 [nucl-th] 25 Sep 2017

Physics at LHC. lecture one. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden

Breakdown of QCD coherence? arxiv:hep-ph/ v1 16 Dec 2006

Zhongbo Kang. QCD evolution and resummation for transverse momentum distribution. Theoretical Division, Group T-2 Los Alamos National Laboratory

Opportunities in low x physics at a future Electron-Ion Collider (EIC) facility

Equilibration of Scalar Fields in an Expanding System

Introduction to Perturbative QCD

QCD at finite Temperature

Multiple Parton-Parton Interactions: from pp to A-A

arxiv: v1 [nucl-ex] 7 Nov 2009

Towards matching High Energy Factorization to Parton Shower

Photon from the Color Glass Condensate in the pa collision

High energy scattering in QCD

QCD and Rescattering in Nuclear Targets Lecture 2

Ultra-Relativistic Heavy Ion Physics (FYSH551), May 31, 2013 Jan Rak and Thorsten Renk

The non-linear regime of quantum chromodynamics in the context of relativistic heavy-ion collisions

Higher order QCD corrections to the Drell-Yan process

Thermalization of Color Glass Condensate within Partonic Cascade BAMPS and Comparison with Bottom-Up Scenario.

The Color Glass Condensate: Theory, Experiment and the Future

Finite Temperature Field Theory

Diffusive scaling and the high energy limit of DDIS

Anisotropic gluon distributions of a nucleus

Introduction to High Energy Nuclear Collisions I (QCD at high gluon density) Jamal Jalilian-Marian Baruch College, City University of New York

2. HEAVY QUARK PRODUCTION

arxiv:hep-ph/ v1 26 Oct 1993

Precision theoretical predictions for hadron colliders

Constraining the QCD equation of state in hadron colliders

Gluon density and gluon saturation

Collinear and TMD densities from Parton Branching Methods

Studies of TMD resummation and evolution

Progress in the MC simulation of jets and jet quenching. Abhijit Majumder Wayne State University

Long-range rapidity correlations in high multiplicity p-p collisions

5 Infrared Divergences

Introduction to Operator Product Expansion

2 2 ω 0 = m B m D. B D + ρ B D 0 π, B D 0 π,

Azimuthal angle decorrelation of Mueller Navelet jets at NLO

SCET approach to energy loss. Zhongbo Kang Los Alamos National Laboratory

Atlas results on diffraction

Why Glauber Gluons Are Relevant?

AN INTRODUCTION TO QCD

Progress in Sudakov resummations

arxiv:hep-ph/ v1 8 Jul 1996

On QCD jet mass distributions at LHC

Introduction to Perturbative QCD

QCD Factorization Approach to Cold Nuclear Matter Effect

Saturation Physics and Di-Hadron Correlations

Measurements of Proton Structure at Low Q 2 at HERA

HEAVY QUARKS FROM PHOTOPRODUCTION (AND DIS)

High energy hadronic interactions in QCD and applications to heavy ion collisions

On the Projectile-Target Duality of the Color Glass Condensate in the Dipole Picture. Abstract

TMDs at small-x: an Operator Treatment

Threshold cross sections for Drell-Yan & Higgs productions in N 3 LO QCD

Multiparticle production and thermalization in high-energy QCD

Nonperturbative QCD in pp scattering at the LHC

Color dipoles: from HERA to EIC

Isotropization from Color Field Condensate in heavy ion collisions

QCD on the light cone and heavy ion collisions: the CGC, the Glasma and multi-gluon correlations

Physics at Hadron Colliders Part II

Recent QCD results from ATLAS

QCD Factorization and PDFs from Lattice QCD Calculation

QCD resummation for jet and hadron production

arxiv:hep-ph/ v1 25 Sep 2002

Transcription:

High energy factorization in Nucleus-Nucleus collisions François Gelis CERN and CEA/Saclay François Gelis 2008 Symposium on Fundamental Problems in Hot and/or Dense QCD, YITP, Kyoto, March 2008 - p. 1

Outline at LO and NLO Expression as variations of the initial fields Leading log divergences and Leading Log factorization (FG, T. Lappi and R. Venugopalan, in preparation) François Gelis 2008 Symposium on Fundamental Problems in Hot and/or Dense QCD, YITP, Kyoto, March 2008 - p. 2

Parton saturation Color Glass Condensate Nucleus-nucleus collisions at small x François Gelis 2008 Symposium on Fundamental Problems in Hot and/or Dense QCD, YITP, Kyoto, March 2008 - p. 3

Saturation domain Parton saturation Color Glass Condensate Nucleus-nucleus collisions at small x log(x -1 ) log(q 2 ) Λ QCD François Gelis 2008 Symposium on Fundamental Problems in Hot and/or Dense QCD, YITP, Kyoto, March 2008 - p. 4

CGC degrees of freedom Parton saturation Color Glass Condensate Nucleus-nucleus collisions at small x The fast partons (large x) are frozen by time dilation described as static color sources on the light-cone : J µ a = δ µ+ δ(x )ρ a ( x ) (x (t z)/ 2) Slow partons (small x) cannot be considered static over the time-scales of the collision process they must be treated as the usual gauge fields Since they are radiated by the fast partons, they must be coupled to the current J µ a by a term : A µ J µ The color sources ρ a are random, and described by a distribution functional W Y [ρ], with Y the rapidity that separates soft and hard François Gelis 2008 Symposium on Fundamental Problems in Hot and/or Dense QCD, YITP, Kyoto, March 2008 - p. 5

CGC evolution Parton saturation Color Glass Condensate Nucleus-nucleus collisions at small x Evolution equation (JIMWLK) : H = 1 2 Z y W Y Y where 2 e A + (ǫ, x ) = ρ(ǫ, x ) = H W Y δ δa e+ b (ǫ, y ) η δ ab( x, y ) δa e+ a (ǫ, x ) η ab is a non-linear functional of ρ This evolution equation resums the powers of α s ln(1/x) and of Q s /p that arise in loop corrections This equation simplifies into the BFKL equation when the color density ρ is small (one can expand η ab in ρ) François Gelis 2008 Symposium on Fundamental Problems in Hot and/or Dense QCD, YITP, Kyoto, March 2008 - p. 6

Nucleus-nucleus collisions Parton saturation Color Glass Condensate Nucleus-nucleus collisions at small x t freeze out hadrons in eq. gluons & quarks in eq. ideal hydrodynamics gluons & quarks out of eq. viscous hydrodynamics strong fields z (beam axis) classical EOMs calculate the initial production of semi-hard particles provide initial conditions for hydrodynamics François Gelis 2008 Symposium on Fundamental Problems in Hot and/or Dense QCD, YITP, Kyoto, March 2008 - p. 7

CGC and Nucleus-Nucleus collisions Parton saturation Color Glass Condensate Nucleus-nucleus collisions at small x? L = 1 2 trf µνf µν + (J µ 1 + Jµ 2 }{{} )A µ Given the sources ρ 1,2 in each projectile, how do we calculate observables? Is there some kind of perturbative expansion? Loop corrections and factorization? J µ François Gelis 2008 Symposium on Fundamental Problems in Hot and/or Dense QCD, YITP, Kyoto, March 2008 - p. 8

Initial particle production Parton saturation Color Glass Condensate Nucleus-nucleus collisions at small x Dilute regime : one parton in each projectile interact François Gelis 2008 Symposium on Fundamental Problems in Hot and/or Dense QCD, YITP, Kyoto, March 2008 - p. 9

Initial particle production Parton saturation Color Glass Condensate Nucleus-nucleus collisions at small x Dilute regime : one parton in each projectile interact Dense regime : multiparton processes become crucial (+ pileup of many partonic scatterings in each AA collision) François Gelis 2008 Symposium on Fundamental Problems in Hot and/or Dense QCD, YITP, Kyoto, March 2008 - p. 9

What is factorization? Parton saturation Color Glass Condensate Nucleus-nucleus collisions at small x A factorization formula divides an observable into a perturbatively calculable part (involving quarks and gluons) and a non-perturbative part describing the partonic content of hadrons or nuclei : O = F O partonic has no predictive power unless the distributions F are intrinsic properties of the incoming projectiles : F cannot depend on the observable F of one projectile cannot depend on the second projectile can accommodate certain resummations : Loop corrections in QCD generate corrections of the form [α s log( )] n, that are large in some parts of the phase-space When these corrections do not depend on the observable and projectiles, they can be absorbed in the definition of F via an universal evolution equation François Gelis 2008 Symposium on Fundamental Problems in Hot and/or Dense QCD, YITP, Kyoto, March 2008 - p. 10

in the dilute regime Parton saturation Color Glass Condensate Nucleus-nucleus collisions at small x in the dilute small-x regime is known as k T -factorization It was introduced in the discussion of heavy quark production near threshold, when s 4m 2 q, to resum large logs of 1/x 1,2 Collins, Ellis (1991), Catani, Ciafaloni, Hautmann (1991) Levin, Ryskin, Shabelski, Shuvaev (1991) In this framework, cross-sections read : dσ dy d 2 P Z k1, k 2 δ( k 1 + k 2 P ) ϕ 1 (x 1, k 1 ) ϕ 2 (x 2, k 2 ) M 2 k 2 1 k2 2 x 1,2 = M s e ±Y The small-x leading logs are resummed into the non-integrated gluon distributions ϕ 1,2 by letting them evolve according to the BFKL equation François Gelis 2008 Symposium on Fundamental Problems in Hot and/or Dense QCD, YITP, Kyoto, March 2008 - p. 11

in the dense regime Parton saturation Color Glass Condensate Nucleus-nucleus collisions at small x In the dense regime, observables are sensitive to parton correlations beyond 2-point correlations. The distributions ϕ 1,2 do not provide this information, but it is present in the source distributions W[ρ 1,2 ] of the CGC in the dense regime at small-x has been established for DIS. The leading logs can be absorbed into W[ρ] by letting it evolve according to the JIMWLK equation In the collision of two dense projectiles : The large logs have a coefficient that depends in a complicated way on the sources of both nuclei. One must show that they can still be absorbed in one of the two W[ρ] s The dependence of the observable on the sources ρ 1,2 is not known analytically, already at LO Even less is known about loop corrections... François Gelis 2008 Symposium on Fundamental Problems in Hot and/or Dense QCD, YITP, Kyoto, March 2008 - p. 12

in the dense regime Parton saturation Color Glass Condensate Nucleus-nucleus collisions at small x For the single gluon spectrum in AA collisions, one would like to establish a formula such as : fi dn d 3 p fl = LLog with Z ˆDρ1 Dρ 2 WYbeam y [ρ 1] W y+ybeam [ρ 2] Y W Y = H W p dn d 3 p LO Y - Y beam ρ 2 y ρ 1 + Y beam All the leading logs of 1/x 1,2 are absorbed in the W s The W s obey the JIMWLK evolution equation François Gelis 2008 Symposium on Fundamental Problems in Hot and/or Dense QCD, YITP, Kyoto, March 2008 - p. 13

in four easy steps Parton saturation Color Glass Condensate Nucleus-nucleus collisions at small x I : Express the single gluon spectrum at LO and NLO in terms of classical fields and small field fluctuations. Check that their boundary conditions are retarded II : Write the NLO terms as a perturbation of the initial value of the classical fields on the light-cone : dn d 3 p NLO = h 1 2 Z u, v LC G( u, v)ì u Ì v + Z u LC β( u)ì u i dn d 3 p LO III : For u, v on the same branch of the light-cone, one has : 1 2 Z u, v LC G( u, v)ì u Ì v + Z u LC β( u)ì u = log Λ + p + H + finite terms IV : There are no other logs. follows trivially François Gelis 2008 Symposium on Fundamental Problems in Hot and/or Dense QCD, YITP, Kyoto, March 2008 - p. 14

Leading Order Next to Leading Order - I - at LO and NLO François Gelis 2008 Symposium on Fundamental Problems in Hot and/or Dense QCD, YITP, Kyoto, March 2008 - p. 15

at LO p Leading Order Next to Leading Order Leading Order = tree diagrams only Tag one gluon of momentum p Integrate out the phase-space of all the other gluons dn d 3 p n=0 1 n! [ d 3 p 1 d 3 p n ] p p1 p n 0 2 François Gelis 2008 Symposium on Fundamental Problems in Hot and/or Dense QCD, YITP, Kyoto, March 2008 - p. 16

at LO Leading Order Next to Leading Order LO results for the single gluon spectrum : Disconnected graphs cancel in the inclusive spectrum At LO, the single gluon spectrum can be expressed in terms of classical solutions of the field equation of motion These classical fields obey retarded boundary conditions dn d 3 p LO = lim t + [ Dµ, F µν] = J ν d 3 xd 3 y e i p ( x y) A µ (t, x) A ν (t, y) lim t Aµ (t, x) = 0 Note : retarded boundary conditions play an important role in the following. They are not automatic, but seem generic for inclusive observables François Gelis 2008 Symposium on Fundamental Problems in Hot and/or Dense QCD, YITP, Kyoto, March 2008 - p. 17

at LO Retarded classical fields are sums of tree diagrams : Leading Order Next to Leading Order x y François Gelis 2008 Symposium on Fundamental Problems in Hot and/or Dense QCD, YITP, Kyoto, March 2008 - p. 18

at LO Retarded classical fields are sums of tree diagrams : Leading Order Next to Leading Order x y A initial Note : the gluon spectrum is a functional of the value of the classical field just above the backward light-cone : dn d 3 p = F[A initial] François Gelis 2008 Symposium on Fundamental Problems in Hot and/or Dense QCD, YITP, Kyoto, March 2008 - p. 18

at NLO p Leading Order Next to Leading Order Next to Leading Order = 1-loop diagrams Connected diagrams only Expressible in terms of classical fields, and small fluctuations about the classical field, both with retarded boundary conditions François Gelis 2008 Symposium on Fundamental Problems in Hot and/or Dense QCD, YITP, Kyoto, March 2008 - p. 19

at NLO Leading Order Next to Leading Order 1-loop graphs contributing to the gluon spectrum at NLO : x y x y dn d 3 p NLO = lim t + d 3 xd 3 y e i p ( x y) [ G µν (x, y) ] +β µ (t, x) A ν (t, y) + A µ (t, x) β ν (t, y) G µν is a 2-point function on top of the classical field β µ is a small field fluctuation driven by a 1-loop source François Gelis 2008 Symposium on Fundamental Problems in Hot and/or Dense QCD, YITP, Kyoto, March 2008 - p. 20

at NLO Leading Order Next to Leading Order The 2-point function G µν can be written as G µν (x, y) = Z d 3 k (2π) 3 2E k η µ k (x) ην +k(y) with 8 < : ˆDµ, ˆD µ, η±k ν ˆDµ, ˆD ν, η µ ±k + ν igˆfµ, η µ ±k = 0 lim t ηµ ±k (t, x) = ǫµ (k) e ±ik x (obtained by writing the YM equation for A+η ±k, linearized in η ±k ) The equation of motion for β µ reads ˆDµ, ˆD µ, β ν ˆD µ, ˆD ν, β µ + igˆf ν µ, β µ = 3 Z L = Y M (A) 1 d 3 k η µ A ν (x) A ρ (x) A σ (x) 2 (2π) {z } 3 k 2E (x) ην +k(x) k {z } 3g vertex in the background A value of the loop François Gelis 2008 Symposium on Fundamental Problems in Hot and/or Dense QCD, YITP, Kyoto, March 2008 - p. 21

- II - Expression as a perturbation of the initial classical field François Gelis 2008 Symposium on Fundamental Problems in Hot and/or Dense QCD, YITP, Kyoto, March 2008 - p. 22

at NLO The retarded nature of the field fluctuations allows a factorization between the initial condition (calculable analytically) and the evolution on top of A µ (complicated) : [ ] a µ Ì (x) = a(u) u A µ (x) u LC }{{} initial condition x LC is a surface just above the backward light-cone Ì u is the generator of shifts of the initial a(u) value of the fields on this surface : h Z F[A initial + a] exp a(u) Ì u i F[A initial ] LC u LC Note : this construction is possible only because the objects involved in the problem obey retarded boundary conditions François Gelis 2008 Symposium on Fundamental Problems in Hot and/or Dense QCD, YITP, Kyoto, March 2008 - p. 23

at NLO This factorization can be applied to the NLO gluon spectrum: x y x y -k +k François Gelis 2008 Symposium on Fundamental Problems in Hot and/or Dense QCD, YITP, Kyoto, March 2008 - p. 24

at NLO This factorization can be applied to the NLO gluon spectrum: x y x y v u -k +k u v They can be written as a perturbation of the LC initial fields : dn h Z 1 i dn = d 3 G( u, v)ì u Ì v p 2 d 3 p NLO G( u, v) Z u, v LC {z } below the LC d 3 k (2π) 3 2E k η k (u) η +k (v) LO {z } above the LC François Gelis 2008 Symposium on Fundamental Problems in Hot and/or Dense QCD, YITP, Kyoto, March 2008 - p. 24

at NLO This factorization can be applied to the NLO gluon spectrum: x y x y x y v u -k +k u v u The loop can also be below the light-cone : dn h Z Z 1 i d 3 G( u, v)ì p = u Ì v β( u)ì + u 2 NLO u, v LC u LC {z } below the LC the functions G( u, v) and β( u) can be evaluated analytically dn d 3 p LO {z } above the LC François Gelis 2008 Symposium on Fundamental Problems in Hot and/or Dense QCD, YITP, Kyoto, March 2008 - p. 24

Divergences Leading Log approximation - III - François Gelis 2008 Symposium on Fundamental Problems in Hot and/or Dense QCD, YITP, Kyoto, March 2008 - p. 25

Divergences Divergences Leading Log approximation If u, v belong to the same branch of the LC (e.g. u = v = ǫ), the function G( u, v) contains G( u, v) + 0 dk + k + eik (u + v + ) with k k2 2k + the integral converges at k + = 0 but not when k + + Note : the log is a log(λ + /p + ), where Λ + is the boundary between the hard color sources and the fields, and p + the longitudinal momentum of the produced gluon p Λ + ρ 1 p + François Gelis 2008 Symposium on Fundamental Problems in Hot and/or Dense QCD, YITP, Kyoto, March 2008 - p. 26

Leading Log approximation Divergences Leading Log approximation In the LC gauge A + = 0, the operator η(u) Ì u is η(u) Ì u ( ηa(u)) i δ δ δ( A i a(u)) +η a (u) δa a (u) +( µη a(u)) µ δ δ( µ A µ a(u)) An explicit calculation of η±k i and η ±k shows that these components have an extra 1/k + when k + + At leading log, it seems sufficient to consider : Ì η(u) u = ( µ η µ δ LLog a(u)) δ( µ A µ a(u)) This is almost correct, but not quite... François Gelis 2008 Symposium on Fundamental Problems in Hot and/or Dense QCD, YITP, Kyoto, March 2008 - p. 27

Leading Log approximation Divergences Leading Log approximation The region above the LC contains a classical background field of the form A ± = 0, A i = i g Ω i Ω the interaction of the fluctuation with a background field can turn terms that are not divergent on the LC into divergent terms! (factors of k + can arise in the 3-gluon derivative coupling) Because this background is a pure gauge, this problem is easily circumvented by using [Ωη] a instead of η a : Ì η(u) u ( [Ωη] i δ b(u)) δ( [ΩA] i b (u)) + δ [Ωη] b (u) δ[ωa] b (u) +( µ [Ωη] µ b (u)) δ δ( µ [ΩA] µ b (u)) at leading log, only the last term matters François Gelis 2008 Symposium on Fundamental Problems in Hot and/or Dense QCD, YITP, Kyoto, March 2008 - p. 28

Divergences Leading Log approximation Derivatives with respect to µ [ΩA] µ b (u) can be mapped to derivatives with respect to the slowest color sources : Z du + δ δ( µ [ΩA] µ b (u)) = with 2 e A + (ǫ, x ) = ρ(ǫ, x ) Z d 2 x u 1 x 2 δ δ e A + a (ǫ, x ) When u, v are on the same branch of the LC, we have 1 2 Z u, v LC «G( u, v)ì 1 Λ + Z u Ì v = LLog 2 log η ab( x p +, y ) x, y δ 2 δ e A + a (ǫ, x )δ e A + b (ǫ, y ) with η ab ( x, y ) 1 Z d 2 z ( x z ) ( y z ) π (2π) 2 ( x z) 2 ( y z ) 2 h i 1 + Ω(x)Ω (y) Ω(x)Ω (z) Ω(z)Ω (y) ab François Gelis 2008 Symposium on Fundamental Problems in Hot and/or Dense QCD, YITP, Kyoto, March 2008 - p. 29

Divergences Leading Log approximation By using the Green s formula for β µ, one can show that Z u LC «β( u)ì 1 Λ + Z u = LLog 2 log p + x Z y! δη ab ( x, y ) δ e A + b (ǫ, y ) δ δ e A + a (ǫ, x ) Combining the real and virtual terms : h Z Z 1 G( u, v)ì u Ì v + 2 β( u)ì u i u, v LC u LC «Λ + Z 1 = log δ δ LLog p + 2 δa e+ b (ǫ, y )η ab( x, y ) δa e+ a (ǫ, x ) y {z } JIMWLK H (Note : H is Hermitian) François Gelis 2008 Symposium on Fundamental Problems in Hot and/or Dense QCD, YITP, Kyoto, March 2008 - p. 30

Leading Log divergences - IV - François Gelis 2008 Symposium on Fundamental Problems in Hot and/or Dense QCD, YITP, Kyoto, March 2008 - p. 31

Leading Log divergences Leading Log divergences The configuration where u, v are on the first branch of the LC can be rewritten as ( ) dn Λ + d 3 = p log dn LLog p + H 1 d 3 p NLO LO with H 1 the for the first nucleus Including also the configuration where both u, v are on the second branch of the LC, we get dn [ ( ) ( ) Λ + Λ ] dn d 3 = log p LLog p + H 1 + log p H 2 d 3 p NLO LO François Gelis 2008 Symposium on Fundamental Problems in Hot and/or Dense QCD, YITP, Kyoto, March 2008 - p. 32

Leading Log divergences Leading Log divergences The only remaining possibility is to have u and v on different branches of the LC However, there is no log divergence in this case, since the k + integral is of the form : η µ -k(u) η ν +k(v) LC dk + k + eik + (u v ) e ik (u + v + ) no mixing of the divergences of the two nuclei François Gelis 2008 Symposium on Fundamental Problems in Hot and/or Dense QCD, YITP, Kyoto, March 2008 - p. 33

Leading Log factorization Leading Log divergences All the above discussion is for given sources ρ 1,2 (or given fields ea ± 1,2 ). Averaging over all the configurations of the sources in the two projectiles, and using the hermiticity of H, we obtain fi dn d 3 p fl LO+NLO = LLog Z ˆD e A + 1 D e A 2 h ««Λ + Λ i 1 + log H 1 + log H 2 p + p W[ A e+ 1 ] W[ A e dn 2 ] d 3 p LO This is a 1-loop result. Using RG arguments, we get the following factorized formula for the resummation of the leading log terms to all orders : fi fl dn d 3 p with = LLog Z ˆD e A + 1 D e A 2 WY1 [ e A + 1 ] W Y2 [ e A 2 ] dn d 3 p LO Y W Y = H W, Y 1 = log( s/p + ), Y 2 = log( s/p ) François Gelis 2008 Symposium on Fundamental Problems in Hot and/or Dense QCD, YITP, Kyoto, March 2008 - p. 34

François Gelis 2008 Symposium on Fundamental Problems in Hot and/or Dense QCD, YITP, Kyoto, March 2008 - p. 35

Requirements for factorization The fact that the observable is bilinear in the fields is not essential. The formula [ 1 ] G( u, v)ì O NLO = u Ì v β( u)ì + u O 2 LO u, v LC u LC can be established for more general observables, provided their expectation value depends on retarded fields only Crucial ingredients for factorization : Only connected diagrams contribute One should have an initial value problem retarded boundary conditions are essential The observable should involve only one rapidity scale. Otherwise, there are extra large corrections in α s (y 1 y 2 ) that are not captured in the evolution of the W[ñ ] s François Gelis 2008 Symposium on Fundamental Problems in Hot and/or Dense QCD, YITP, Kyoto, March 2008 - p. 36

Quantities that do factorize Energy-momentum tensor T µν (τ, η, x ) : T µν (τ, η, x ) = LLog Z ˆD e A + 1 D e A 2 WY1 [ e A + 1 ] W Y2 [ e A 2 ] with Y 1 = ln( s) η, Y 2 = ln( s) + η CGC initial conditions for hydrodynamics Note : this cannot be used for studying fluctuations h i T µν (τ, η, x ) LO Higher moments of the multiplicity distribution in a small slice of rapidity. These moments are expressible in terms of retarded quantities (FG, Venugopalan) For some quantities, an extension of the above form of factorization may be able to resum all the leading logs. Example : 2-gluon correlations with a large rapidity separation between the gluons (work in progress with T. Lappi and R. Venugopalan) François Gelis 2008 Symposium on Fundamental Problems in Hot and/or Dense QCD, YITP, Kyoto, March 2008 - p. 37

Quantities that do not factorize More exclusive quantities seem out of reach of this form of factorization : Example : survival probability of rapidity gaps for such quantities, the main obstruction is the impossibility to write them in terms of retarded objects The problem is not factorization (which should follow from causality to a large extent) per se, but that our description of the wavefunction of the incoming projectiles does not contain enough information to answer the question we are asking (W[ e A] is only the diagonal part of the initial density matrix of the incoming nucleus) François Gelis 2008 Symposium on Fundamental Problems in Hot and/or Dense QCD, YITP, Kyoto, March 2008 - p. 38

Summary works (at leading log) in the saturation regime of nucleus-nucleus collisions : all the leading logarithms of 1/x 1,2 can be absorbed into the evolution of the distribution of color sources of the corresponding nucleus Restriction : the observable must be sufficiently inclusive (so that it can be expressed in terms of fields with retarded boundary conditions) The proof becomes straightforward once one has rewritten the observable in a way that exhibits the causal nature of the involved fields Extensions : The non leading log terms still contain pieces that trigger the Weibel instability resummation? for the inclusive 2-gluon spectrum in an exclusive quantity François Gelis 2008 Symposium on Fundamental Problems in Hot and/or Dense QCD, YITP, Kyoto, March 2008 - p. 39