Physics for Computer Science Students Lecture 5 GRAVITATION

Similar documents
Physics 12. Unit 5 Circular Motion and Gravitation Part 2

Observational Astronomy - Lecture 4 Orbits, Motions, Kepler s and Newton s Laws

Occam s Razor: William of Occam, 1340(!)

Chapter 14 Satellite Motion

Gravity and the Orbits of Planets

18. Kepler as a young man became the assistant to A) Nicolaus Copernicus. B) Ptolemy. C) Tycho Brahe. D) Sir Isaac Newton.

1UNIT. The Universe. What do you remember? Key language. Content objectives

Announcements. Topics To Be Covered in this Lecture

PHYSICS. Chapter 13 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

How big is the Universe and where are we in it?

Gat ew ay T o S pace AS EN / AS TR Class # 19. Colorado S pace Grant Consortium

ASTR-1010: Astronomy I Course Notes Section III

The History of Astronomy. Please pick up your assigned transmitter.

5. Universal Laws of Motion

towards the modern view

Astronomy- The Original Science

Early Theories. Early astronomers believed that the sun, planets and stars orbited Earth (geocentric model) Developed by Aristotle

Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION

Gravitational Potential Energy and Total Energy *

Physics Unit 7: Circular Motion, Universal Gravitation, and Satellite Orbits. Planetary Motion

Overview of Astronautics and Space Missions

1 The Solar System. 1.1 a journey into our galaxy

Chapter 2. The Rise of Astronomy. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5. How did Copernicus s model solve the problem of some planets moving backwards?

PHYS 155 Introductory Astronomy

Chapter 1 The Copernican Revolution

The History of Astronomy. Theories, People, and Discoveries of the Past

Lesson 2 - The Copernican Revolution

Name Period Date Earth and Space Science. Solar System Review

January 19, notes.notebook. Claudius Ptolemaeus Second Century AD. Jan 5 7:37 AM

PHYS 160 Astronomy Test #1 Fall 2017 Version B

By; Jarrick Serdar, Michael Broberg, Trevor Grey, Cameron Kearl, Claire DeCoste, and Kristian Fors

Gravitation and the Waltz of the Planets

Gravitation and the Waltz of the Planets. Chapter Four

Learning Objectives. one night? Over the course of several nights? How do true motion and retrograde motion differ?

Section 25.1 Exploring the Solar System (pages )

Johannes Kepler ( ) German Mathematician and Astronomer Passionately convinced of the rightness of the Copernican view. Set out to prove it!

Gravitation Part I. Ptolemy, Copernicus, Galileo, and Kepler

Unit 1: The Earth in the Universe

Pedagogical information

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Gravitation and the Motion of the Planets

Overview of the Solar System

Astronomy Notes Chapter 02.notebook April 11, 2014 Pythagoras Aristotle geocentric retrograde motion epicycles deferents Aristarchus, heliocentric

Ast ch 4-5 practice Test Multiple Choice

The Acceleration of Gravity (g)

AP Physics-B Universal Gravitation Introduction: Kepler s Laws of Planetary Motion: Newton s Law of Universal Gravitation: Performance Objectives:

Radial Acceleration. recall, the direction of the instantaneous velocity vector is tangential to the trajectory

Which of the following planets are all made up of gas? When a planets orbit around the Sun looks like an oval, it s called a(n)

Physical Science 1 Chapter 16 INTRODUCTION. Astronomy is the study of the universe, which includes all matter, energy, space and time.

Lecture 13. Gravity in the Solar System


UNIT 1: EARTH AND THE SOLAR SYSTEM.

lightyears observable universe astronomical unit po- laris perihelion Milky Way

Kepler, Newton, and laws of motion

Earth s Formation Unit [Astronomy] Student Success Sheets (SSS)

ASTRONOMY. S6E1 a, b, c, d, e, f S6E2 a, b, c,

7.4 Universal Gravitation

What is Earth Science?

Gravity. Newton s Law of Gravitation Kepler s Laws of Planetary Motion Gravitational Fields

Astronomy: Universe at a Glance, Ch. 1a

Galaxies: enormous collections of gases, dust and stars held together by gravity Our galaxy is called the milky way

Practice Test DeAnza College Astronomy 04 Test 1 Spring Quarter 2009

Ch. 22 Origin of Modern Astronomy Pretest

Astr 2320 Tues. Jan. 24, 2017 Today s Topics Review of Celestial Mechanics (Ch. 3)


BROCK UNIVERSITY. 1. About 2300 years ago, Aristotle argued that the Earth is spherical based on a number of observations, one of which was that

Contents: -Information/Research Packet. - Jumbled Image packet. - Comic book cover page. -Comic book pages. -Example finished comic

AST 105. Introduction to Astronomy: The Solar System. Announcement: First Midterm this Thursday 02/25

Scientific Method. Ancient Astronomy. Astronomy in Ancient Times

Introduction To Modern Astronomy I

5.1. Accelerated Coordinate Systems:

An1ma3er Propulsion. Why an1ma3er? An1ma3er rockets would have extremely high exhaust veloci1es (over 10 5 km/s)

Kepler s Laws. Determining one point on Mars orbit

The following notes roughly correspond to Section 2.4 and Chapter 3 of the text by Bennett. This note focuses on the details of the transition for a

The Solar System LEARNING TARGETS. Scientific Language. Name Test Date Hour

Kepler correctly determined the motion of the planets giving his 3 Laws which still hold today for the planets and other orbital motion: moons around

FROM NEWTON TO KEPLER. One simple derivation of Kepler s laws from Newton s ones.

Can you shield a body from the gravitational influence of nearby matter by putting it inside a hollow sphere or by some other means?

ANNEX 1. DEFINITION OF ORBITAL PARAMETERS AND IMPORTANT CONCEPTS OF CELESTIAL MECHANICS

astronomy A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times.

BROCK UNIVERSITY. 1. The observation that the intervals of time between two successive quarter phases of the Moon are very nearly equal implies that

Lecture Outlines. Chapter 6. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc.

Introduction to the Universe. What makes up the Universe?

chapter 10 questions_pictures removed.notebook September 28, 2017 Chapter 10 What We Know About the Universe Has Taken Us Thousands of Years to Learn

Phys 214. Planets and Life

Claudius Ptolemaeus Second Century AD. Jan 5 7:37 AM

1. The Moon appears larger when it rises than when it is high in the sky because

PHYS 101 Previous Exam Problems. Gravitation

The Heliocentric Model of Copernicus

Gravitation & Kepler s Laws

Test Bank for Life in the Universe, Third Edition Chapter 2: The Science of Life in the Universe

Unit 3 Lesson 2 Gravity and the Solar System. Copyright Houghton Mifflin Harcourt Publishing Company

9.2 - Our Solar System

Unit 2: Celestial Mechanics

Chapter 8. Orbits. 8.1 Conics

Lecture 3: History of Astronomy. Astronomy 111 Monday September 4, 2017

Astronomy 1010 Planetary Astronomy Sample Questions for Exam 1

Unit: Planetary Science

Today. Planetary Motion. Tycho Brahe s Observations. Kepler s Laws of Planetary Motion. Laws of Motion. in physics

Transcription:

Physics for Computer Science Students Lecture 5 GRAVITATION Department of Applied Informatics PJIIT 2009

Spis tre±ci 1 2 Kepler's laws of planetary motion 3 Newton's law of universal gravitation 4

Spis tre±ci 1 2 Kepler's laws of planetary motion 3 Newton's law of universal gravitation 4

Spis tre±ci 1 2 Kepler's laws of planetary motion 3 Newton's law of universal gravitation 4

Spis tre±ci 1 2 Kepler's laws of planetary motion 3 Newton's law of universal gravitation 4

Content 1 2 Kepler's laws of planetary motion 3 Newton's law of universal gravitation 4

: 1 Fig. 1: Cloud

: 2 Fig. 2: Sombrero

: 3 Fig. 3: Whirlpool

: 4 Fig. 4: Helix-nebula

: 5 Fig. 5: Planets as seen from the Luna

: 6 Fig. 6: The Earthrise seen from the Luna

Content 1 2 Kepler's laws of planetary motion 3 Newton's law of universal gravitation 4

Astronomy Astronomy the oldest science [gr. astron = the star + nómos = the law] The astronomy started as the applied science - time measurements and establishing the calendar were the rst jobs. Some facts indicate that the rst Luna observations were made 30 000 years BC. The length of the year was known at the beginning of the third milenium BC in the ancient Egypt in the era of the pyramids construction. At the same time in Europe the megalith space observatories were builded: Stonehenge (Wales) Carnac (France) It was so called horizontal astronomy: places of Sun, Luna and other 'stars' rises and sets the shortest and the longest days

Merhirs in Stonehenge Fig. 7: Megaliths in Stonehenge, Wales

Merhirs in Carnac Fig. 8: The stone statues in Carnac, Bretony - France The greatest in the world center of the megaliths. About 4000-5000 merhirs on the area of 4km 2 to the north of Carnac. It is older than Stonehenge or Egypt pyramids. Many of them have found new applications as crosses and the saint's monuments. Nevertheless there is still something to see...

Pythagoras Pythagoras of Samos (about 569 BC - about 475 BC) a Greek philosopher who made important developments in mathematics, astronomy, and the theory of music. The theorem now known as Pythagoras's theorem was known to the Babylonians 1000 years earlier but he may have been the rst to prove it. Pythagoras founded a philosophical and religious school in Croton (now Crotone, on the east of the heel of southern Italy) that had many followers. Pythagoras was the head of the society with an inner circle of followers known as mathematikoi. The mathematikoi lived permanently with the Society, had no personal possessions and were vegetarians. They were taught by Pythagoras himself and obeyed strict rules.

Pythagoras The beliefs that Pythagoras held were: 1 that at its deepest level, reality is mathematical in nature, 2 that philosophy can be used for spiritual purication, 3 that the soul can rise to union with the divine, 4 that certain symbols have a mystical signicance, and 5 that all brothers of the order should observe strict loyalty and secrecy. Pythagoras believed that all relations could be reduced to number relations the quantity and proportions are important. Pythagorean tuning is a system of musical tuning in which the frequency relationships of all intervals are based on the ratio 3:2. Its name comes from medieval texts which attribute its discovery to Pythagoras, but its use has been documented as long ago as 3500 B.C. in Babylonian texts. It is the oldest way of tuning the 12-note chromatic scale.

Phytagorean Phytagorean considered mathematics as divided into four parts: 1 geometry, 2 arithmetics, 3 astronomy, 4 music. Astronomy applied geometry, music applied arithmetics. These four parts of science were called quadrivium [Latin, four ways] fundamental teaching at the medieval universities. New terminology introduced by Phytagorean: philosophy and cosmos, [ gr. kósmos = order, in contradiction to chaos].

New planet September 2006 american astronomers informed about the discovery of the very big and very bright planet revolved around the very distant star it may lead to the revision of the theory on the establishing of planets. Fig. 9: New planet HAT-P-1

deferens Marsa Wenus KsięŜyc Ziemia Merkury Słońce epicykl Marsa Mars Fig. 10: Solar system of Claúdios Ptolemeus (Almagest, 150)

It is worth of mention that the epicycles in the Copernicus theory still exist, but the number of them is signicantly reduced. ich liczb. orbita Marsa Mars Merkury Słońce Wenus Ziemia i KsięŜyc Fig. 11: Solar system of Mikoªaj Kopernik (De revolutionibus orbium coelestium, 1543)

Fig. 12: Solar system

Fig. 13: The eight planets and Pluto with approximately correct relative sizes

The Big Questions What is the origin of the solar system? It is generally agreed that it condensed from a nebula of dust and gas. But the details are far from clear. How common are planetary systems around other stars? There is now good evidence of Jupiter-sized objects orbiting several nearby stars. What conditions allow the formation of terrestrial planets? It seems unlikely that the Earth is totally unique but we still have no direct evidence one way or the other. Is there life elsewhere in the solar system? If not, why is Earth special? Is there life beyond the solar system? Intelligent life? Is life a rare and unusual or even unique event in the evolution of the universe or is it adaptable, widespread and common? Answers to these questions, even partial ones, would be of enormous value.

Astronomical units Name Magnitude Earth-Sun Astr. year [AU] 1 AU 1.496 10 11 m 1 Parsec [pc] 1 pc 3.086 10 16 m 0.000005 2.063 10 5 AU Light year [ly] 1 ly 9.461 10 15 m 500 s 6.324 10 4 AU 0.3066 pc

Distances between the Planets and the Sun Object AU ly mln km Mercury 0.38 3 min 10 s 57.9 Venus 0.72 6 min 108.2 Earth 1 8 min 20 s 149.6 Mars 1.52 12 min 40 s 227.9 Jupiter 5.2 43 min 20 s 778.6 Saturn 9.54 1 h 19 min 30 s 1 433.5 Uranus 19.19 2 h 39 min 55 s 2 872.5 Neptune 30.6 4 h 10 min 30 s 4 495.1 Pluto 39.53 5 h 29 min 25 s 5 906.4 Planetoids 2-3 Pas Kuipera 30-50

Kepler's laws of planetary motion Izaak Newton (1643-1727) has formulated his law of universal gravitation on the results of the astronomical observations of the motions of planets. These observations helped Johannes Kepler (1571-1630) to formulate the three laws: 1 The orbit of every planet is an ellipse with the sun at a focus 2 A line joining a planet and the sun sweeps out equal areas during equal intervals of time. 3 The square of the orbital period of a planet is directly proportional to the cube of the semi-major axis of its orbit.

Ellipse a r 2 φ 2 r 1 φ 1 b Fig. 14: Geometry of ellipse p = b2 a, ε = 1 b2 a 2 (1) p parametr; ε eccentricity; a, b half-axes of ellipse.

Ellipse the equation of ellipse in the polar co-ordinates r = p 1 + ε cos ϕ, (2) After dierentiation 1 p = d 2 dϕ 2 ( 1 Remark: Acceleration in the polar co-ordinates: r ) + 1 r. (3) a r = r r ϕ 2, a ϕ = 2ṙ ϕ + r ϕ. (4)

The eld velocity r (t + t) S r(t) Fig. 15: The eld velocity The eld velocity vector is perpendicular to the surface of the motion and direction according to the right-handed screw rule and the length equal numerically to area of the eld S circled by the indicating vector r during the time t.. c = 1 2 r v. (5)

The eld velocity It follows c = c = 1 2 r v = 1 2 r v ϕ = r 2 ϕ. (6) After dierentiation 0 = r(2ṙ ϕ + r ϕ) = r a ϕ (7) the transversal component of the acceleration vanishes. Conclusion: acceleration is always directed to the Sun, so the force has to be the central force!

The eld velocity Moreover: ṙ = ϕ dr dϕ = 2c r 2 dr dϕ = 2c d dϕ ( ) 1, (8) r czyli sk d r = ϕ d d 2 (ṙ) = 4c2 dϕ r 2 dϕ 2 a r = 4c2 p ( ) 1, (9) r 1 r 2 = k 1 r 2, (10) so, the acceleration, and the force, are reciprocally proportional to the square of the distance from the Sun.

The third Kepler's law Coecient of r 2 k = 4c2 p = 4c2 a b 2, (11) The eld velocity, iso the area of the ellipse π a b divided by the time of circulation T k = 4a b 2 ( ) 2 πab = 4π2 a 3 T T 2. (12) The quotient a 3 /T 2 has the same value for all planets so the Sun attracts all planets according to the universal law: there exists the one law of the universal gravity only.

Newton's law of universal gravitation Newton's law of universal gravitation is an empirical physical law describing the gravitational attraction between bodies with mass. It is a part of classical mechanics and was rst formulated in Newton's work Philosophiae Naturalis Principia Mathematica, rst published on July 5, 1687. In modern language it states the following: Every point mass attracts every other point mass by a force pointing along the line intersecting both points. The force is proportional to the product of the two masses and inversely proportional to the square of the distance between the point masses: F = G m 1 m 2 r 2 where: F the magnitude of the gravitational force between the two point masses, G the gravitational constant, m 1 the mass of the rst point mass, m 2 the mass of the second point mass, r the distance between the two point masses.

Newton's law of universal gravitation Fig. 16: The mechanisms of Newton's law of universal gravitation; a point mass m 1 attracts another point mass m 2 by a force F 2 which is proportional to the product of the two masses and inversely proportional to the square of the distance (r) between them. Regardless of masses or distance, the magnitudes of F 1 and F 2 will always be equal. G is the gravitational constant.

Newton's law of universal gravitation Let us consider the body of the m 1 and the radius r 0 (eg. the Earth) and a small body of the mass m 2 and the small distance z over the Earth (z r 0 ). F 21 = G m 1m 2 r 12 r 2 r The universal constant of gravitation (13) G = (6.6732 ± 0.0031) 10 11 m 3 kg 1 s 2. The potential of the force (13) equals V = G m 1m 2 r. (14)

r r 0 + z i.e. V = G m 1 m 2 r 0 (1 + z/r 0 ) Gm 1m 2 + Gm 1m 2 z r 0 r0 2, (15) V = m 2 gz + const (16) Earth acceleration g = G m 1 r 2 0. (17) This is the approximation only, the inuence of the rotation of the Earth should be taken into account (the centrifugal force) The mass of the Earth can be estimated from Eqn. (17).

Trajectories The cone curves Let us come back to Eqns (2) and (3) ( ) r = ( ) 1 p = d 2 dϕ 2 p 1 + ε cos ϕ, ( 1 r ) + 1 r. Eqn. (*) is the equation of the cone curve with the beginning of the co-ordinate system in one of the focuses. The character of the curve is dened by the eccentricity ε.

Trajectories The cone curves Eccentricity ε < 1 Eect r nite for all angles ϕ (ellipse) ε = 1 r goes to the for cos ϕ = 1, i.e. ϕ = π (parabola) ε > 1 from the condition r > 0, we have ϕ < arc cos ε 1, so, the asymptotes (hyperbola)

the velocity to be reached by an arbitrary body (e.g. rocket, the space vehicle), in order its kinetic energy overcome the Earth gravitation and move away on the proper distance to be able to travel in the space without the additional propulsion. There are several cosmic velocities. All of the were calculated by the polish engineer and astronomer Ary Sternfeld.

The rst cosmic velocity The rst cosmic velocity (v I = 7.91 km/s) allows the object to orbit around the Earth or any other cosmic object. This velocity can be calculated from the equations and a = F m = GM R 2, (18) a = v 2 R. (19)

The rst cosmic velocity St d v I = GM R, (20) where G gravitational constant, M mass of the cosmic object, R radius of the cosmic object. For the Earth v I = 7.91 km/s. In reality the rockets starting to the East contain some additional velocity from the rotational motion of the Earth. On the equator this eect is the greatest: the benet equals appr. 463 m/s.

The second cosmic velocity The second cosmic velocity (escape velocity) - minimum velocity required for a spacecraft or other object to escape from the gravitational pull of a planetary body. In the case of the Earth, the escape velocity is 11.2 kps/6.9 mps; the Moon, 2.4 kps/1.5 mps; Mars, 5 kps/3.1 mps; and Jupiter, 59.6 kps/37 mps. It means that the trajectory has to be the parabola or the hyperbola. It can be calculated as a dierence of the energy on the surface of a given cosmic object and in the innity (= 0). On the surface it is the sum of the potential energy E p = G Mm R and the kinetic energy E k = mv 2. It follows that: 2 2GM v II = R. (21) The dierence between the rst and the second cosmic velocities is the factor 2 = 1.4142....

The third cosmic velocity The third cosmic velocity is the velocity V III which must be impressed to a body on the Earth so that it can escape from the solar system. In fact, even if a velocity equal to the second cosmic velocity were impressed to a body of the solar system, it would not be able to go till the innite because it would enter into elliptic orbit round the Sun, whose mass is enormous if compared to those of the other planets. V III = 16.7 km/s At the surface of the Earth it equals approx. 42 km/s, but The Earth circuses around the Sun, so the smaller velocity is enough. o

The fourth cosmic velocity The fourth cosmic velocity is the escape velocity from our galaxy - the Milky Way. It corresponds to about 320 kilometers per second. If one takes into account that the solar system revolves around the center of galaxy it is enough that v IV 130 km/s It is important to bear in mind that these cosmic velocities are idealized values. For instance they do not take into account the loss of speed due to air resistance when a rocket is launched. Moreover, the values mentioned above are specic to the Earth and our solar system, and they do not apply to other parts of the universe.

The end? :-( The end of the lecture 5