Rational Numbers as an Infinite Field

Similar documents
VECTORS VECTORS VECTORS VECTORS. 2. Vector Representation. 1. Definition. 3. Types of Vectors. 5. Vector Operations I. 4. Equal and Opposite Vectors

MCA-205: Mathematics II (Discrete Mathematical Structures)

Linear Algebra Introduction

Computing data with spreadsheets. Enter the following into the corresponding cells: A1: n B1: triangle C1: sqrt

Reference : Croft & Davison, Chapter 12, Blocks 1,2. A matrix ti is a rectangular array or block of numbers usually enclosed in brackets.

Lecture 26 Finite Differences and Boundary Value Problems

Matrix Algebra. Matrix Addition, Scalar Multiplication and Transposition. Linear Algebra I 24

CHAPTER 5 Vectors and Vector Space

Introduction to Olympiad Inequalities

Lecture 20: Minimum Spanning Trees (CLRS 23)

CENTROID (AĞIRLIK MERKEZİ )

Chapter Runge-Kutta 2nd Order Method for Ordinary Differential Equations

The Karush-Kuhn-Tucker. Nuno Vasconcelos ECE Department, UCSD

On a nonlinear compactness lemma in L p (0, T ; B).

Depth First Search. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong

Instructions. An 8.5 x 11 Cheat Sheet may also be used as an aid for this test. MUST be original handwriting.

Proof that if Voting is Perfect in One Dimension, then the First. Eigenvector Extracted from the Double-Centered Transformed

Divided. diamonds. Mimic the look of facets in a bracelet that s deceptively deep RIGHT-ANGLE WEAVE. designed by Peggy Brinkman Matteliano

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC

A Technique for Constructing Odd-order Magic Squares Using Basic Latin Squares

, rst we solve te PDE's L ad L ad n g g (x) = ; = ; ; ; n () (x) = () Ten, we nd te uncton (x), te lnearzng eedbac and coordnates transormaton are gve

1 4 6 is symmetric 3 SPECIAL MATRICES 3.1 SYMMETRIC MATRICES. Defn: A matrix A is symmetric if and only if A = A, i.e., a ij =a ji i, j. Example 3.1.

H-matrix theory and applications

Matrices SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics (c) 1. Definition of a Matrix

= s j Ui U j. i, j, then s F(U) with s Ui F(U) G(U) F(V ) G(V )

Section 2.1 Special Right Triangles

The Number of Rows which Equal Certain Row

Pythagorean Theorem and Trigonometry

ORDINARY DIFFERENTIAL EQUATIONS

FINITE NEUTROSOPHIC COMPLEX NUMBERS. W. B. Vasantha Kandasamy Florentin Smarandache

For a, b, c, d positive if a b and. ac bd. Reciprocal relations for a and b positive. If a > b then a ab > b. then

Mathematically, integration is just finding the area under a curve from one point to another. It is b

Chapter Simpson s 1/3 Rule of Integration. ( x)

CENTROID (AĞIRLIK MERKEZİ )

Introduction to Numerical Integration Part II

LEVEL SET OF INTUITIONTISTIC FUZZY SUBHEMIRINGS OF A HEMIRING

p (i.e., the set of all nonnegative real numbers). Similarly, Z will denote the set of all

On Several Inequalities Deduced Using a Power Series Approach

consider in the case of 1) internal resonance ω 2ω and 2) external resonance Ω ω and small damping

Section 2.3. Matrix Inverses

CENTROID (AĞIRLIK MERKEZİ )

MAT 1275: Introduction to Mathematical Analysis

CAMBRIDGE UNIVERSITY ENGINEERING DEPARTMENT. PART IA (First Year) Paper 4 : Mathematical Methods

Lecture 6: Coding theory

Logic Synthesis and Verification

Vectors. a Write down the vector AB as a column vector ( x y ). A (3, 2) x point C such that BC = 3. . Go to a OA = a

Project 6: Minigoals Towards Simplifying and Rewriting Expressions

I1 = I2 I1 = I2 + I3 I1 + I2 = I3 + I4 I 3

OPTIMISATION. Introduction Single Variable Unconstrained Optimisation Multivariable Unconstrained Optimisation Linear Programming

CHENG Chun Chor Litwin The Hong Kong Institute of Education

Smarandache-Zero Divisors in Group Rings

Endogenous timing in a mixed oligopoly consisting of a single public firm and foreign competitors. Abstract

GEOMETRY OF THE CIRCLE TANGENTS & SECANTS

CS311 Computational Structures Regular Languages and Regular Grammars. Lecture 6

RGMIA Research Report Collection, Vol. 1, No. 1, SOME OSTROWSKI TYPE INEQUALITIES FOR N-TIME DIFFERENTIA

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique?

NFA and regex. the Boolean algebra of languages. non-deterministic machines. regular expressions

Introduction To Matrices MCV 4UI Assignment #1

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals

Chapter 1: Fundamentals

DIFFERENTIAL SCHEMES

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

A Study on the Properties of Rational Triangles

EE 330 Lecture 24. Small Signal Analysis Small Signal Analysis of BJT Amplifier

Quadratic Forms. Quadratic Forms

April 8, 2017 Math 9. Geometry. Solving vector problems. Problem. Prove that if vectors and satisfy, then.

FUNDAMENTALS ON ALGEBRA MATRICES AND DETERMINANTS

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees

Strong Gravity and the BKL Conjecture

Integration by Parts for D K

Introduction to Algebra - Part 2

Chapter 3 MATRIX. In this chapter: 3.1 MATRIX NOTATION AND TERMINOLOGY

Probability. b a b. a b 32.

ON LEFT(RIGHT) SEMI-REGULAR AND g-reguar po-semigroups. Sang Keun Lee

Interval Valued Neutrosophic Soft Topological Spaces

Necessary and sucient conditions for some two. Abstract. Further we show that the necessary conditions for the existence of an OD(44 s 1 s 2 )

New Exact Solutions for Static Axially Symmetric Einstein Vacuum Equations

Name: SID: Discussion Session:

Sequences of Intuitionistic Fuzzy Soft G-Modules

10.3 The Quadratic Formula

Bases for Vector Spaces

Chapter 4 State-Space Planning

INTRODUCTION TO COMPLEX NUMBERS

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

Having a glimpse of some of the possibilities for solutions of linear systems, we move to methods of finding these solutions. The basic idea we shall

QUADRATIC EQUATION EXERCISE - 01 CHECK YOUR GRASP

Bernoulli Numbers and Polynomials

An Ising model on 2-D image

Differential Entropy 吳家麟教授

Asymptotic Dominance Problems. is not constant but for n 0, f ( n) 11. 0, so that for n N f

4.3 The Sine Law and the Cosine Law

REGULAR STURM-LIOUVILLE OPERATORS WITH TRANSMISSION CONDITIONS AT FINITE INTERIOR DISCONTINUOUS POINTS

Chapter 3. Vector Spaces. 3.1 Images and Image Arithmetic

Project 3: Using Identities to Rewrite Expressions

On Implicative and Strong Implicative Filters of Lattice Wajsberg Algebras

ES240 Solid Mechanics Z. Suo. Principal stress. . Write in the matrix notion, and we have

Solutions of exercise sheet 3

Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n.

TOPIC: LINEAR ALGEBRA MATRICES

Transcription:

Pure Mtemtl Senes, Vol. 4, 205, no., 29-36 HIKARI Ltd, www.m-kr.om ttp://dx.do.org/0.2988/pms.205.4028 Loue re Mg Squres over Mult Set o Rtonl Numers s n Innte Feld A. M. Byo Deprtment o Mtemts nd Computer Sene Fulty o Sene, Federl Unversty Ksere, Gome Stte, Nger G. U. Gr Deprtment o Mtemts Fulty o Sene, Amdu Bello Unversty, Zr, Kdun Stte, Nger Copyrgt 204 A. M. Byo nd G. U. Gr. Ts s n open ess rtle dstruted under te Cretve Commons Attruton Lense, w permts unrestrted use, dstruton, nd reproduton n ny medum, provded te orgnl work s properly ted Astrt Ts work s poneerng nvestgton o te Loue re Mg Squres over mult set o rtonl numers o te orm { : 0, Z} nnte lger eld, were Z denotes te mult set o nteger numers. By te Loue re Mg Squres L (s we denote t), we understnd te set o mg squres ormed y te De L Loue re Proedure. It s explted tt te set equpped wt te mtrx nry operton o ddton (s we denote t) orms n nnte ddtve eln group, nd te set enlosed wt te rtonl numers multplton (s we denote t) orms n nnte multpltve eln group te underlnng set so onsdered o te entres o te orementoned squres s te mult set o te orementoned set o numers. (L,, ) orms n nnte eld. Mtemts Suet Clsston: 2 xx Keywords: Loue re Mg Squres, Mult Set, Innte Feld, Addtve Aeln Group, Multpltve Aeln Group

30 A. M. Byo nd G. U. Gr. Introduton Te Loue re Mg Squres L equpped wt te mtrx nry operton o ddton orms semgroup te underlnng set onsdered s te mult set o nturl numers. I we underlne te mult set o nteger numers s entres o te squre, (L, ) orms n nnte ddtve eln group. Te Loue re Mg Squres over te mult set o rtonl numers o te orm { : 0, Z} orms n nnte multpltve eln group, (L, ), tus, mkng (L,, ) n nnte eld. Ts s not te explton o te denton o te eld presented n [], ut te two re nlogous. Artrrly, 5 5 Sem Pndgonl Loue re Mg Squres s onsdered not squres su tt n 7 to eonomy spe, nd not 3 3 su squre to dodge ner s oe. Te mult set o rtonl numers o te orm{ : 0, Z} s ptly onsdered even toug te mult set o rtonl numers o te orm { : 0, s xed n Z nd Z }, spel type o slr multplton, wll do. Also, we onsder te sequene,,, n tmes,,,, n tmes,,,, n tmes, rter tn,,,... n tmes,,,,... n tmes,... toug te lter wll lso gve n nlogous result; ut presentng ot te two s ys tutology. 2. Prelmnres Denton 2.. A mult set s set n w repetton o elements s relevnt. For exmple, {,,,,,,,, } {,, } {,,,,,,,, } or ter Loue re Mg Squres re not somorp. Denton 2.2. A s mg squre o order n n e dened s n rrngement o rtmet sequene o ommon derene o rom to n 2 n n n n squre grd o ells su tt every row, olumn nd dgonl dd up to te sme numer, lled te mg sum M(S) expressed s M(S) = n3 +n nd entre pee C s C = M(S). 2 n Denton 2.3. Mn Row or Column s te olumn or row o te Loue re Mg Squres ontnng te rst term nd te lst term o te rtmet sequene n te squre.

Loue re mg squres over mult set o rtonl numers 3 2.4 Loue re Proedure (NE-W-S or NW-E-S, te rdnl ponts) Consder n empty n n squre o grds o ells. Strt, rom te entrl olumn or row t poston n were s te greter nteger numer less tn or equl 2 to, wt te numer. Te undmentl movement or llng te squres s dgonlly up, rgt (lok wse or NE or SE) or up let (nt lok wse or NW or SW) nd one step t tme. I lled ell (grd) s enountered, ten te next onseutve numer moves vertlly down wrd one squre nsted. Contnue n ts son untl wen move would leve te squre, t moves due N or E or W or S (dependng on te poston o te rst term o te sequene) to te lst row or rst row or rst olumn or lst olumn. See lso [2] or su proedure. Te squre o grd o ells [ ] n n s sd to e Loue re Mg Squre te ollowng ondtons re stsed. n = n =. = k T. tre[ ] = tre[ n n ] = k n n. n,, n 2 2, n, n, n 2 2 re on te sme mn olumn or row nd n,n, n 2 2 n, n re on te sme mn olumn or row,, 2 2 were s te greter nteger less or equl to, T s te trnspose (o te squre), k s te mg sum (mg produt s dened nlogously) usully expressed s k = n [2 + (n )] rom te sum o rtmet sequene, were s te 2 ommon derene long te mn olumn or row nd s te rst term o te sequene nd n 2 n 2 = k. n 2.5 Group A non empty set G togeter wt n operton * s known s group te ollowng propertes re stsed.. G s losed wt respet to *..e., G,, G.. s ssotve n G..e., ( ) = ( ),,, G.. e G, su tt e = e =, G. Here e s lled te dentty element n G wt respet to *. v. G, G su tt = = e, were e s te dentty element. Here s lled te nverse o nd smlrly vse vers. Te nverse o te element s denoted s.

32 A. M. Byo nd G. U. Gr Te ove denton o group s gven n []. I n ddton to te ove xoms, te ollowng xom s stsed, we ll (G, ) n eln group were (G, ) s denotton o group. v. =,, G. Tt s ll (not some o) te elements o G ommutes. 2.6 Feld I (G, ) s n ddtve eln group nd (G, ) s multpltve eln group, ten (G,, ) s eld. 3. Te Loue re Mg Squres Feld Te underle mult set o te nnte ddtve Loue re Mg Squres eln group (L, ) s {: Z} nd te underle mult set o te nnte multpltve Loue re Mg Squres eln group (L, ) s { : 0, Z}. Te wole onept s sed on te mnestton o n n Loue re Mg Squres were n s odd vng ot te mg sum nd te mg produt. {,,, n tmes,,,, n tmes,.. or,, n tmes,,,, n tmes... :,, Z} s te mult set onsdered, were n = 2Z + + nd Z + s te set o postve ntegers (greter tn or equl to ) or n = s trvlty nd n = 2, te oddest prme, does not exst. Te orrespondng set o mg squres o entres te sequene o elements o te mult set ove re L n were n = 3, 5, 7,... L 3 [ ] or { [ ] :,, Z },

Loue re mg squres over mult set o rtonl numers 33 L 5 { d e e d d e d e [ d e ] or d e [ e d d e d e d :,, Z e ] } L 7, L 9, L, re onstruted nlogously. Teorem 3.. (L n, ) s n ddtve eln group. Proo. Artrrly onsderng L 5, we dene s ollows: Let A, B L 5 were d e e d A = d e d e [ d e ] x y u v w y u v w x nd B = u v w x y v w x y u [ w x y u v] d e e d A B = d e d e [ d e ] = C x y u v w y u v w x u v w x y v w x y u [ w x y u v] d + x e + y + u + v + w e + y + u + v + w d + x = + u + v + w d + x e + y + v + w d + x e + y + u [ + w d + x e + y + u + v]. L 5 s losed wt respet to : From te ove denton, A, B L 5, ten A B = C L 5. Ts s more vvd y lettng (sy) p = + u, q = + v, r = + w, s = d + x nd t = e + y.. s ssotve: For A, B, C L 5, A (B C) = (A B) C wene + ( + ( + )) = ( + ) + ( + ) were A, B nd + C (rtrrly oosen. )

34 A. M. Byo nd G. U. Gr. 0 0 0 0 0 0 0 0 0 0 Te ddtve dentty element I s 0 0 0 0 0 0 0 0 0 0 were e 0 exept te [ 0 0 0 0 0] rst entry o te squre s seres o 0s orrespondngly n tmes. v. E element o L 5 s n nverse: I D L 5, ten D L 5 were D s te squre wt mg sum M(S) ormed s result o slr multplton o entres n D vng mg sum M(S) y. For exmple, te nverse o [ ] s [ ]. v. s ommuttve: A, B L 5 A B = B A wene te mtrx nry operton o ddton over set o nteger numers s ommuttve (nertne). Tus, (L n, ) s n nnte ddtve eln group. Teorem 3.2. (L n, ) s n nnte multpltve eln group. l m k m k l Proo. Let D, E L 5. We dene s ollows: Let D = k l m k l m [ k l m ] nd E = e g e g e g. Ten D E = l m e kg m e kg l e kg l m = F g e [ g e ] kg l m e [ kg l m e ]. L 5 s losed wt respet to : For D, E L 5, F L 5 rom te ove denton. Ts s vvd y ntmte look t te pttern o elements n F: e,, kg, l, nd m.. Assotvty: s ssotve or A, B, C L 5 A (B C) = (A B) C euse x(y(xy)) = (xy)(xy) were x A, y B nd xy C. Ts s x, y nd xy.

Loue re mg squres over mult set o rtonl numers 35. Te dentty element I s were e [ ] I exept te rst entry o te squre s produt o s orrespondngly n tmes. g g v. E element o L 5 s n nverse: I G = g L 5, ten H = g [ g] [ g g g g g] su tt G H = H G = I v. s ommuttve: A, B L 5 A B = B A sne te entres n te squre re rtonl numers nd rtonl numers multplton s ommuttve, we re done. Tus, (L n, ) s n nnte multpltve eln group. Teorem 3.3. (L n,, ) s n nnte eld. Proo. Ts ollows mmedtely rom Teorem 3. nd Teorem 3.2 ove. 4. Conluson Every Loue re Mg Squre under dsuss n ts work s out 4 msellny eets o rottons nd/or reletons. Consderng out o te 4 eets s rtrry. Altoug te Loue re Mg Squres presented ere re not te s (ovous) ones, yet tey re sem pndgonl Loue re wt unque mg sums nd produts. We reommend tt you re pt n serng or n exmple o ny lger strutures e t semgroup (Fon), group (Symmetr), eld (Loue re ),vetor spe(mg Squres n generl) or not enter Loue re Mg Squres, you wll nd one.

36 A. M. Byo nd G. U. Gr Reerenes [] Sreernn K. S, V. Mdukr Mllyy, Sem Mg Squres s Feld, Interntonl Journl o Alger, 6 (202), 249-256. [2] Gn Yee Sng, Fon Wn Heng, Nor Hnz Srmn, Propertes nd Solutons o Mg Squres, Menemu Mtemtk (Dsoverng Mtemts), 34 (202), 69. Reeved: Novemer 8, 204; Pulsed: Deemer 2, 204