Genetic Variation: The genetic substrate for natural selection. Horizontal Gene Transfer. General Principles 10/2/17.

Similar documents
Bacterial Genetics & Operons

Outline. Genome Evolution. Genome. Genome Architecture. Constraints on Genome Evolution. New Evolutionary Synthesis 11/8/16

BACTERIA AND ARCHAEA 10/15/2012

Chapter 27: Bacteria and Archaea

Bio 119 Bacterial Genomics 6/26/10

Outline. Genome Evolution. Genome. Genome Architecture. Constraints on Genome Evolution. New Evolutionary Synthesis 11/1/18

CHAPTER : Prokaryotic Genetics

Organization of Genes Differs in Prokaryotic and Eukaryotic DNA Chapter 10 p

Biology 105/Summer Bacterial Genetics 8/12/ Bacterial Genomes p Gene Transfer Mechanisms in Bacteria p.

Vital Statistics Derived from Complete Genome Sequencing (for E. coli MG1655)

Name Period The Control of Gene Expression in Prokaryotes Notes

GACE Biology Assessment Test I (026) Curriculum Crosswalk

Biology 112 Practice Midterm Questions

CHAPTER 13 PROKARYOTE GENES: E. COLI LAC OPERON

Prokaryotes & Viruses. Practice Questions. Slide 1 / 71. Slide 2 / 71. Slide 3 / 71. Slide 4 / 71. Slide 6 / 71. Slide 5 / 71

Genomes and Their Evolution

DNA Technology, Bacteria, Virus and Meiosis Test REVIEW

Principles of Genetics

The Gene The gene; Genes Genes Allele;

Multiple Choice Review- Eukaryotic Gene Expression

UNIT 5. Protein Synthesis 11/22/16

Introduction to Molecular and Cell Biology

2012 Univ Aguilera Lecture. Introduction to Molecular and Cell Biology

Molecular Evolution & the Origin of Variation

Molecular Evolution & the Origin of Variation

Chapter 15 Active Reading Guide Regulation of Gene Expression

Biology EOC Review Study Questions

BIOLOGY FINAL EXAM REVIEW SHEET Chapters 10-15, 17-30

A A A A B B1

Computational Biology: Basics & Interesting Problems

Flow of Genetic Information

Big Idea 1: The process of evolution drives the diversity and unity of life.

AP Curriculum Framework with Learning Objectives

3.B.1 Gene Regulation. Gene regulation results in differential gene expression, leading to cell specialization.

Map of AP-Aligned Bio-Rad Kits with Learning Objectives

Enduring understanding 1.A: Change in the genetic makeup of a population over time is evolution.

BIOLOGY STANDARDS BASED RUBRIC

Name: SBI 4U. Gene Expression Quiz. Overall Expectation:

Prokaryotes & Viruses. Multiple Choice Review. Slide 1 / 47. Slide 2 / 47. Slide 3 / 47

CHAPTER 23 THE EVOLUTIONS OF POPULATIONS. Section C: Genetic Variation, the Substrate for Natural Selection

The two daughter cells are genetically identical to each other and the parent cell.

Prokaryotes & Viruses. Multiple Choice Review. Slide 2 / 47. Slide 1 / 47. Slide 3 (Answer) / 47. Slide 3 / 47. Slide 4 / 47. Slide 4 (Answer) / 47

Regulation of Gene Expression

VCE BIOLOGY Relationship between the key knowledge and key skills of the Study Design and the Study Design

Gene Regulation and Expression

2. What was the Avery-MacLeod-McCarty experiment and why was it significant? 3. What was the Hershey-Chase experiment and why was it significant?

1. In most cases, genes code for and it is that

Biology I Level - 2nd Semester Final Review

Biology. Revisiting Booklet. 6. Inheritance, Variation and Evolution. Name:

Eukaryotic vs. Prokaryotic genes

Horizontal transfer and pathogenicity

Texas Biology Standards Review. Houghton Mifflin Harcourt Publishing Company 26 A T

Microbial Genetics, Mutation and Repair. 2. State the function of Rec A proteins in homologous genetic recombination.

Kingdom Bacteria Kingdom Archaea

Objective 3.01 (DNA, RNA and Protein Synthesis)

Biology II : Embedded Inquiry

AP Biology Essential Knowledge Cards BIG IDEA 1

Full file at CHAPTER 2 Genetics

Designer Genes C Test

Kingdom Monera(Archaebacteria & Eubacteria)

REVIEW SESSION. Wednesday, September 15 5:30 PM SHANTZ 242 E

8/25/ Opening Questions: How did life arise? Imagine you are on a time machine that takes you back in time to the early Earth.

Cell Division. OpenStax College. 1 Genomic DNA

Prokaryotes & Viruses. Multiple Choice Review. Slide 1 / 47. Slide 2 / 47. Slide 3 / 47

15.2 Prokaryotic Transcription *

Regulation of gene expression. Premedical - Biology

Eukaryotic Gene Expression

Warm-Up. Explain how a secondary messenger is activated, and how this affects gene expression. (LO 3.22)

Valley Central School District 944 State Route 17K Montgomery, NY Telephone Number: (845) ext Fax Number: (845)

Translation Part 2 of Protein Synthesis

Big Idea 3: Living systems store, retrieve, transmit, and respond to information essential to life processes.

Curriculum Map. Biology, Quarter 1 Big Ideas: From Molecules to Organisms: Structures and Processes (BIO1.LS1)

Round 1. Mitosis & Meiosis Inheritance (10 questions)

no.1 Raya Ayman Anas Abu-Humaidan

SPRINGFIELD TECHNICAL COMMUNITY COLLEGE ACADEMIC AFFAIRS

The nature of genomes. Viral genomes. Prokaryotic genome. Nonliving particle. DNA or RNA. Compact genomes with little spacer DNA

Special Topics on Genetics

Name: SAMPLE EOC PROBLEMS

Text of objective. Investigate and describe the structure and functions of cells including: Cell organelles

Chapter 16 Lecture. Concepts Of Genetics. Tenth Edition. Regulation of Gene Expression in Prokaryotes

Reading Assignments. A. Genes and the Synthesis of Polypeptides. Lecture Series 7 From DNA to Protein: Genotype to Phenotype

Introduction. Gene expression is the combined process of :

The Prokaryotic World

SPECIES OF ARCHAEA ARE MORE CLOSELY RELATED TO EUKARYOTES THAN ARE SPECIES OF PROKARYOTES.

Chromosomes and Inheritance - 1

Biology Final Review Ch pg Biology is the study of

Regulation of Gene Expression in Bacteria and Their Viruses

Chapter 17. From Gene to Protein. Biology Kevin Dees

SPRING GROVE AREA SCHOOL DISTRICT. Course Description. Instructional Strategies, Learning Practices, Activities, and Experiences.

9/8/2017. Bacteria and Archaea. Three domain system: The present tree of life. Structural and functional adaptations contribute to prokaryotic success

Kingdom Monera - The Bacteria

Grade 7 Science Learning Standards

Biology. Biology. Slide 1 of 26. End Show. Copyright Pearson Prentice Hall

Wilson Area School District Planned Course Guide

Newly made RNA is called primary transcript and is modified in three ways before leaving the nucleus:

PROTEIN SYNTHESIS INTRO

Chetek-Weyerhaeuser Middle School

Name. Diversity of Life

4. Why not make all enzymes all the time (even if not needed)? Enzyme synthesis uses a lot of energy.

AP Biology. Read college-level text for understanding and be able to summarize main concepts

Transcription:

Genetic Variation: The genetic substrate for natural selection What about organisms that do not have sexual reproduction? Horizontal Gene Transfer Dr. Carol E. Lee, University of Wisconsin In prokaryotes: Horizontal gene transfer (HGT): Also termed Lateral Gene Transfer - the lateral transmission of genes between individual cells, either directly or indirectly. This transfer of genes between organisms occurs in a manner distinct from the vertical transmission of genes from parent to offspring via sexual reproduction, which could include transformation, transduction, and conjugation. From some basic background on prokaryotic genome architecture These mechanisms not only generate new gene assortments, they also help move genes throughout populations and from species to species. HGT has been shown to be an important factor in the evolution of many organisms. Smaller Population Size Differences in genome architecture General Principles Most conserved feature of Prokaryotes is the operon (noncoding, nonfunctional) (transcribed sequence) (regulatory sequence) Gene Order: Prokaryotic gene order is not conserved (aside from order within the operon), whereas in Eukaryotes gene order tends to be conserved across taxa Intron-exon genomic organization: The distinctive feature of eukaryotic genomes that sharply separates them from prokaryotic genomes is the presence of spliceosomal introns that interrupt protein-coding genes 1

Small vs. Large Genomes 1. Compact, relatively small genomes of viruses, archaea, bacteria (typically, <10Mb), and many unicellular eukaryotes (typically, <20 Mb). In these genomes, protein-coding and RNA-coding sequences occupy most of the genomic sequence. Prokaryotic Genomes 2. Expansive, large genomes of multicellular and some unicellular eukaryotes (typically, >100 Mb). In these genomes, the majority of the nucleotide sequence is non-coding. Even though bacteria and archaea are not closely related, they share certain features in Genome architecture Prokaryotic Genome Haemophilus influenzae Prokaryotic Genomes Prokaryotes (archaea and bacteria) have compact genomes, though with larger intergenic regions than viruses Many prokaryotic genes are organized into cotranscribed groups, or operons (Miller and Reznikoff, 1978; Salgado et al., 2000) Prokaryotic Genomes often consist of one or a few circular chromosome(s) Operons: https://www.youtube.com/watch?v=10ywgqmaesq A key distinctive feature of prokaryotic genomes are that they are organized into operons, clusters of co-regulated genes Definition: groups of adjacent, co-expressed and co-regulated genes that encode functionally interacting proteins) Genes within operons are close together in the genome and cotranscribed and co-regulated Grouping related genes under a common control mechanism allows bacteria to rapidly adapt to changes in the environment Operons occur primarily on prokaryotes, but have been found in some eukaryotes (nematodes, Drosophila) An operon is a single transcriptional unit that includes a series of structural genes, a promoter, and an operator. 2005 W. H. Freeman Pierce, Benjamin. Genetics: A Conceptual Approach, 2nd ed 2

The organization of genes into an operon allows for simultaneous expression of all the genes that are located in cis (i.e., on the same contiguous piece of DNA) in the operon It also allows the set of genes to undergo horizontal gene transfer as a unit The majority of operons are simple strings of 2 4 genes, with variations in their arrangement Some operons belong to complex, interconnected neighborhoods: super operons or überoperon (Lathe et al., 2000) are large arrays of genes that include several operons with a complex pattern of regulation, such as the ribosomal superoperon The majority of genes in the Überoperons encode proteins involved in the same process and/or complex but highly conserved arrangements including genes with seemingly unrelated functions exist, as well Similar Operons Across Divergent Taxa Operons with identical or similar gene organization are often found in highly diverse organisms, and across different functional systems Examples are numerous metabolite transport operons, such as transmembrane, ATPase, and periplasmic subunits of diverse permeases The persistence of such common operons in diverse bacteria and archaea has been interpreted within the framework of the selfish operon concept, where the selfish character of these compact genetic elements make them prone to horizontal spread (HGT) among prokaryotes (Lawrence, 1997, 1999; Lawrence and Roth, 1996) Similar Operons Across Divergent Taxa The persistence of such common operons in diverse bacteria and archaea has been interpreted within the framework of the selfish operon concept, where the selfish character of these compact genetic elements make them prone to horizontal spread among prokaryotes (Lawrence, 1997, 1999; Lawrence and Roth, 1996) Operons are often spread as a unit through horizontal gene transfer Polycistronic mrna An operon contains one or more structural genes which are generally transcribed into one polycistronic mrna (a single mrna molecule that codes for more than one protein) So, Most Prokaryotic mrna is Polycistronic Most of the mrna found in bacteria and archaea is polycistronic, having a single mrna that encodes for multiple different polypeptides Bacterial Operons Produce Polycistronic mrnas: Polycistronic mrna carries the information of several genes, which are translated into several proteins. These proteins usually have a related function and are grouped and regulated together in an operon (most eukaryotic mrna is monocistronic) 3

Lack of Gene Order Conservation in Prokaryotes One of the unexpected findings of the first comparisons of complete bacterial genomes has been the near lack of gene order conservation, beyond the level of operons, even between relatively close species such as Escherichia coli and Haemophilus influenzae (Koonin et al. 1996; Tatusov et al. 1996) This breakdown in synteny (gene order) in prokaryotes is thought to be caused by horizontal gene transfer and also inversions around the origin of replication Synteny Definition 1: Classical Genetics: Physical colocalization of genetic loci on the same chromosome (but bacteria often have one just one chromosome ) Definition 2: Genomics: syntenic regions refer to the case where both sequence and gene order are conserved between two closely related species Evolution in Prokaryotes Mutation rate: high within a given amount of time because of short generation time Also, often high mutation rate per base pair per replication Horizontal Gene Transfer (= Lateral Gene Transfer) Horizontal Gene Transfer (= Lateral Gene Transfer): Transfer of genetic material (DNA) to another organism that is not its offspring. Transformation Transduction Conjugation Horizontal gene transfer between bacteria was first described in Japan in a 1959 publication that demonstrated the transfer of antibiotic resistance between different species of bacteria Horizontal Gene Transfer Consequences: Phylogenetic relationships are sometimes difficult to discern (as genetic material is being swapped around) Rapid transfer of functional genes: pathogenicity genes, rapid evolution of drug resistance Bacteria effectively have a HUGE genome size (Pan- Genome), a large genome to draw from, as individual cells can share genes with other individuals Pan-Genome Genome of any one organism Core Variable The Pan Genome (yellow + blue) of a prokaryotic species is much larger than the genome of any one bacterial organism or of the core genome (blue) of the species Genome of the species Variable Core 4

Core and Pan Genomes The Pan-Genome The Core Genome consists of genes shared by all the strains studied and probably encode functions related to the basic biology and phenotypes of the species The Pan-Genome is the sum of the above core genome and the dispensable genome The dispensable genome contributes to the species diversity and probably provides functions that are not essential to its basic lifestyle but confer selective advantages including niche adaptation, antibiotic resistance, and the ability to colonize new hosts. The Pan-Genome tends to be much much larger than the Core Genome of a prokaryotic species The Pan-Genome Each gene can be classified into one of three groups: Core Genome (blue): the extended core genes, which include those that control translation, replication and energy homeostasis. ~250 gene families. Character genes (red): involved in adaptation to particular environmental niches, such as those that control photosynthesis or endosymbiosis. ~7,900 character gene families. Accessory genes (green): nearly limitless in size. These genes are often specific for a strain or serotype, and in many cases have no known function. Transformation and Transduction Transformation: when a prokaryotic cell takes up and incorporates foreign DNA from the surrounding environment Transduction: movement of genes between bacteria by bacteriophages (viruses that infect bacteria) Fig. 27-12 Transduction Phage DNA B + Conjugation 1 µm Recombination B + A B B Donor cell Recipient cell Recombinant cell Phage takes up host DNA (brown) Phage moves the DNA to a different host Conjugation is the process where genetic material is transferred between bacterial cells Sex pilus Sex pili allow cells to connect and pull together for DNA transfer A piece of DNA called the F factor is required for the production of sex pili The F factor can exist as a separate plasmid or as DNA within the bacterial chromosome 5

The F factor can exist as a separate plasmid or as DNA integrated within the bacterial chromosome Mating bridge F plasmid Bacterial chromosome Bacterial chromosome (a) Conjugation and transfer of an F plasmid Hfr cell Recombinant F bacterium The F Factor as a Plasmid Cells containing the F plasmid function as DNA donors during conjugation: they are able to construct the sex pilus Cells without the F factor function as DNA recipients during conjugation The F factor is transferable during conjugation F factor A F plasmid Bacterial chromosome A A A (b) Conjugation and transfer of part of an Hfr bacterial chromosome https://www.youtube.com/watch?v=etxkcsgu698 Mating bridge Bacterial chromosome (a) Conjugation and transfer of an F plasmid The F Factor in the Chromosome A cell with the F factor built into its chromosomes functions as a donor during conjugation The recipient becomes a recombinant bacterium, with DNA from two different cells R Plasmids and Antibiotic Resistance R plasmids: plasmids that carry genes that encode antibiotic resistance R-plasmids are typically transferred through conjugation, less so via transduction; difficult to treat bacteria with drugs as resistance alleles can be readily transferred Antibiotics select for bacteria with genes that are resistant to the antibiotics, and antibiotic resistant strains of bacteria are becoming more common Hfr cell Recombinant F bacterium F factor A A A A (b) Conjugation and transfer of part of an Hfr bacterial chromosome Hot spots for HGT Certain environments are conducive to promoting HGT; for instance, the animal gut environment thought to promote HGT Bacteria in the gut might cause inflammation which increases HGT HGT is assumed to be important in archaea, but less well studied Horizontal Gene Transfer Across Domains of Life Analysis of 40 animal genomes (e.g. Drosophila, C. elegans, primates) found that all the animal genomes acquired ~10s-100s active genes via HGT In the case of humans, 145 genes seemed to be acquired from other species, most from bacteria and protists, likely via HGT We do not know the mechanism of HGT of these events Crisp et al. 2015. Expression of multiple horizontally acquired genes is a hallmark of both vertebrate and invertebrate genomes. Genome Biology. 16:50 6

How would the following affect alleles frequencies? Or genotype frequencies? Selection Genetic Drift Inbreeding Genetic Recombination Random Mating Mutations Migration (Gene flow) Epigenetic modifications Concepts Mutation Recombination Inbreeding Genetic Drift Natural Selection Codon Bias Questions (1) What are the sources of genetic variation? (2) What are mutations and are they harmful or beneficial? (3) Why are there sex differences in mutation rate in the germ line? (4) What is sex and why did it evolve? (5) What are the costs and benefits of Sex? (6) What is the relationship between Genetic Variation and Natural Selection? 7