COVALENT BONDING: ORBITALS

Similar documents
Chapter 9. Covalent Bonding: Orbitals. Copyright 2017 Cengage Learning. All Rights Reserved.

Chapter 9. Covalent Bonding: Orbitals

Chapter 9. Covalent Bonding: Orbitals

Chapter 9 - Covalent Bonding: Orbitals

Chapter 4. Molecular Structure and Orbitals

Chapter 9. Molecular Geometry and Bonding Theories

Chapter 9. Chemical Bonding II: Molecular Geometry and Bonding Theories

Chemistry: The Central Science. Chapter 9: Molecular Geometry and Bonding Theory

Chapter 9: Molecular Geometries and Bonding Theories Learning Outcomes: Predict the three-dimensional shapes of molecules using the VSEPR model.

Chapter 9. Molecular Geometry and Bonding Theories

Molecular Orbitals. Chapter 9. Sigma bonding orbitals. Sigma bonding orbitals. Pi bonding orbitals. Sigma and pi bonds

Molecular Geometry and Bonding Theories. Chapter 9

Chapter 9: Molecular Geometry and Bonding Theories

Shapes of Molecules. Lewis structures are useful but don t allow prediction of the shape of a molecule.

Covalent Bonding: Orbitals

Ch. 9- Molecular Geometry and Bonding Theories

Chapter 9 Molecular Geometry and Bonding Theories

Molecular shape is determined by the number of bonds that form around individual atoms.

What Do Molecules Look Like?

Chapter 9. Molecular Geometry and Bonding Theories

CHAPTER 5: Bonding Theories - Explaining Molecular Geometry. Chapter Outline

Molecular Geometry. Dr. Williamson s Molecular Geometry Notes. VSEPR: Definition of Terms. Dr. V.M. Williamson Texas A & M University Student Version

Molecular Geometry. Dr. Williamson s Molecular Geometry Notes. VSEPR: Definition of Terms. VSEPR: Electronic Geometries VSEPR

CHEMISTRY. Chapter 10 Theories of Bonding and Structure. The Molecular Nature of Matter. Jespersen Brady Hyslop SIXTH EDITION

Chapter 10. VSEPR Model: Geometries

Hybridization of Orbitals

Chapter 10. Geometry

Lecture Presentation. Chapter 10 Chemical Bonding II: Molecular Shapes, Valence Bond Theory, and Molecular Orbital Theory

Covalent Compounds: Bonding Theories and Molecular Structure

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10

Chapter 10 Chemical Bonding II: Molecular Shapes, Valence Bond Theory, and Molecular Orbital Theory

Chapter 10. VSEPR Model: Geometries

Molecular Shape and Molecular Polarity. Molecular Shape and Molecular Polarity. Molecular Shape and Molecular Polarity

SHAPES OF MOLECULES (VSEPR MODEL)

Chapter 10 Chemical Bonding II

Chapter 10. Structure Determines Properties! Molecular Geometry. Chemical Bonding II

Chapter 8. Molecular Shapes. Valence Shell Electron Pair Repulsion Theory (VSEPR) What Determines the Shape of a Molecule?

Chapter 10 Theories of Covalent Bonding

Chapter 9 Molecular Geometry Valence Bond and Molecular Orbital Theory

Valence Bond Model and Hybridization

Chapter 9 Molecular Geometry and Bonding Theories

EXAM II Material. Part I Chemical Bonding I Lewis Theory Chapter 9 pages A. Drawing electron dot structures HOW TO:

Molecular Structure and Orbitals

Molecular shape is only discussed when there are three or more atoms connected (diatomic shape is obvious).

8.3 Bonding Theories > Chapter 8 Covalent Bonding. 8.3 Bonding Theories. 8.1 Molecular Compounds 8.2 The Nature of Covalent Bonding

4 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

Chapter 9. Covalent Bonding: Orbitals

Chapter 9. Molecular Geometries and Bonding Theories. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO

Chapter 9 Molecular Geometry and Bonding Theories

CHEMISTRY. Chapter 8 ADVANCED THEORIES OF COVALENT BONDING Kevin Kolack, Ph.D. The Cooper Union HW problems: 6, 7, 12, 21, 27, 29, 41, 47, 49

Covalent Bonding and Molecular Structures

CHEMISTRY - ZUMDAHL 2E CH.4 - MOLECULAR STRUCTURE AND ORBITALS.

1s atomic orbital 2s atomic orbital 2s atomic orbital (with node) 2px orbital 2py orbital 2pz orbital

Chapter 10: Chemical Bonding II. Bonding Theories

CHEMISTRY 112 LECTURE EXAM II Material

Chapter 9. Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory

Andrew Rosen *Note: If you can rotate a molecule to have one isomer equal to another, they are both the same

Chapter 9. Molecular Geometries and Bonding Theories. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO

Valence Bond Theory. Localized Electron Model. Hybridize the Orbitals! Overlap and Bonding. Atomic Orbitals are. mmmkay. Overlap and Bonding

Chapter 10: Chemical Bonding II: Molecular Shapes; VSEPR, Valence Bond and Molecular Orbital Theories

Chapter 14: Phenomena

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals

Name Date Class MOLECULAR COMPOUNDS. Distinguish molecular compounds from ionic compounds Identify the information a molecular formula provides

Shapes of Molecules and Hybridization

Valence Bond Theory - Description

UNIT III Chemical Bonding There are two basic approaches to chemical bonding based on the results of quantum mechanics. These are the Valence Bond

CHAPTER 9 COVALENT BONDING: ORBITALS. Questions

Covalent Bonding - Orbitals

Lecture 16 C1403 October 31, Molecular orbital theory: molecular orbitals and diatomic molecules

Chapter 16 Covalent Bonding

Chemical Bonding II. Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO theory

Advanced Theories of Covalent Bonding

Hybridization and Molecular Orbital (MO) Theory

For more info visit Chemical bond is the attractive force which holds various constituents together in a molecule.

Molecular Orbital Theory

CHEM 110 Exam 2 - Practice Test 1 - Solutions

Lecture 14 Chemistry 362 M. Darensbourg 2017 Spring term. Molecular orbitals for diatomics

Chapter 9. and Bonding Theories. Molecular Shapes. What Determines the Shape of a Molecule? 3/8/2013

Chapter 11 Answers. Practice Examples

Chapter 9 practice questions

Chapter Molecules are 3D. Shapes and Bonds. Chapter 9 1. Chemical Bonding and Molecular Structure

Activity Hybrid Atomic Orbitals

Covalent Bonds: overlap of orbitals σ-bond π-bond Molecular Orbitals

Periodic Trends. Homework: Lewis Theory. Elements of his theory:

AP CHEMISTRY: BONDING THEORIES REVIEW KEY p. 1

8.2 Hybrid Atomic Orbitals

Chapter 9. and Bonding Theories

Molecular Geometry and intermolecular forces. Unit 4 Chapter 9 and 11.2

GHW#3 Louisiana Tech University, Chemistry 281. POGIL exercise on Chapter 2. Covalent Bonding: VSEPR, VB and MO Theories. How and Why?

Ch 10 Chemical Bonding, Lewis Structures for Ionic & Covalent Compounds, and Predicting Shapes of Molecules

Unit Six --- Ionic and Covalent Bonds

Molecular Geometry and Chemical Bonding Theory

Subtopic 4.2 MOLECULAR SHAPE AND POLARITY

Chapter 18 Molecular orbitals and spectroscopy Conjugation of bonds and resonance structures

Chapters 9&10 Structure and Bonding Theories

CHEMISTRY - MCMURRY 7E CH.7 - COVALENT BONDING AND ELECTRON DOT STRUCTURES

16. NO 3, 5 + 3(6) + 1 = 24 e. 22. HCN, = 10 valence electrons

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals

14.1 Shapes of molecules and ions (HL)

Name Date Class MOLECULAR COMPOUNDS. Distinguish molecular compounds from ionic compounds Identify the information a molecular formula provides

Transcription:

COVALENT BONDING: ORBITALS The localized electron model views a molecule as a collection of atoms bound together by sharing electrons between their atomic orbitals. The arrangement of valence electrons is represented by the Lewis structure and the molecular geometry can be predicted from the VSEPR model. There are 2 problems with this. 1) using the 2p and the 2s orbitals from carbon in methane would result in 2 different types of bonds when they overlap with the 1s from Hydrogen. [three 2p/1s bonds and one 2s/2p bond] However, experiments show that methane has FOUR IDENTICAL bonds. Uh oh. 2) Since the 3 p orbitals occupy the x, y and z-axes, you would expect those overlaps of atomic orbitals to be at bond angles of 90. Darn those experiments! All 4 angles are 109.5. It s not that the localized electron model is wrong, it s just that carbon adopts a set of orbitals rather than its native 2s & 2p. THIS IS WHY THESE ARE MODELS/THEORIES rather than LAWS!! VALENCE BOND THEORY an extension of the LE model it s all about hybridization! Two atoms form a bond when both of the following conditions occur: 1. There is orbital overlap between two atoms. 2. A maximum of two electrons, of opposite spin, can be present in the overlapping orbitals.! Because of orbital overlap, the pair of electrons is found within a region influenced by both nuclei. Both electrons are attracted to both atomic nuclei and this leads to bonding.! As the extent of overlap increases, the strength of the bond increases. The electronic energy drops as the atoms approach each other but, increases when they become too close. This means there is an optimum distance, the observed bond distance, at which the total energy is at a minimum.! sigma (σ) bond--overlap of two s orbitals or an s and a p orbital or head-to-head p orbitals. Electron density of a sigma bond is greatest along the axis of the bond.! maximum overlap: forms the strongest possible bond, two atoms are arranged to give the greatest possible orbital overlap. Tricky with p orbitals since they are directional.! hybrid orbitals-- a blending of atomic orbitals to create orbitals of intermediate energy. Methane: all of the C-H bonds are 109.5 apart while p orbitals are only 90 apart. Pauling explained: The orbitals on the left are for a carbon atom [no bonding] Once the carbon atom begins to bond with say, H to keep it simple, the atomic orbitals HYBRIDIZE which changes their shape considerably! There s an energy payoff, else they wouldn t behave this way! leads to Rene McCormick, AP Strategies, Inc. 1

Ammonia also has sp 3 hybridization even though it has a lone pair. I find it helpful to think of electron pairs as sites of electron density that can be occupied by either a lone pair or a shared pair. If there are 4 sites then the 4 orbitals need to hybridize so use one s and three p s to make FOUR sp 3 [for lack of a better name] orbitals. [1 s +3 p = 4 sp 3 orbitals] MULTIPLE BONDING lowers the number of hybridizing orbitals Pi (π) bonds--come from the sideways overlap of p atomic orbitals; the region above and below the internuclear axis. NEVER occur without a sigma bond first!! may form only if unhybridized p orbitals remain on the bonded atoms! occur when sp or sp 2 hybridization is present on central atom NOT sp 3 hybridization.! Carbon often does this with N, O, P, and S since they have p orbitals! This is the formation of an sp 2 set of orbitals [3 orbitals formed, 3 sites, 3 letters!]. This molecule would contain a double bond like ethene. The molecule reserves a set of p s to form the π bond. leads to The set of p s that are unhybridized are not pictured here at left, they are hovering above and below this page. A different view, without the hydrogens, centering on the C atoms shows the unhybridized p orbitals that are making the sideways overlap necessary to create the double (π) bond. Here s the whole mess altogether: Carbon #1 Carbon #2 OVERLAPPING Rene McCormick, AP Strategies, Inc. 2 to form pi bond

! This is the formation of an sp set of orbitals [2 orbitals formed, 2 sites, 2 letters!]. This molecule would contain a triple bond like ethyne or the double-double arrangement in carbon dioxide. leads to The molecule reserves TWO sets of p s to form the 2 π -bonds. At right, is a picture of the 2 unhybridized p s on the C atom that is about to make a triple bond. The one labeled at the top is in the plane of this page, the other plain p is in a plane perpendicular to this page. Look at the CO 2 Lewis diagram. The carbon has 2 sites of electron density, each occupied by a double bond, and is therefore sp [2 sites, 2 letters] hybridized while the oxygens have 3 sites [2 lone pairs and a double bond]. The oxygen s have sp 2 hybridization [3 sites, 3 letters]. This should help: HYBRIDIZATION # OF HYBRID ORBITALS GEOMETRY EXAMPLE sp 2 Linear sp 2 3 Trigonal planar sp 3 4 Tetrahedral dsp 3 5 Trigonal bipyramidal d 2 sp 3 6 Octahedral Rene McCormick, AP Strategies, Inc. 3

Check out Benzene The sigma bond formations The pi bond formations Draw the Lewis structure for benzene: Rene McCormick, AP Strategies, Inc. 4

Exercise 1 The Localized Electron Model I Describe the bonding in the ammonia molecule using the localized electron model. tetrahedral, sp 3 hybrid Exercise 2 The Localized Electron Model II Describe the bonding in the N 2 molecule. linear, sp hybrid Exercise 3 The Localized Electron Model III Describe the bonding in the triiodide ion (I - 3 ). trigonal bipyramidal arrangement, e- pair geometry, linear molecular geometry central iodine is dsp 3 hybridized Exercise 9 The Localized Electron Model IV How is the xenon atom in XeF 4 hybridized? d 2 sp 3 hybridized Rene McCormick, AP Strategies, Inc. 5

Exercise 5 The Localized Electron Model V For each of the following molecules or ions, predict the hybridization of each atom, and describe the molecular structure. a. CO b. BF 4 - c. XeF 2 A: linear, sp hybridized B: tetrahedral, sp 3 hybridizied C: trigonal bipyramidal e - pair, Xe dsp 3, linear THE MOLECULAR ORBITAL MODEL Though the molecular orbital model will not be covered on the AP exam, I feel that students should be exposed to a little of this theory for several reasons. 1. Electrons are not always localized as in the VSEPR theory, therefore resonance must be added and explained as best possible. 2. Molecules containing unpaired electrons are not easily dealt with using the localized model. 3. Magnetism is easily described for molecules using the MO theory. ( Oxygen is paramagnetic which is unexplained by the localized electron model. ) 4. Bond energies are not easily related using the localized model. TERMS TO KNOW: Bonding molecular orbital - an orbital lower in energy than the atomic orbitals from which it is composed.(favors formation of molecule) Antibonding molecular orbital - an orbital higher in energy than the atomic orbitals from which it is composed. (favors separated atoms) represented by a * [The diagram at the top of the next page uses A for antibonding and B for bonding] Bond order - the difference between the number of bonding electrons and the number of antibonding electrons divided by two. Indicates bond strength. Homonuclear diatomic molecules - those composed of two identical atoms. Heteronuclear diatomic molecules - those composed of two different atoms Paramagnetism - causes the substance to be drawn into a magnetic field; associated with unpaired electrons. Diamagnetic - causes the substance to be repelled by the magnetic field; associated with paired electrons. General Energy Level Diagram for Filling Using the MO Theory 1s 2 1s 2 * 2s 2 2s 2 * ( 2p 2 x 2p 2 y )2p 2 (2p 2 x * 2p 2 y *) 2p 2 * Rene McCormick, AP Strategies, Inc. 6

If we assume that the molecular orbitals can be constructed from the atomic orbitals, the quantum mechanical equations result in two molecular orbitals MO 1 = 1s A + 1s B MO 2 = 1s A - 1s B and Let s start simple. 2 Hydrogen atoms. Where 1s A and 1s B represent the 1s orbitals from the two separated hydrogen atoms. This is actually a simple model to follow. Look at the diagram on the right, each H entered with its lone 1s electron. As they approach each other, their atomic orbitals [two of them] blend to form molecular orbitals [two of them no magic here]. One MO is of high energy and one MO is of low energy. Which will the electrons choose? The LOW, of course! The electrons occupy the lower energy level and thus a bond is formed. This diagram at left uses the symbols we want to use. Try this again with He: Since 4 electrons are involved, the first 2 get to be lazy and go to the low E state, the other 2 must occupy the higher energy state and cancel out the bond, therefore He 2 DOES NOT EXIST!! Now bond order can be redefined in this theory: Bond order = number of bonding electrons number of antibonding electrons 2 Rene McCormick, AP Strategies, Inc. 7

If the bond order is zero no bond! Shall we predict if Li 2 is possible? Li has its valence electrons in the 2s sublevel. Yes! It may also exist. What is it s bond order? Can Be 2 exist? Things get slightly more complicated when we leave Be and move to 2p General Energy Level Diagram for Filling Using the MO Theory 1s 2 1s 2 * 2s 2 2s 2 * ( 2p x 2 2p y 2 )2p 2 (2p x 2 * 2p y 2 *) 2p 2 * The filling order for p s is pi, pi, sigma all bonding, followed by pi, pi, sigma all antibonding. HUND S RULE AND PAULI EXCULSION PRINCIPLES APPLY!! Try to predict the configuration of B 2 Rene McCormick, AP Strategies, Inc. 8

One of the most useful parts of this model is its ability to accurately predict para- and diamagnetism as well as bond order. This device is used to test the paramagnetism of homonuclear samples. When the electromagnet is on, a paramagnetic substance is drawn down into it and appears heavier on the balance. B 2 is paramagnetic! That means that the pi orbitals are of LOWER energy than the sigma s and Hund s rule demands that the 2 electrons fill the 2 bonding pi orbitals singly first before paring. Will C 2 exist? Will it be para- or diamagnetic? Exercise: Write the appropriate energy diagram using the MO theory for the nitrogen molecule. Find the bond order for the molecule and indicate whether this substance is paramagnetic or diamagnetic. Rene McCormick, AP Strategies, Inc. 9

If you use the usual models to examine the paramagnetism of oxygen, you d say it was diamagnetic. The truth is that it is paramagnetic. If you pour liquid oxygen into the space between the poles of a strong horseshoe magnet, it says there until it boils away in the warm room! Rene McCormick, AP Strategies, Inc. 10

Exercise 6 For the species O 2, O 2 +, O 2 -, give the electron configuration and the bond order for each. Which has the strongest bond? Exercise 7 Use the molecular orbital model to predict the bond order and magnetism of each of the following molecules. a) Ne 2 b) P 2 This model also works in heteronuclear molecules. Exercise 8 Use the MO Model to predict the magnetism and bond order of the NO + and CN - ions. Rene McCormick, AP Strategies, Inc. 11