Video 3.1 Vijay Kumar and Ani Hsieh

Similar documents
Video 2.1a Vijay Kumar and Ani Hsieh

Video 1.1 Vijay Kumar and Ani Hsieh

Physical Dynamics (PHY-304)

Video 6.1 Vijay Kumar and Ani Hsieh

Dynamics. describe the relationship between the joint actuator torques and the motion of the structure important role for

In most robotic applications the goal is to find a multi-body dynamics description formulated

Physical Dynamics (SPA5304) Lecture Plan 2018

Structural Dynamics Lecture 4. Outline of Lecture 4. Multi-Degree-of-Freedom Systems. Formulation of Equations of Motions. Undamped Eigenvibrations.

Artificial Intelligence & Neuro Cognitive Systems Fakultät für Informatik. Robot Dynamics. Dr.-Ing. John Nassour J.

Advanced Dynamics. - Lecture 4 Lagrange Equations. Paolo Tiso Spring Semester 2017 ETH Zürich

REVIEW. Hamilton s principle. based on FW-18. Variational statement of mechanics: (for conservative forces) action Equivalent to Newton s laws!

Manipulator Dynamics 2. Instructor: Jacob Rosen Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA

ANALYTICAL MECHANICS. LOUIS N. HAND and JANET D. FINCH CAMBRIDGE UNIVERSITY PRESS

Introduction MEAM 535. What is MEAM 535? Audience. Advanced topics in dynamics

41514 Dynamics of Machinery

FINAL EXAM GROUND RULES

Chapter 3 Numerical Methods

Lecture Note 12: Dynamics of Open Chains: Lagrangian Formulation

(W: 12:05-1:50, 50-N202)

In this section of notes, we look at the calculation of forces and torques for a manipulator in two settings:

Multibody simulation

Lecture Schedule Week Date Lecture (M: 2:05p-3:50, 50-N202)

Constrained motion and generalized coordinates

DYNAMICS OF SERIAL ROBOTIC MANIPULATORS

B.Sc. (Semester - 5) Subject: Physics Course: US05CPHY01 Classical Mechanics

INDEX 363. Cartesian coordinates 19,20,42, 67, 83 Cartesian tensors 84, 87, 226

Differential Kinematics

Euler-Lagrange's equations in several variables

ME451 Kinematics and Dynamics of Machine Systems

. D CR Nomenclature D 1

Physics 106a, Caltech 4 December, Lecture 18: Examples on Rigid Body Dynamics. Rotating rectangle. Heavy symmetric top

Fundamental principles

Approach based on Cartesian coordinates

Inverse differential kinematics Statics and force transformations

Contents. Dynamics and control of mechanical systems. Focus on

Robot Dynamics II: Trajectories & Motion

AN INTRODUCTION TO LAGRANGE EQUATIONS. Professor J. Kim Vandiver October 28, 2016

112 Dynamics. Example 5-3

Dynamics. Basilio Bona. Semester 1, DAUIN Politecnico di Torino. B. Bona (DAUIN) Dynamics Semester 1, / 18

Chapter 4 Statics and dynamics of rigid bodies

Torque and Rotation Lecture 7

Dynamics and control of mechanical systems

D Alembert s principle of virtual work

Classical Mechanics and Electrodynamics

Nonholonomic Constraints Examples

STATICS Chapter 1 Introductory Concepts

Classical Mechanics and Electrodynamics

Lecture 37: Principal Axes, Translations, and Eulerian Angles

PHYS 705: Classical Mechanics. Euler s Equations

Rigid bodies - general theory

Chapter 5. . Dynamics. 5.1 Introduction

Case Study: The Pelican Prototype Robot

Analytical Dynamics: Lagrange s Equation and its Application A Brief Introduction

General Theoretical Concepts Related to Multibody Dynamics

Control of Robotic Manipulators

Generalized Coordinates, Lagrangians

Multibody simulation

q 1 F m d p q 2 Figure 1: An automated crane with the relevant kinematic and dynamic definitions.

Problem Goldstein 2-12

Generalized coordinates and constraints

Tensor Analysis in Euclidean Space

Exercise 1b: Differential Kinematics of the ABB IRB 120

Advanced Vibrations. Elements of Analytical Dynamics. By: H. Ahmadian Lecture One

Introduction to Robotics

202 Index. failure, 26 field equation, 122 force, 1

Part of the advantage : Constraint forces do no virtual. work under a set of virtual displacements compatible

Vectors in Three Dimensions and Transformations

06. Lagrangian Mechanics II

Advanced mechanics. Physics 302

AB-267 DYNAMICS & CONTROL OF FLEXIBLE AIRCRAFT

inertia of a body, principal axes of inertia, invariants of an inertia tensor, and inertia triangle inequalities are illustrated and discussed.

Choice of Riemannian Metrics for Rigid Body Kinematics

ME101: Engineering Mechanics ( )

4.1 Introduction Issues of applied dynamics CHAPTER 4. DYNAMICS 191

Review for Final. elementary mechanics. Lagrangian and Hamiltonian Dynamics. oscillations

Elastic Multibody Dynamics

Structural Dynamics A Graduate Course in Aerospace Engineering

Free Vibration of Single-Degree-of-Freedom (SDOF) Systems

LAGRANGIAN AND HAMILTONIAN

3-D Kinetics of Rigid Bodies

COMPLETE ALL ROUGH WORKINGS IN THE ANSWER BOOK AND CROSS THROUGH ANY WORK WHICH IS NOT TO BE ASSESSED.

Video 8.1 Vijay Kumar. Property of University of Pennsylvania, Vijay Kumar

Lecture 41: Highlights

MSMS Basilio Bona DAUIN PoliTo

Translational and Rotational Dynamics!

Physics 5153 Classical Mechanics. Canonical Transformations-1

Final Exam Solution Dynamics :45 12:15. Problem 1 Bateau

Solving high order nonholonomic systems using Gibbs-Appell method

PHYSICS 110A : CLASSICAL MECHANICS

Analytical Mechanics for Relativity and Quantum Mechanics

Manipulator Dynamics (1) Read Chapter 6

Dynamics and control of mechanical systems

September 21, :43pm Holm Vol 2 WSPC/Book Trim Size for 9in by 6in

Dynamics. Dynamics of mechanical particle and particle systems (many body systems)

4.1 Important Notes on Notation

ME751 Advanced Computational Multibody Dynamics

1 Hamiltonian formalism

Lecture 9: Eigenvalues and Eigenvectors in Classical Mechanics (See Section 3.12 in Boas)

Physics 6010, Fall 2016 Constraints and Lagrange Multipliers. Relevant Sections in Text:

Generalized Forces. Hamilton Principle. Lagrange s Equations

Transcription:

Video 3.1 Vijay Kumar and Ani Hsieh Robo3x-1.3 1

Dynamics of Robot Arms Vijay Kumar and Ani Hsieh University of Pennsylvania Robo3x-1.3 2

Lagrange s Equation of Motion Lagrangian Kinetic Energy Potential Energy 1-DOF n-dof Generalized Coordinates Generalized Forces Robo3x-1.3 3

Motion of Systems of Particles Center of Mass a 2 O P i m i r OPi a 1 f i a 3 Newton s 2 nd Law Robo3x-1.3 4

Rigid Body as a System of Particles F i P Constraints P i Pj F j r OPi r OPj Holonomic Constraints Constraints on position O Robo3x-1.3 5

Holonomic Constraints Given a system with k particles and l holonomic constraints Ø DOF = k l Ø n = k l generalized coordinates Ø Ø are independent Robo3x-1.3 6

Types of Displacements f i P Actual P i Pj f j Possible r OPi O r OPj Virtual (or Admissible) Robo3x-1.3 7

Video 3.2 Vijay Kumar and Ani Hsieh Robo3x-1.3 8

Classification of Forces Newtonian Lagrangian Internal vs External Constraint vs Applied Applied Forces: Any forces that are not constraint forces Robo3x-1.3 9

D Alembert s Principle The totality of the constraint forces may be disregarded in the dynamics problem for a system of particles Robo3x-1.3 10

D Alembert s & Virtual Displacements C i Constraint Surface TC i q TC i Tangent space of C i C i Virtual Displacements satisfy: 1. 2. Eqn of Motion Robo3x-1.3 11

Intuition for D Alembert s (1) From Newton s 2 nd Law Robo3x-1.3 12

Intuition for D Alembert s (2) By definition and And, b/c motion is constrained and Robo3x-1.3 13

D Alembert s Principle Alternative Form: 1. Tangent component of are the only ones to contribute to the particle s acceleration 2. Normal components of are in equilibrium w/ Robo3x-1.3 14

Video 3.3 Vijay Kumar and Ani Hsieh Robo3x-1.3 15

Principle of Virtual Work The totality of the constraint forces does no virtual work. Virtual Work By D Alembert s Principle Robo3x-1.3 16

Lagrange s EOM for Systems of Particles (1) System w/ k particles, l constraints, n = k-l DOF Virtual Work j th generalized force Robo3x-1.3 17

Lagrange s EOM for Systems of Particles (2) Note: 1) 2) Robo3x-1.3 18

Lagrange s EOM for Systems of Particles (3) Kinetic Energy Robo3x-1.3 19

Lagrange s EOM for Systems of Particles (4) And if - Potential Energy - Generalized Applied Forces Robo3x-1.3 20

Summary - vector in 3D Virtual work - component in the direction of DO virtual work vs. DO NOT Robo3x-1.3 21

Video 3.4 Vijay Kumar and Ani Hsieh Robo3x-1.3 22

Potential Energy Robo3x-1.3 23

Kinetic Energy Kinetic energy of a rigid body consists of two parts Translational Rotational Inertia Tensor Robo3x-1.3 24

Inertia Tensor Principal Cross Moments Products of Inertia 3x3 matrix Symmetric matrix Robo3x-1.3 25

Let denote the mass density Principal Moments of Inertia Cross Products of Inertia Robo3x-1.3 26

Remarks Inertia tensor depends on reference point coordinate frame VS Robo3x-1.3 27

Example Compute the inertia tensor of the block with the given dimensions. Assume is constant. Robo3x-1.3 28

Video 3.5 Vijay Kumar and Ani Hsieh Robo3x-1.3 29

Potential Energy for n-link Robot 1-Link Robot n-link Robot Robo3x-1.3 30

Kinetic Energy for n-link Robot (1) 1-Link Robot n-link Robot Robo3x-1.3 31

Review of the Jacobian q R $ f(q) R & f: R $ R & J = f q. δf q $ = f. f. q. q $ f & f & q. q $ J ij = f 5 q 6 Robo3x-1.3 32

Kinetic Energy of n-link Robot (2) Robo3x-1.3 33

Euler-Lagrange EOM for n-link Robot (1) Assumptions: is quadratic function of and independent of Robo3x-1.3 34

Euler-Lagrange EOM for n-link Robot (2) Robo3x-1.3 35

Euler-Lagrange EOM for n-link Robot (3) Robo3x-1.3 36

Euler-Lagrange EOM for n-link Robot (4) Christoffel Symbols In matrix form Robo3x-1.3 37

Skew Symmetry Robo3x-1.3 38

Passivity Power = Force x Velocity Energy dissipated over finite time is bounded Important for Controls Robo3x-1.3 39

Bounds on D(q) - eigenvalue of Robo3x-1.3 40

Linearity in the Parameters System Parameters: Mass, moments of inertia, lengths, etc. Robo3x-1.3 41

2-Link Cartesian Manipulator (1) q 2 q 1 y 0 x 0 Robo3x-1.3 42

2-Link Cartesian Manipulator (2) q 2 q 1 y 0 x 0 Robo3x-1.3 43

2-Link Cartesian Manipulator (3) q 2 q 1 x 0 y 0 Robo3x-1.3 44

2-Link Cartesian Manipulator (4) q 2 q 1 y 0 x 0 Robo3x-1.3 45

Video 3.6 Vijay Kumar and Ani Hsieh Robo3x-1.3 46

2-Link Planar Manipulator (1) System parameters: Link lengths Link center of mass location Link masses y 0 q 2 y 1 P x 1 y 2 Q O q 1 x 0 x 2 Robo3x-1.3 47

2-Link Planar Manipulator (2) Recall y 0 q 2 y 1 P x 1 y 2 Q O q 1 x 0 x 2 Robo3x-1.3 48

2-Link Planar Manipulator (3) y 1 x 1 y 0 q 2 P y 2 Q O q 1 x 0 x 2 Robo3x-1.3 49

2-Link Planar Manipulator (4) Kinetic Energy = Translational + Rotational Translational y 1 x 1 y 0 q 2 P y 2 Q O q 1 x 0 x 2 Robo3x-1.3 50

2-Link Planar Manipulator (5) Kinetic Energy = Translational + Rotational Rotational y 1 x 1 y 0 q 2 P y 2 Q O q 1 x 0 x 2 Robo3x-1.3 51

2-Link Planar Manipulator (6) Kinetic Energy = Translational + Rotational Rotational y 1 x 1 y 0 q 2 P y 2 Q O q 1 x 0 x 2 Robo3x-1.3 52

2-Link Planar Manipulator (7) Kinetic Energy = Translational + Rotational Rotational y 1 x 1 y 0 q 2 P y 2 Q O q 1 x 0 x 2 Robo3x-1.3 53

Video 3.7 Vijay Kumar and Ani Hsieh Robo3x-1.3 54

2-Link Planar Manipulator (8) Kinetic Energy = Translational + Rotational Rotational y 1 x 1 y 0 q 2 P y 2 Q O q 1 x 0 x 2 Robo3x-1.3 55

2-Link Planar Manipulator (6) y 1 x 1 y 0 q 2 P y 2 Q O q 1 x 0 x 2 Robo3x-1.3 56

2-Link Planar Manipulator (7) Christoffel Symbols Robo3x-1.3 57

2-Link Planar Manipulator (8) Potential Energy y 1 x 1 y 0 q 2 P y 2 Q O q 1 x 0 x 2 Robo3x-1.3 58

2-Link Planar Manipulator (9) Putting it all together y 1 x 1 1 y 0 q 2 P y 2 Q O q 1 x 0 x 2 Robo3x-1.3 59

Newton-Euler vs. Euler-Lagrange Ø N-E: Newton s Laws of Motion Ø N-E: Explicit accounting for constraints Ø N-E: Explicit accounting of the reference frame Ø E-L: D Alembert s Principle + Principle of Virtual Work Ø E-L: Invariant under point transformations Robo3x-1.3 60

Summary Lagrangian D Alembert s Principle + Principle of Virtual Work Euler-Lagrange EOM Properties of the E-L EOM Examples: 2 Link Planar Manipulators Robo3x-1.3 61