Bragg spectroscopy from CORONAS-F

Similar documents
Date of delivery: 5 May 2016 Journal and vol/article ref: IAU Number of pages (not including this page): 3

High-temperature solar flare plasma behaviour from crystal spectrometer observations

Solar X-rays from 0.3 A.U.: the CherniX Bragg Spectrometer on Interhelioprobe

Spectroscopic analysis of the solar flare event on 2002 August 3 with the use of RHESSI and RESIK data

Janusz Sylwester & Barbara Sylwester Space Research Centre Polish Academy of Sciences, Wrocław, Poland

Date of delivery: 5 May 2016 Journal and vol/article ref: IAU Number of pages (not including this page): 3

DETERMINATION OF HOT PLASMA CHARACTERISTICS FROM TRACE IMAGES. S. Gburek 1 and T. Mrozek 2

arxiv: v1 [astro-ph.sr] 14 Jan 2010

Your article is published under the Creative Commons Attribution license which allows users to read, copy, distribute and make derivative works, as

SOLAR SOFT X- RAY EXPERIMENTS UNDER DEVELOPMENT AT THE SOLAR PHYSICS DIVISION OF SPACE RESEARCH CENTRE POLISH ACADEMY OF SCIENCES WROCLAW

Discovery of Emission Lines in the X-ray Spectrum of the Perseus Cluster

Overview of observational methods and instruments: spectrographs. Sergei Shestov

Date of delivery: 5 May 2016 Journal and vol/article ref: IAU Number of pages (not including this page): 4

arxiv: v1 [astro-ph.sr] 3 Mar 2015

PRESENT STATUS OF RESEARCH AT THE WROCLAW SOLAR PHYSICS DIVISION OF SPACE RESEARCH CENTRE PAS. Janusz Sylwester

J. Sylwester, B. Sylwester, Ken Phillips b, A. Kępa

COMMON SPHINX AND RHESSI OBSERVATIONS OF

AIA DATA ANALYSIS OVERVIEW OF THE AIA INSTRUMENT

Soft X-ray polarimeter-spectrometer SOLPEX

Supporting Calculations for NASA s IRIS Mission. I. Overview

LINE INTENSITY RATIOS IN THE EIS RANGE SENSITIVE TO ELECTRON DENSITIES IN 10 7 K PLASMAS

DETERMINATION OF THE FORMATION TEMPERATURE OF Si IV IN THE SOLAR TRANSITION REGION

Solar-B. Report from Kyoto 8-11 Nov Meeting organized by K. Shibata Kwasan and Hida Observatories of Kyoto University

Common SphinX & RHESSI observations of solar flares

Density Diagnostics for EIS

Post CME events: cool jets and current sheet evolution

A benchmark study for CHIANTI based on RESIK solar flare spectra ABSTRACT

arxiv: v1 [astro-ph] 28 Oct 2008

2 The solar atmosphere

Temperature Reconstruction from SDO:AIA Filter Images

TRACE DOWNFLOWS AND ENERGY RELEASE

Using This Flip Chart

Solar Energetic Particles measured by AMS-02

ENERGY RELEASE DURING SLOW LONG DURATION FLARES

Dynamic 10 MK plasma structures observed in monochromatic full-sun images by the SPIRIT spectroheliograph on the CORONAS-F mission

arxiv:astro-ph/ v1 28 Feb 2003

THE X-RAY LINE FEATURE AT 3.5 kev IN GALAXY CLUSTER SPECTRA

A STUDY OF TRANSITION REGION AND CORONAL DOPPLER SHIFTS IN A SOLAR CORONAL HOLE. M. D. Popescu 1,2 and J. G. Doyle 1

The Sun s Dynamic Atmosphere

pre Proposal in response to the 2010 call for a medium-size mission opportunity in ESA s science programme for a launch in 2022.

Possible stereoscopic Hard X-ray observations with STIX and SORENTO instruments

arxiv: v1 [astro-ph.sr] 19 Sep 2011

Recent Highlights on Solar Coronal Abundances from Hinode

HOMEWORK - Chapter 4 Spectroscopy

Solar UV Spectroscopy and Coronagraphy

Matthew Lewis. Final Report

Monitoring solar energetic particles with ESA SREM units

Downflow as a Reconnection Outflow

Spectral signatures of the impulsive energy release in SMM BCS spectra

Multi-wavelength VLA and Spacecraft Observations of Evolving Coronal Structures Outside Flares

SPECTRAL ATLAS OF X-RAY LINES EMITTED DURING SOLAR FLARES BASED ON CHIANTI

A Survey of Spacecraft Charging Events on the DMSP Spacecraft in LEO

Physics 343 Lecture # 5: Sun, Stars, and Planets; Bayesian analysis

Emission lines observed with Hinode/EIS

Study of Electron Energy and Angular Distributions and Calculations of X-ray, EUV Line Flux and Rise Times

The Magnetic Sun. CESAR s Booklet

Measurement of Accelerated Particles at the Sun

The Excitation Mechanism of [Fe XIV] 5303 Å Line in the Inner Regions of Solar Corona

Guidepost. Chapter 08 The Sun 10/12/2015. General Properties. The Photosphere. Granulation. Energy Transport in the Photosphere.

CHIANTI: an atomic database for emission lines

(Astro)Physics 343 Lecture # 5: Sun, Stars, and Planets; Fourier Transforms

Why Go To Space? Leon Golub, SAO BACC, 27 March 2006

Solar Physics with Radio Observations, Proceedings of Nobeyama Symposium 1998, NRO Report 479. Flare Loop Geometry. Nariaki Nitta

X-ray Imaging & Spectral Statistics of Small Solar Flares Observed with RHESSI

The influence of the global atmospheric properties on the detection of UHECR by EUSO on board of the ISS

X-ray observations of Solar Flares. Marina Battaglia Fachhochschule Nordwestschweiz (FHNW)

Physics 343 Lecture # 5: Sun, stars, and planets; (more) statistics

OUTLINE: P. Kotrč (1), P. Heinzel (1) and O. Procházka (2)

arxiv:astro-ph/ v1 17 Dec 2001

Characteristics of the Re-calculated Yohkoh/SXT Temperature Response

ASTR-1010: Astronomy I Course Notes Section IV

Stars, Galaxies & the Universe Announcements. Stars, Galaxies & the Universe Observing Highlights. Stars, Galaxies & the Universe Lecture Outline

arxiv: v1 [astro-ph.sr] 2 Sep 2013

ASTR-1020: Astronomy II Course Lecture Notes Section III

Exploring the Solar Wind with Ultraviolet Light

Internal Charging Hazards in Near-Earth Space during Solar Cycle 24 Maximum: Van Allen Probes Measurements

Plumes as seen in the Ultraviolet

Hinode: ANewSolar Observatory in Space

EUV Emission Lines and Diagnostics Observed with Hinode/EIS

Space Physics Questions CfE

High energy particles from the Sun. Arto Sandroos Sun-Earth connections

Infrared Earth Horizon Sensors for CubeSat Attitude Determination

ILWS Italian SpaceAgency (ASI) Contribution

Prentice Hall EARTH SCIENCE

PHYS 160 Astronomy Test #2 Fall 2017 Version A

Toward Interplanetary Space Weather: Strategies for Manned Missions to Mars

CHARACTERISTICS OF SOLAR FLARE DOPPLER-SHIFT OSCILLATIONS OBSERVED WITH THE BRAGG CRYSTAL SPECTROMETER ON YOHKOH

and D. E. Innes and W. Curdt

Investigations of Radioactive Contamination of Near-Earth Space

APAS Laboratory { PAGE } Spectroscopy SPECTROSCOPY

Spectroscopy for planetary upper atmospheres きょくたん

Chapter 4 Spectroscopy

Herschel and Planck: ESA s New Astronomy Missions an introduction. Martin Kessler Schloss Braunshardt 19/03/2009

Citation for published version (APA): Wang, Y. (2018). Disc reflection in low-mass X-ray binaries. [Groningen]: Rijksuniversiteit Groningen.

Solar Cycle 24 Variability Observed by Aura OMI Matthew DeLand and Sergey Marchenko Science Systems and Applications, Inc. (SSAI)

FAR-ULTRAVIOLET STELLAR PHOTOMETRY: FIELDS IN SAGITTARIUS AND SCORPIUS

Spectroscopic Diagnostics of the Solar Coronal Plasma

Solar Orbiter/SPICE: composition studies

ASPIICS: a Giant Solar Coronagraph onboard the PROBA-3 Mission

Presentation by Indian Delegation. to 49 th STSC UNCOPUOS. February 2012 Vienna

Transcription:

Multi-Wavelength Investigations of Solar Activity Proceedings IAU Symposium No. 223, 2004 c 2004 International Astronomical Union A.V. Stepanov, E.E. Benevolenskaya & A.G. Kosovichev, eds. DOI: 10.1017/S1743921304006337 Bragg spectroscopy from CORONAS-F J. Sylwester Space Research Centre, Polish Academy of Sciences, Wroclaw ul. Kopernika 11, Poland email: js@cbk.pan.wroc.pl Abstract. There are dozen instruments successfully operating aboard the solar satellite CORONAS- F, which was launched in the summer of 2001. Among them are two (Polish-led) Bragg crystal spectrometers RESIK anddiogeness recordingsolar flareandactive region spectra. Ashort description of the CORONAS-F satellite operation is presented together with that of the two Polish spectrometers, stressing their unique characteristics. The average spectra have been derived and shown here, covering the wavelength range between 3 Åand7Å.Futurestepsinthe analysis of the large database collected are outlined. 1. Introduction In the past 40 years it has become clear that progress in understanding the mechanism of coronal energy release can be obtained using data fromspectrometers operating in the soft X-ray region. These observations provide valuable information about the temperature, ionization state, nonthermal and directed plasma motions. Among the spectrometers used in this spectral range the scanning, flat crystal spectrometers on the early NASA Orbiting Solar Observatories, the U.S. Navy P78-1 satellite, NASA s Solar Maximum Mission (SMM: the X-ray Polychromator/Flat Crystal Spectrometer), and the Japanese Hinotori spacecraft contributed the most to our understanding of the spectral variability. However, because of the length of time needed to scan particular portions of the X-ray spectrum, critical phases of flares were often missed with these spectrometers. Curved crystal spectrometers like the SMM Bent Crystal Spectrometer and the Bragg Crystal Spectrometer (BCS) on the Japanese Yohkoh spacecraft have an important advantage in this respect since they are designed to take complete spectra, generally over limited wavelength bands, over time intervals of onlya few seconds. With strong emission lines like the resonance lines of highly ionized Ca and Fe, formed at high temperatures, spectral changes and thus information about physical conditions during the rapid development of particular flares can be followed (Antonucci, 1989). The analysis of results obtained from these earlier spectroscopic solar missions led us to the idea of verifying,this time in absolute terms, the determinations of Doppler shifts observed early in flares. We tested in the sounding rocket flight (Vertical-11, 1983) the concept of a new type of scanning Bragg X-ray spectrometer so called Dopplerometer and decided, following its success to devise a satellite version of this instrument called Diogeness (Sylwester &Farnik,1990). Diogenes flew oncoronas-i,however, themission ended before really big flares took place and no useful spectra were recorded. On CORONAS-F we were more successful and acquired many spectra as reported below. In preparing our programme of experimental spectroscopic studies of the corona, we have noticed that large gaps are still present in detailed observations of solar spectra in the soft X-range, below 7 Å. Therefore we decided to devise a new spectrometer intended to cover this spectral region with observations in a systematic way. In collaboration with leading groups from Naval ResearchLaboratory, USA (NRL), Mullard Space 409

410 J. Sylwester Figure 1. A composite showing the Cyclone 3 rocket booster which lifted the CORONAS-F satellite on 31 June 2001. In the right panel, the satellite orbit is plotted over the map showing locations of increased orbital background. The map is constructed based on the data from the PIN particle sensors placed within RESIK spectrometer. Science Laboratory (MSSL)andRutherford-AppletonLaboratory (RAL, bothfromuk) we constructed REntgenovsky Spektrometr s Izognutymi Kristalami (RESIK), the bent crystal spectrometer, described in details bysylwester et al. (2004). Both Diogeness and RESIK have been launched aboard the Russian CORONAS-F solar spacecraft on 31 July 2001 (Sylwester & Kordylewski, 2002). In this paper we show the average spectra observed from these spectrometers. The spectra shown include yet unobserved regions. 2. CORONAS-F satellite The CORONAS-F spacecraft is the second of two Russian space observatories devoted to solar and magnetospheric physics, designed to be operational duringthe 23rd solar cycle. Its primary objectives are the study of solar global oscillations, variations in the solar ultraviolet radiation, andflare andactive region X-ray,gamma-ray, andparticle emission. Except Polish spectrometers which results are presented here, there are dozen of Russian instruments, some of them presented in more details also in the other contributions of the present Volume. The CORONAS-F spacecraft is in a near-circular orbit with an altitude ranging from 501 km and 549 km, with an orbital plane inclined at 82.5 to the equator, and orbital period of 95 minutes. The near-polar orbit allows periods of uninterrupted observations of the Sun for up to about 20 days: the longest satellite night lasts 35 minutes. Passages through the Earth s radiation belts require most X-ray instruments to be turned off in order to secure their health; these include passages through the South Atlantic Anomaly (SAA) as well as the auroral oval (AO) regions near the magnetic poles. In figure 1, the satellite orbit is plotted over the Earth map, with the regions of enhanced particle background indicated. 3. Diogeness spectra Diogeness is the scanning flatcrystal spectrometer. The scanningrange covers 140 arcmin. Details concerning the crystal selection and wavelength ranges are given in table 1. The spectrometer is composed of four crystals. Two of the crystals used are identical quartz mounted in the so-called Dopplerometer configuration (figure 5) back to back.

Bragg spectroscopy from CORONAS-F 411 Figure 2. Diogeness average normalized (to maximum) spectrum in the range covered by channels Nos. 1 and 4. Logarithmic scaling is used on the vertical axis in order to bring-up weaker spectral structures. Earlier results (gray area) obtained from the P78-1 experiment (Doschek, Feldman & Seely, 1985) are merged using the overlapping part of the continuum as a common reference. This merging allows to see in one piece the entire spectral range covering the Ca xx Lyα region as well as the Ca xix He-like triplet with their numerous satellite lines. Channel 1 Channel 2 Channel 3 Channel 4 Crystal Quartz ADP Beryl Quartz plane 10 11 111 10 10 10 11 2d spacing [Å] 6.69 10.57 15.96 6.69 Wavelength range [Å] 3.14 3.39 4.98 5.37 6.11 6.73 2.96 3.21 Principal lines in range Ca xix S xvi Si xiii Ca xix Table 1. Characteristics of Diogeness spectrometer Therefore the wavelength scanning is taking place in the opposite sense. Such arrangement of the crystals allows for precise relative and absolute measurements of Doppler shifts of selected X-ray lines. For plasma at rest, the maxima of lines scanned are being measured approximately at the same instant. Ifany radial motions are present, the lines are observed off-set in time. The off-set is directly related to the plasma radial velocity, independent ofthe position of the flare on the solar disk. The observed widths of spectral lines (figures 2, 3 & 4) reflect mostly the intrinsic line widths (thermal and non-thermal broadening) since the instrumental rocking curves widths are much smaller. Since the four crystal detector sections are equipped with a small proportional detector windows (0.3 cm 2 area) covered with Be 130 µm filter, only larger flares (above C5 GOES class) provide spectral signal above background.even in the strongest X-class flares, the detectors didnot get saturated. Hundredsof spectra fromparticularlywell observed X5.3 flare

412 J. Sylwester Figure 3. Diogeness average normalized (to maximum) spectra in the range covered by channel No. 2. Logarithmic scaling is used on the vertical axis in order to bring-up weaker spectral structures. The spectrum in the vicinity of S xv He-like ion triplet is seen in detail as well as the Si xiv Lyα region with their numerous satellite lines. The two overlapping lines represent spectra as averaged from the left and the right scans respectively. on 25 August 2001 seen by Diogeness include strong emission lines of highly ionized Si, S,and Ca atoms as well as many satellite and subordinate lines. In figures 2,3 and 4 we presentaverage spectra recorded for this X5.3 flare. The time averaging extends over the rise, maximum and decay phases with each scanned spectrum taken with equal weight. The averaging allows to see combined spectral features of the hotter (rise andmaximum) and cooler plasmas (during flare decay) together. Averaged spectra from so-called left and right scans (in which the scanning took place in the opposite wavelength sense) we plot in logarithmic scale on-top each other. The differences between the left and right averaged spectra are usually so small that the separation of lines is mostly undistinguishable. We are confident of the physical significance of even the weakest features seen, provided the two profiles match. In figure 2, we supplement the Diogeness spectra with those measured earlier by the NRL group (Doschek, Feldman, & Seely, 1985). Besides the strongest He-like triplet lines, Diogeness measures also the other lines important for plasma diagnostics. One of the most interesting is the Lyβ line of Si XIV ion at 5.216 Å (figure 3). As this line is mostly formed in the hottest regions of the flare, its intensity is observed to fall rapidlyduringthe decay (Siarkowski et al., 2002). Several features seen on the presented spectra are observed for the first time. Their identification is still tentative. As concerns the results coming from the Dopplerometer section, with all the satellite drift motions and the other instrumental effects found unimportant (Plocieniak et al., 2002), the relative observed shifts of the line positions in respect to the bi-sector plane have been interpreted as a consequence of the Doppler effect. The results are plotted in figure 5 for the X5.3 flare on 25 August 2001. The velocity determinations have been performed independently from the shifts observed for the resonance lines and blends of

Bragg spectroscopy from CORONAS-F 413 Figure 4. Diogeness average normalized (to maximum) spectra in the range covered by channel No. 3. Logarithmic scaling is used on the vertical axis in order to bring-up weaker spectral structures. The spectrum in the vicinity of Si xiii He-like ion triplet is seen in detail. The two overlapping lines represent spectra as averaged from left and right scans respectively. forbidden with satellite lines of Ca xix (lines w andz+j respectively in figure 2). It is seen that these independent determinations compare well to the level of the uncertainty of velocity determinations (few km/s). This agreement provides strong argument in favour that for the observed flare, the entire X-ray spectra were Doppler shifted by 100 km/s for Ca xix ion abundant at T>15 MK. Similar pattern of shifts have been observed for cooler plasma contributing to S xv and Si xiii ions line emission (Plocieniak et al., 2002). 4. RESIK spectra RESIK is the bent crystal spectrometer recording all wavelengths at the same instant in four spectral channels. Details concerning the crystal used and the spectral coverage are given in table 2. The observed widths of spectral lines (figures 6 & 7) reflect the instrumental line widths as the spectral bin has to be wide enough in order to cover the large spectral range selected. Fulldescription of RESIKinstrument is given in Sylwester etal., (2004). It is possible to observe with RESIK in higher order of reflections. In figure 6, we show examples of the spectra collected in individual contiguous time intervals in the four spectral channels (first and third order reflections) before (as recorded) and after the reduction to the absolute units. RESIK primary wavelength coverage, 3.3 Å 6.1 Å, has been very little explored by previous solar spacecraft. Spectra from solar flares seen by RESIK include strong emission lines of highly ionized Si, S, and Ar atoms, together with lines from the low-abundance, odd-z elements K and Cl. Some of these lines are also seen in the spectra of brighter, non-flaring active regions and quiet Sun. Several spectral features have been observed for the first time in solar X-ray spectra. In figure 7

414 J. Sylwester Figure 5. Left: The scheme of Dopplerometer configuration adopted in the experiment. Bi-sector plane of the crystal pair #1 and #4 (dotted line) points momentarily towards the source (flare). Crystals are fixed mechanically at the exact angle of 2Θ. By rotating fixed crystal section back and forward, the Bragg-reflected spectra in the vicinity of strong lines are measured by a pair of double proportional counters. In the ideal case of perfect co-alignment and for thesource plasma being at rest, the line centres are recorded in channels #1 and #4 at the very same time during the scans performed in the opposite wavelength sense. Any radial motions of the hot flaring plasma will displace (in time) the relative position of lines. The displacement is proportional to the line Doppler shift andis independent ofthe position ofthe source (flare) onthe disc and/or the relative pointing, provided they are stable. Right: Velocities determined from X-ray line shifts observed by Diogeness. Determinations for Ca w and Ca z+j line are superimposed. A high blue-shift is observed early in flare. The shifts of entire spectra are of similar value in all lines measured. As the Ca w line is not badly blended (as is the case of the forbidden line) the uncertainties of velocity determinations are few km/s only for this line. Channel 1 Channel 2 Channel 3 Channel 4 Crystal Si Si Quartz Quartz plane 111 111 10 10 10 10 2d spacing [Å] 6.27 6.27 8.51 8.51 bend radius [cm] 110.0 100.0 145.0 52.5 Wavelength range a [Å] 3.40 3.80 3.83 4.27 4.35 4.86 5.00 6.05 resolution [må] 8 9 12 17 Dispersion [må/bin] 2.49 2.28 2.85 4.99 Principal lines in range Ar xviii, Arxvii, Sxvi Sxv,Sixiv, K xviii S xv Si xiii a Nominal wavelength ranges are those recorded always Table 2. Characteristics of RESIK spectrometer we present a composite of the observed spectral variability in four RESIKchannels. The reduced spectra shown are averages of many individual (from a sample of 1200) for five temperature categories. Before averaging, the spectra have been normalized to unit emission measure (10 44 cm 3 ). The temperature has been assigned to each individual spectrum based on the interpretation of the signal ratio measured in channels No. 1 and No. 4. Whatappears unexpected is presence of few broad-bandspectral features (bumps), systematically changing their appearance with temperature. Importance of bumps at

Bragg spectroscopy from CORONAS-F 415 Figure 6. Left: Example composite RESIK spectraas measured (upper panel) andafter reduction (lower panel). During the reduction process, orbital background and fluorescence contamination have been removed. The spectra shown were collected during the 20-minute rise phase of the M1.9 East-limb flare on 2003 January 21. Right: Spectra measured in the mode where detectors were sensitive to photons reflected from the crystals in second and third order. The spectra shown were collected over 365 s during the maximum phase of the M2.1 flare on April 26, 2003. λλ 3.60 3.85 Å 4.05 4.25 Å and 4.5 4.9 Å decreases with temperature, but the role of the bump at 5.6 6.0 Å grows with increasing T. We are yet unsure of the processes contributing to presence of the observed bumps. 5. Conclusions We present spectra recorded using two Bragg crystal spectrometers Diogeness and RESIK placed aboard the CORONAS-F solar orbiting observatory. Diogeness have observed hundreds of spectra in vicinity of triplet lines of He-like Ca, S and Si ions. The quality of spectra measured is excellent for few big flares observed, allowing for prompt identification of a number of spectral features rarely seen before. The sensitivity of the spectrometer is however not sufficient to record spectra fromflares below c5 GOESclass. For one flare analysed in details, systematic plasma upflows have been detected during the rise phase, which caused entire spectra including triplet and satellite lines formed in Ca xix ion to be Doppler-shifted. The spectra recorded cover yet unexplored spectral ranges with unprecedented resolution and constitute the reference spectral atlas in the range below 6.8 Å. Many spectra features including broad bumps has not been observed before. The variability of spectra with changing temperature is discussed which will lead to the identification of the spectral features seen. This will be the subject of forthcoming papers. All the figures presented here in black and white are available in colours at the address: http://www.cbk.pan.wroc.pl/publications/2004/iau223 Bragg.html.

416 J. Sylwester Figure 7. Composite showing temperature dependence of average spectra observed by RESIK in five temperature categories in all four first order channels. Spectra are normalised to their respective maxima and slighly vertically shifted (see the side levels) in order toincrease visibility. Main lines are identified and positions of He-like triplets indicated. Acknowledgements I would like to thank Barbara Sylwester for useful discussions and help in preparing this review. We acknowledge financial support for RESIK from the Polish grants 2.P03D.002.22 and PBZ-KBN-054/P03/2001, and the Exchange Visitors Programme of The Royal Society Polish Academy of Sciences. References Antonucci, E. 1989 Solar Phys. 121, 31 60. Doschek, G.A., Feldman, U. & Seely, J.F. 1985 Non. Not. Royal Astr. Soc. 217, 317 326. Plocieniak, S., Sylwester, J., Kordylewski, Z. & Sylwester, B. 2002 ESA SP 506, 963 966. Siarkowski, M., Sylwester, J., Plocieniak, S., & Kordylewski, Z. 2002 ESA SP 506, 753 756. Sylwester, J. & Fárnik 1990 Bull. Astron. Inst. of Czech. 41, 149 157 Sylwester, J.& Kordylewski, Z. 2002 Adv. Space Res. 30, 105 110. Sylwester, J.& 21 co-authors 2004 Solar Phys. submitted