Integral inequalities via fractional quantum calculus

Similar documents
Some estimates on the Hermite-Hadamard inequality through quasi-convex functions

Hermite-Hadamard Type Inequalities for the Functions whose Second Derivatives in Absolute Value are Convex and Concave

The Hadamard s inequality for quasi-convex functions via fractional integrals

Parametrized inequality of Hermite Hadamard type for functions whose third derivative absolute values are quasi convex

New general integral inequalities for quasiconvex functions

Research Article On New Inequalities via Riemann-Liouville Fractional Integration

New Integral Inequalities of the Type of Hermite-Hadamard Through Quasi Convexity

AN INTEGRAL INEQUALITY FOR CONVEX FUNCTIONS AND APPLICATIONS IN NUMERICAL INTEGRATION

NEW HERMITE HADAMARD INEQUALITIES VIA FRACTIONAL INTEGRALS, WHOSE ABSOLUTE VALUES OF SECOND DERIVATIVES IS P CONVEX

Bulletin of the. Iranian Mathematical Society

NEW INEQUALITIES OF SIMPSON S TYPE FOR s CONVEX FUNCTIONS WITH APPLICATIONS. := f (4) (x) <. The following inequality. 2 b a

Some inequalities of Hermite-Hadamard type for n times differentiable (ρ, m) geometrically convex functions

S. S. Dragomir. 2, we have the inequality. b a

Journal of Inequalities in Pure and Applied Mathematics

f (a) + f (b) f (λx + (1 λ)y) max {f (x),f (y)}, x, y [a, b]. (1.1)

New Expansion and Infinite Series

Hermite-Hadamard type inequalities for harmonically convex functions

FRACTIONAL INTEGRALS AND

S. S. Dragomir. 1. Introduction. In [1], Guessab and Schmeisser have proved among others, the following companion of Ostrowski s inequality:

SOME INEQUALITIES FOR THE DISPERSION OF A RANDOM VARIABLE WHOSE PDF IS DEFINED ON A FINITE INTERVAL

Research Article On Hermite-Hadamard Type Inequalities for Functions Whose Second Derivatives Absolute Values Are s-convex

Improvement of Ostrowski Integral Type Inequalities with Application

On New Inequalities of Hermite-Hadamard-Fejer Type for Harmonically Quasi-Convex Functions Via Fractional Integrals

arxiv: v1 [math.ca] 28 Jan 2013

Journal of Inequalities in Pure and Applied Mathematics

Research Article Fejér and Hermite-Hadamard Type Inequalities for Harmonically Convex Functions

New Integral Inequalities for n-time Differentiable Functions with Applications for pdfs

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction

ON THE WEIGHTED OSTROWSKI INEQUALITY

RIEMANN-LIOUVILLE AND CAPUTO FRACTIONAL APPROXIMATION OF CSISZAR S f DIVERGENCE

On Hermite-Hadamard type integral inequalities for functions whose second derivative are nonconvex

A Generalized Inequality of Ostrowski Type for Twice Differentiable Bounded Mappings and Applications

On the Generalized Weighted Quasi-Arithmetic Integral Mean 1

A generalized Lyapunov inequality for a higher-order fractional boundary value problem

GENERALIZATIONS OF WEIGHTED TRAPEZOIDAL INEQUALITY FOR MONOTONIC MAPPINGS AND ITS APPLICATIONS. (b a)3 [f(a) + f(b)] f x (a,b)

Journal of Inequalities in Pure and Applied Mathematics

Research Article On the Definitions of Nabla Fractional Operators

Revista Colombiana de Matemáticas Volumen 41 (2007), páginas 1 13

Solutions of Klein - Gordan equations, using Finite Fourier Sine Transform

Ostrowski Grüss Čebyšev type inequalities for functions whose modulus of second derivatives are convex 1

AN INEQUALITY OF OSTROWSKI TYPE AND ITS APPLICATIONS FOR SIMPSON S RULE AND SPECIAL MEANS. I. Fedotov and S. S. Dragomir

ON THE HERMITE-HADAMARD TYPE INEQUALITIES FOR FRACTIONAL INTEGRAL OPERATOR

A General Dynamic Inequality of Opial Type

Some new integral inequalities for n-times differentiable convex and concave functions

Keywords : Generalized Ostrowski s inequality, generalized midpoint inequality, Taylor s formula.

GENERALIZED OSTROWSKI TYPE INEQUALITIES FOR FUNCTIONS WHOSE LOCAL FRACTIONAL DERIVATIVES ARE GENERALIZED s-convex IN THE SECOND SENSE

ON PERTURBED TRAPEZOIDAL AND MIDPOINT RULES. f (t) dt

SOME HARDY TYPE INEQUALITIES WITH WEIGHTED FUNCTIONS VIA OPIAL TYPE INEQUALITIES

Research Article On The Hadamard s Inequality for Log-Convex Functions on the Coordinates

FRACTIONAL DYNAMIC INEQUALITIES HARMONIZED ON TIME SCALES

On new Hermite-Hadamard-Fejer type inequalities for p-convex functions via fractional integrals

Integral inequalities for n times differentiable mappings

An optimal 3-point quadrature formula of closed type and error bounds

The presentation of a new type of quantum calculus

WENJUN LIU AND QUÔ C ANH NGÔ

Research Article On Existence and Uniqueness of Solutions of a Nonlinear Integral Equation

CHEBYSHEV TYPE INEQUALITY ON NABLA DISCRETE FRACTIONAL CALCULUS. 1. Introduction

A Companion of Ostrowski Type Integral Inequality Using a 5-Step Kernel with Some Applications

On some inequalities for s-convex functions and applications

A unified generalization of perturbed mid-point and trapezoid inequalities and asymptotic expressions for its error term

Numerical Solutions for Quadratic Integro-Differential Equations of Fractional Orders

Review of Calculus, cont d

An inequality related to η-convex functions (II)

Generalized Hermite-Hadamard-Fejer type inequalities for GA-convex functions via Fractional integral

Multiple Positive Solutions for the System of Higher Order Two-Point Boundary Value Problems on Time Scales

Some New Inequalities of Simpson s Type for s-convex Functions via Fractional Integrals

Some Hermite-Hadamard type inequalities for functions whose exponentials are convex

Properties and integral inequalities of Hadamard- Simpson type for the generalized (s, m)-preinvex functions

SOME INTEGRAL INEQUALITIES OF GRÜSS TYPE

Calculus of variations with fractional derivatives and fractional integrals

INEQUALITIES FOR GENERALIZED WEIGHTED MEAN VALUES OF CONVEX FUNCTION

On Caputo type sequential fractional differential equations with nonlocal integral boundary conditions

FUNCTIONS OF α-slow INCREASE

1 The Lagrange interpolation formula

A NOTE ON SOME FRACTIONAL INTEGRAL INEQUALITIES VIA HADAMARD INTEGRAL. 1. Introduction. f(x)dx a

ON SOME NEW FRACTIONAL INTEGRAL INEQUALITIES

Journal of Inequalities in Pure and Applied Mathematics

Euler-Maclaurin Summation Formula 1

Generalized Hermite-Hadamard type inequalities involving fractional integral operators

ON AN INTEGRATION-BY-PARTS FORMULA FOR MEASURES

The Regulated and Riemann Integrals

A New Generalization of Lemma Gronwall-Bellman

Communications inmathematicalanalysis Volume 6, Number 2, pp (2009) ISSN

INEQUALITIES FOR BETA AND GAMMA FUNCTIONS VIA SOME CLASSICAL AND NEW INTEGRAL INEQUALITIES

1.9 C 2 inner variations

Positive Solutions of Operator Equations on Half-Line

Exact solutions for nonlinear partial fractional differential equations

Research Article Harmonic Deformation of Planar Curves

On Inequality for the Non-Local Fractional Differential Equation

LYAPUNOV-TYPE INEQUALITIES FOR THIRD-ORDER LINEAR DIFFERENTIAL EQUATIONS

INEQUALITIES OF HERMITE-HADAMARD S TYPE FOR FUNCTIONS WHOSE DERIVATIVES ABSOLUTE VALUES ARE QUASI-CONVEX

Advanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004

The inequality (1.2) is called Schlömilch s Inequality in literature as given in [9, p. 26]. k=1

Bounds for the Riemann Stieltjes integral via s-convex integrand or integrator

INEQUALITIES FOR TWO SPECIFIC CLASSES OF FUNCTIONS USING CHEBYSHEV FUNCTIONAL. Mohammad Masjed-Jamei

ON A CONVEXITY PROPERTY. 1. Introduction Most general class of convex functions is defined by the inequality

A basic logarithmic inequality, and the logarithmic mean

Theoretical foundations of Gaussian quadrature

COMPARISON PRINCIPLES FOR DIFFERENTIAL EQUATIONS INVOLVING CAPUTO FRACTIONAL DERIVATIVE WITH MITTAG-LEFFLER NON-SINGULAR KERNEL

Riemann Sums and Riemann Integrals

Transcription:

Sudsutd et l. Journl of Ineulities nd Applictions 6 6:8 DOI.86/s366-6-4- R E S E A R C H Open Access Integrl ineulities vi frctionl untum clculus Weerwt Sudsutd, Sotiris K Ntouys,3 nd Jessd Triboon * * Correspondence: jessd.t@sci.kmutnb.c.th Nonliner Dynmic Anlysis Reserch Center, Deprtment of Mthemtics, Fculty of Applied Science, King Mongkut s University of Technology North Bngkok, Bngkok, 8, Thilnd Full list of uthor informtion is vilble t the end of the rticle Abstrct In this pper we prove severl frctionl untum integrl ineulities for the new -shifting opertor mm + introduced in Triboon et l. Adv. Differ. Eu. 5:8, 5, such s: the-hölder ineulity, the -Hermite-Hdmrd ineulity, the -Cuchy-Bunykovsky-Schwrz integrl ineulity, the -Grüss integrl ineulity, the -Grüss-Čebyšev integrl ineulity, nd the -Póly-Szegö integrl ineulity. MSC: 5A3; 6D; 6A33 Keywords: frctionl integrl; frctionl integrl ineulities; untum clculus Introduction The untum clculus is known s the clculus without limits. It substitutes the clssicl derivtive by difference opertor, which llows one to del with sets of nondifferentible functions. Quntum difference opertors hve n interesting role due to their pplictions in severl mthemticl res, such s orthogonl polynomils, bsic hypergeometric functions, combintorics, the clculus of vritions, mechnics, nd the theory of reltivity. The book by Kc nd Cheung []covers mny of the fundmentlspectsof untum clculus. In recent yers, the topic of -clculus hs ttrcted the ttention of severl reserchers nd vriety of new results cn be found in the ppers [3 5] nd the references cited therein. In [6] the notions of k -derivtive nd k -integrl of continuous function f : [t k, t k+ ] R, hve been introduced nd their bsic properties were proved. As pplictions existence nd uniueness results for initil vlue problems of first nd second order impulsive k -difference eutions were investigted. The -clculus nlogs of some clssicl integrl ineulities, such s Hölder, Hermite-Hdmrd, Trpezoid, Ostrowski, Cuchy-Bunykovsky-Schwrz, Grüss nd Grüss-Čebyšev were estblished in [7]. For recent results on untum ineulities, see [8 ]. In [] new concepts of frctionl untum clculus were defined, by defining new -shifting opertor m m +. After giving the bsic properties the - derivtive nd -integrl were defined. New definitions of the Riemnn-Liouville frctionl -integrl nd the -difference on n intervl [, b] were given nd their bsic properties were discussed. As pplictions of the new concepts, one proved existence nd 6 Sudsutd et l. This rticle is distributed under the terms of the Cretive Commons Attribution 4. Interntionl License http://cretivecommons.org/licenses/by/4./, which permits unrestricted use, distribution, nd reproduction in ny medium, provided you give pproprite credit to the originl uthors nd the source, provide link to the Cretive Commons license, nd indicte if chnges were mde.

Sudsutd et l. Journl of Ineulities nd Applictions 6 6:8 Pge of 5 uniueness results for first nd second order initil vlue problems for impulsive frctionl -difference eutions. In this pper we prove severl integrl ineulities for the new -shifting opertor m m +, suchs:the-hölder ineulity, the -Hermite-Hdmrd ineulity, the -Korkine integrl eulity, the -Cuchy-Bunykovsky-Schwrz integrl ineulity, the -Grüss integrl ineulity, the -Grüss-Čebyšev integrl ineulity, nd the -Poly-Szegö integrl ineulity. Preliminries To mke this pper self-contined, below we recll some well-known fcts on frctionl -clculus. The presenttion here cn be found, for exmple, in [7, 8]. Let us define -shifting opertor s mm +,. where < <,m, R. For ny positive integer k,wehve k m k m nd mm.. The following results cn be found in []. Property. For ny m, n R nd for ll positive integer k, j, the following properties hold: i k m k m; ii j k m k j m j+k m; iii ; iv k m k m ; v m k m k m ; vi k mm m k,form ; vii m k nm k n. The -nlog of the Pochhmmer symbol is defined by k m;, m; k i m, k N { }..3 We lso define the power of the -shifting opertor s n m, n m k More generlly, if γ R,then n m γ n γ k n i m, k N { }..4 n i m/n n γ +i, n..5 m/n From the bove definitions, the following results were proved in [].

Sudsutd et l. Journl of Ineulities nd Applictions 6 6:8 Pge 3 of 5 Property. For ny γ, m, n R with n nd k N { }, the following properties hold: i n m k ii n m γ n k m n ; k; n γ m n i m iii n k nγ n γ k ; γ +k ;. The -number is defined by n γ +i n γ m n ; m n γ ; ; [m] m, m R..6 If ndm n,then.5 is reduced to γ The -gmm function is defined by i+..7 γ +i+ Ɣ t t, t R\{,,,...}..8 t Obviously, Ɣ t +[t] Ɣ t. For ny s, t >,the-bet function is defined by B s, t u s u t d u..9 The -bet function in terms of the -gmm function cn be written s B s, t Ɣ sɣ t Ɣ s + t.. Let usgive the definitionsof Riemnn-Liouville frctionl -integrl nd the -derivtive on the dense intervl [, b]. Definition.3 Let α ndf be continuous function defined on [, b]. The frctionl -integrl of Riemnn-Liouville type is given by I f tftnd I α f t t t s α f s Ɣ α d s t i t i+ Ɣ α t α f i t. Definition.4 The frctionl -derivtive of Riemnn-Liouville type of order α of continuous function f on the intervl [, b]isdefinedby D f tftnd D α f t D υ I υ α f t, α >, where υ is the smllest integer greter thn or eul to α.

Sudsutd et l. Journl of Ineulities nd Applictions 6 6:8 Pge 4 of 5 Lemm.5 [] Let α, β, nd f be continuous function on [, b]. The Riemnn- Liouville frctionl -integrl hs the following semi-group properties: I β I α f t I α I β f t I α+β f t.. Throughoutthis pper, in someplces, thevrible s will be shown inside the frctionl integrl nottion s I α f st, which mens I α f s t t t s α f s Ɣ α d s. Lemm.6 If α, β, then, for t [, b], the following reltion holds: I α s β t Ɣ β + Ɣ β + α + t β+α.. Proof From Definition.3 nd pplying Property.iv, Property.iii, it follows tht I α s β t t Ɣ α t Ɣ α t Ɣ α t s α s β d s t β+α Ɣ α t β+α Ɣ α t β+α Ɣ α t β+α Ɣ α t β+α Ɣ α i t i+ t α i t β i t α i+ ; α+i ; i t β i i+ ; α+i ; βi i i+ i i+ α +i βi i i t β+α B β +,α Ɣ α Ɣ β + Ɣ β + α + t β+α, i+ i+ s β s α d s α βi α i β which leds to.sreuired. Corollry.7 Let f ttndgtt for t [, b], nd α >.Then we hve i I α t α f st Ɣ α+ t +[α +] ; ii I α t α gst Ɣ α+3 + t +t [α +] + [α +] [α +].

Sudsutd et l. Journl of Ineulities nd Applictions 6 6:8 Pge 5 of 5 3 Min results Let us strt with the frctionl -Hölder ineulity on the intervl [, b]. Theorem 3. Let < <,α >,p, p >,such tht p + p.then for t [, b] we hve I α f s gs t I α f s p t p I α gs p t p. 3. Proof From Definition.3 nd the discrete Hölder ineulity, we hve I α f s gs t t t s α Ɣ α f s gs d s t i t i+ Ɣ α t α f i t g i t t Ɣ α t Ɣ α t Ɣ α t i+ i t i+ i t α i p f i t i p g i t t i+ t α t α t t s α f s p p Ɣ α d s t t s α gs p Ɣ α d s I α f s p t p I α gs p t p. f i t p p g i t p p p Therefore, ineulity 3.holds. Remrk 3. If α nd,then3. is reduced to the -Hölder ineulity in []. The frctionl -Hermite-Hdmrd integrl ineulity on the intervl [, b] will be proved s follows. Theorem 3.3 Let f :[, b] R be convex continuous function,< <nd α >.Then we hve + b Ɣ α + f I α b α f + b s b I α b α f s b [α +] f +fb. 3. Ɣ α +

Sudsutd et l. Journl of Ineulities nd Applictions 6 6:8 Pge 6 of 5 Proof The convexity of f on [, b]menstht f s + sb sf +sf b, s [, ]. 3.3 Multiplying both sides of 3.3by s α /Ɣ α, s,, we get Ɣ α s α f s + sb f Ɣ α s α s+ f b Ɣ α s α s. 3.4 Tking -integrtion of order α >for3.4withrespecttos on [, ], we hve Ɣ α f Ɣ α which mens tht s α f s + sb d s s α s d s + f b s α s Ɣ α d s, 3.5 I α f s + sb f I α s + f b I α s. 3.6 From Corollry.7i, we hve I α s Ɣ α + nd I α s Ɣ α + Ɣ α +. Using the definition of frctionl -integrtion on [, b], we hve I α f s + sb Ɣ α Ɣ α Ɣ α s α f s + sb d s i i i+ α f i + i b b α Ɣ α i i+ i α+i f i b i b α i+ ; i+α ; f i b b b α b s α f s Ɣ α d s I α b α f b, which gives the second prt of 3.byusing3.6.

Sudsutd et l. Journl of Ineulities nd Applictions 6 6:8 Pge 7 of 5 To prove the first prt of 3., we use the convex property of f s follows: [ ] s + sb + s + sb f s + sb + f s + sb f + b f. 3.7 Multiplying both sides of 3.7by s α /Ɣ α, s,, we get + b f Ɣ α s α Ɣ α s α f s + sb + Ɣ α s α f s + sb. Agin on frctionl -integrtion of order α > to the bove ineulity with respect to t on [, ] nd chnging vribles, we get + b f Ɣ α + I α b α f s b+ Ɣ α + I α b α f + b s b. 3.8 By direct computtion, we hve I α f sb + s Ɣ α Ɣ α Ɣ α i i+ α f i b + i i b α Ɣ α i+ α f + b i b i i+ ; α+i ; f + b i b I α b α f + b s b, b s α f + b s d s together with 3.8,we derivethefirstprtofineulity3. s reuested. The proof is completed. Remrk 3.4 If α nd, then ineulity 3. is reduced to the clssicl Hermite- Hdmrd integrl ineulity s + b f b See lso [, 3]. f s ds f +fb.

Sudsutd et l. Journl of Ineulities nd Applictions 6 6:8 Pge 8 of 5 Let us prove the frctionl -Korkine eulity on the intervl [, b]. Lemm 3.5 Let f, g :[, b] R be continuous functions, < <,nd α >.Then we hve I α f s fr gs gr b b α I α Ɣ α + f sgs b I α f s b I α gs b. 3.9 Proof From Definition.3,we hve I α f s fr gs gr b Ɣ α b s α b r α f s f r gs gr d s d r Ɣ α b s α b r α f sgs fsgr frgs+frgr d s d r b α b i b i+ Ɣ α + Ɣ α b α f i b g i b b i b i+ Ɣ α b i b i+ Ɣ α b i b i+ Ɣ α b i b i+ Ɣ α b α b + i Ɣ α + Ɣ α b α b i Ɣ α + Ɣ α b i b i+ Ɣ α b Ɣ α i b i+ b α f i b b α g i b b α g i b b α b i+ b i+ f i b b α f i b g i b b α b α f i b b α f i b g i b g i b b α b b s α f sgs Ɣ α + Ɣ α d s

Sudsutd et l. Journl of Ineulities nd Applictions 6 6:8 Pge 9 of 5 Ɣ α Ɣ α b s α f s d s b s α gs d s b α I α Ɣ α + fg b I α f b I α g b, from which one deduces 3.9. Remrk 3.6 If α, then Lemm 3.5 is reduced to Lemm 3. in [7]. Next,wewillprovethefrctionl-Cuchy-Bunykovsky-Schwrz integrl ineulity on the intervl [, b]. Theorem 3.7 Let f, g :[, b] R be continuous functions, < <,nd α, β >.Then we hve I β+α f s, rgs, r b I β+α f s, r b I β+α g s, r b. 3. Proof From Definition.3,wehve I β+α f s, r b Ɣ αɣ β b Ɣ αɣ β f i b, n b. b s α n i+n b i+ b r β f s, r d s d r b α b i+ Using the clssicl discrete Cuchy-Schwrz ineulity, we hve I β+α f s, rgs, r b b Ɣ αɣ β n i+n b i+ f i b, n b g i b, n b b Ɣ αɣ β n i+n b i+ f i b, n b b Ɣ αɣ β b i+ b β b α b α g i b, n b I β+α f s, r b I β+α g s, r b. n b i+ b i+ i+n b β b β b β b i+ b α Therefore, ineulity 3.holds.

Sudsutd et l. Journl of Ineulities nd Applictions 6 6:8 Pge of 5 Remrk 3.8 If α,thenineulity3. is reduced to the -Cuchy-Bunykovsky- Schwrz integrl ineulity in [7]. Now, we will prove the frctionl -Grüss integrl ineulity on the intervl [, b]. Theorem 3.9 Let f, g :[, b] R be continuous functions stisfying φ f s, ψ gs, for ll s [, b], φ,, ψ, R. 3. For < <nd α >,we hve the ineulity Ɣ α + I α b α f sgs Ɣ α + b b α I α f s b Ɣ α + I α b α gs b φ ψ. 3. 4 Proof Applying Theorem 3.7,wehve I α f s fr gs gr b I α From Lemm 3.5, it follows tht f s fr b I α gs gr b. 3.3 I α b α f s fr b I α Ɣ α + f s b I α f s b. 3.4 By simple computtion, we hve Ɣ α + I α b α f s Ɣ α + b Ɣ α + b α I α f s b I α b α f s b Ɣ α + b α I α f s b φ Ɣ α + b α I α f s φ f s b, 3.5 nd n nlogous identity for g. By ssumption 3.wehvefs φ f s for ll s [, b], which implies I α f s φ f s b. From 3.5ndusingthefcttht A+B AB, A, B R,wehve Ɣ α + I α b α f s Ɣ α + b Ɣ α + b α I α f s b I α b α f s b Ɣ α + b α I α f s b φ

Sudsutd et l. Journl of Ineulities nd Applictions 6 6:8 Pge of 5 4 [ Ɣ ] α + I α b α f s Ɣ α + b + I α b α f s b φ 4 φ. 3.6 A similr rgument gives I α gs gr b 4 ψ. 3.7 Using ineulity 3.3vi3.4 nd the estimtions 3.6nd3.7, we get I α b α f s fr gs gr b φ ψ. 4 Therefore, ineulity 3.holds,sdesired. Remrk 3. If α nd, then ineulity 3. is reduced to the clssicl Grüss integrl ineulity s b f sgs ds b φ ψ. 4 f s ds b gs ds See lso [, 3]. Next, we re going to prove the frctionl -Grüss-Čebyšev integrl ineulity on the intervl [, b]. Theorem 3. Let f, g :[, b] R be L -, L -Lipschitzin continuous functions, so tht f s f r L s r, gs gr L s r, 3.8 for ll s, r [, b], < <,L, L >,nd α >.Then we hve the ineulity b α I α Ɣ α + f sgs b I α f s b I α gs b L L b α+ + [α +] [α +]. 3.9 Ɣ α +Ɣ α +3 Proof Recll the frctionl -Korkine eulity s b α I α Ɣ α + f sgs b I α f s b I α gs b I α f s fr gs gr b. 3. It follows from 3.8tht f s f r gs gr L L s r, 3.

Sudsutd et l. Journl of Ineulities nd Applictions 6 6:8 Pge of 5 for ll s, r [, b]. Tking the double frctionl -integrtion of order α with respect to s, r [, b], we get I α f s fr gs gr b Ɣ α b s α b r α f s f r gs gr d s d r L L Ɣ α L L Ɣ α L L Ɣ α + L L Ɣ α b s α b s α b s α b r α s r d s d r b r α s d s d r b s α b α L L I α Ɣ α + s b I α s b b r α sr d s d r b r α r d s d r. 3. From Corollry.7ii, with t b,wehve I α s b b α + b +b [α +] + [α +] [α +]. Ɣ α +3 By direct computtion, we hve b α I α Ɣ α + s b I α s b b α + b +b [α +] + [α +] [α +] Ɣ α +Ɣ α +3 b α Ɣ α + b + [α +] b α+ + [α +] [α +]. 3.3 Ɣ α +Ɣ α +3 Thus, from 3.nd3.3, we hve I α f s fr gs gr b L L b α+ + [α +] [α +]. 3.4 Ɣ α +Ɣ α +3 By pplying 3.4to3., we get the desired ineulity in 3.9.

Sudsutd et l. Journl of Ineulities nd Applictions 6 6:8 Pge 3 of 5 Remrk 3. If α nd, then ineulity 3.9 is reduced to the clssicl Grüss- Čebyšev integrl ineulity s b See lso [, 3]. f sgs ds b f s ds b gs ds L L b. For the finl result, we estblish the frctionl -Póly-Szegö integrl ineulity on the intervl [, b]. Theorem 3.3 Let f, g :[, b] R be two positive integrble functions stisfying <φ f s, <ψ gs, for ll s [, b], φ,, ψ, R +. 3.5 Then for < <nd α >,we hve the ineulity I αf sb I αg sb I αf φψ sgsb 4 +. 3.6 φψ Proof From 3.5, for s [, b], we hve φ f s gs ψ, which yields ψ f s 3.7 gs nd f s gs φ. 3.8 Multiplying 3.7nd3.8, we obtin or ψ f s f s gs gs φ, ψ + φ f s gs f s g s + φ ψ. 3.9 Ineulity 3.9cnbewrittens φψ + f sgs ψ f s+φ g s. 3.3

Sudsutd et l. Journl of Ineulities nd Applictions 6 6:8 Pge 4 of 5 Multiplying both sides of 3.3by b s α /Ɣ α nd integrting with respect to s from to b,weget φψ + I α f sgs b ψ I α f s b+φ I α g s b. Applying the AM-GM ineulity, A + B AB, A, B R +,wehve φψ + I α f sgs b φψ I α f s b I α g s b, which leds to φψ I α f s b I α g s b 4 φψ + I α f sgs b. Therefore, ineulity 3.6isproved. Remrk 3.4 If α nd, then ineulity 3.6 is reduced to the clssicl Póly- Szegö integrl ineulity s f s ds g s ds f sgs φψ ds 4 +. φψ See lso [4]. 4 Conclusion In this work, some importnt integrl ineulities involving the new -shifting opertor mm +, introducedin[], re estblished in the context of frctionl untum clculus. The derived results constitute contributions to the theory of integrl ineulities nd frctionl clculus nd cn be specilized to yield numerous interesting frctionl integrl ineulities including some known results. Furthermore, they re expected to led to some pplictions in frctionl boundry vlue problems. Competing interests The uthors declre tht they hve no competing interests. Authors contributions All uthors contributed eully to this rticle. They red nd pproved the finl mnuscript. Author detils Nonliner Dynmic Anlysis Reserch Center, Deprtment of Mthemtics, Fculty of Applied Science, King Mongkut s University of Technology North Bngkok, Bngkok, 8, Thilnd. Deprtment of Mthemtics, University of Ionnin, Ionnin, 45, Greece. 3 Nonliner Anlysis nd Applied Mthemtics NAAM-Reserch Group, Deprtment of Mthemtics, Fculty of Science, King Abdulziz University, P.O. Box 83, Jeddh, 589, Sudi Arbi. Received: 8 November 5 Accepted: 8 Februry 6 References. Triboon, J, Ntouys, SK, Agrwl, P: New concepts of frctionl untum clculus nd pplictions to impulsive frctionl -difference eutions. Adv. Differ. Eu. 5, 8 5. Kc, V, Cheung, P: Quntum Clculus. Springer, New York 3. Jckson, FH: -Difference eutions. Am. J. Mth. 3, 35-34 9 4. Al-Slm, WA: Some frctionl -integrls nd -derivtives. Proc. Edinb. Mth. Soc. 5,35-4 966/967 5. Agrwl, RP: Certin frctionl -integrls nd -derivtives. Proc. Cmb. Philos. Soc. 66, 365-37 969 6. Ernst, T: The history of -clculus nd new method. UUDM Report :6, Deprtment of Mthemtics, Uppsl University

Sudsutd et l. Journl of Ineulities nd Applictions 6 6:8 Pge 5 of 5 7. Ferreir, R: Nontrivil solutions for frctionl -difference boundry vlue problems. Electron. J. Qul. Theory Differ. Eu., 7 8. Annby, MH, Mnsour, ZS: -Frctionl Clculus nd Eutions. Lecture Notes in Mthemtics, vol. 56. Springer, Berlin 9. Bngerezko, G: Vritionl -clculus. J. Mth. Anl. Appl. 89, 65-665 4. Ismil, MEH, Simeonov, P: -Difference opertors for orthogonl polynomils. J. Comput. Appl. Mth. 33, 749-76 9. Yu, C, Wng, J: Existence of solutions for nonliner second-order -difference eutions with first-order -derivtives. Adv. Differ. Eu. 3, 4 3. Ahmd, B, Ntouys, SK: Boundry vlue problems for -difference inclusions. Abstr. Appl. Anl., 986 3. Ahmd, B: Boundry-vlue problems for nonliner third-order -difference eutions. Electron. J. Differ. Eu., 94 4. Gref, JR, Kong, L: Positive solutions for clss of higher-order boundry vlue problems with frctionl -derivtives. Appl. Mth. Comput. 8, 968-9689 5. Ahmd, B, Ntouys, SK, Purnrs, IK: Existence results for nonlocl boundry vlue problems of nonliner frctionl -difference eutions. Adv. Differ. Eu., 4 6. Triboon, J, Ntouys, SK: Quntum clculus on finite intervls nd pplictions to impulsive difference eutions. Adv. Differ. Eu. 3, 8 3 7. Triboon, J, Ntouys, SK: Quntum integrl ineulities on finite intervls. J. Ineul. Appl. 4, 4 8. Noor, MA, Noor, KI, Awn, MU: Some untum estimtes for Hermite-Hdmrd ineulities. Appl. Mth. Comput. 5, 675-679 5 9. Noor, MA, Noor, KI, Awn, MU: Some untum integrl ineulities vi preinvex functions. Appl. Mth. Comput. 69, 4-5 5. Tf, S, Brhim, K, Rihi, L: Some results for Hdmrd-type ineulities in untum clculus. Mtemtiche LXIX, 43-58 4. Anstssiou, GA: Intelligent Mthemtics: Computtionl Anlysis. Springer, New York. Cerone, P, Drgomir, SS: Mthemticl Ineulities. CRC Press, New York 3. Pchptte, BG: Anlytic Ineulities. Atlntis Press, Pris 4. Póly, G, Szegö, G: Aufgben und Lehrstze us der Anlysis, Bnd. Die Grundlehren der mthemtischen Wissenschften, vol. 9. Springer, Berlin 95