Time Dependent Density Functional Theory. Francesco Sottile

Similar documents
Time Dependent Density Functional Theory. Francesco Sottile

Linear-response excitations. Silvana Botti

Key concepts in Density Functional Theory (II) Silvana Botti

The frequency-dependent Sternheimer equation in TDDFT

Time-dependent density functional theory

Key concepts in Density Functional Theory (I) Silvana Botti

Time-Dependent Density-Functional Theory

Time-dependent density functional theory

The frequency-dependent Sternheimer equation in TDDFT

Linear response to an electric field: absorption and energy-loss Independent particle, Local fields effects, and Time-Dependent DFT

Linear response time-dependent density functional theory

Many-Body Perturbation Theory. Lucia Reining, Fabien Bruneval

Electronic Structure: Density Functional Theory

Time-dependent density functional theory : direct computation of excitation energies

LDA and beyond. A primer into density-functional theory and related techniques Tobias Burnus. Diploma and PhD colloquium 22 November 2006

Neutral Electronic Excitations:

Microscopic-Macroscopic connection. Silvana Botti

Introduction to TDDFT

Time-dependent density functional theory (TDDFT)

All electron optimized effective potential method for solids

Electronic excitations, spectroscopy and quantum transport from ab initio theory

Time-dependent density functional theory (TDDFT)

Key concepts in Density Functional Theory (II)

Introduction to Green functions, GW, and BSE

Energy dependence of the exchange-correlation kernel of time-dependent density functional theory: A simple model for solids

Real space investigation of local field effects on surfaces

Time-dependent Density Functional Theory

Time-dependent density functional theory

Microscopic-macroscopic connection

Density Functional Theory for Electrons in Materials

Independent electrons in an effective potential

Linear response theory and TDDFT

Key concepts in Density Functional Theory

v(r i r j ) = h(r i )+ 1 N

Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride. Dimer. Philip Straughn

Time-dependent density functional theory

Dept of Mechanical Engineering MIT Nanoengineering group

Exact exchange (spin current) density-functional methods for magnetic properties, spin-orbit effects, and excited states

Time-dependent density functional theory

OPTICAL RESPONSE OF FINITE AND EXTENDED SYSTEMS ARGYRIOS TSOLAKIDIS

Quantum Electrodynamical TDDFT: From basic theorems to approximate functionals

Advanced TDDFT PDF Created with deskpdf PDF Writer - Trial ::

TDDFT II. Alberto Castro

Electronic excitations in materials for solar cells

Beyond time-dependent exact exchange: The need for long-range correlation

TDDFT in Chemistry and Biochemistry III

Advanced TDDFT I: Memory and Initial-State Dependence

Time-Dependent Density Functional Perturbation Theory New algorithms with applications to molecular spectra

1 Density functional theory (DFT)

The GW approximation

Novel Functionals and the GW Approach

Photoelectronic properties of chalcopyrites for photovoltaic conversion:

Density Functional Theory. Martin Lüders Daresbury Laboratory

Optimized Effective Potential method for non-collinear Spin-DFT: view to spindynamics

Electrochemistry project, Chemistry Department, November Ab-initio Molecular Dynamics Simulation

The electronic structure of materials 2 - DFT

Orbital functionals derived from variational functionals of the Green function

arxiv:cond-mat/ v2 [cond-mat.other] 14 Apr 2006

Pseudo-Hermitian eigenvalue equations in linear-response electronic-structure theory

Current density functional theory for optical spectra Boeij, P.L. de; Kootstra, F.; Berger, Johannes; Leeuwen, R. van; Snijders, J.G.

The potential of Potential Functional Theory

Advanced TDDFT II. Double Excitations in TDDFT

2.5 Time dependent density functional theory

Many electrons: Density functional theory Part II. Bedřich Velický VI.

X-ray Spectroscopy Theory Lectures

Ab Initio theories to predict ARPES Hedin's GW and beyond

MBPT and TDDFT Theory and Tools for Electronic-Optical Properties Calculations in Material Science

Spectroscopy of nanostructures: from optics to transport

Claudia Ambrosch-Draxl, University of Leoben, Austria Chair of Atomistic Modelling and Design of Materials

Introduction to density-functional theory. Emmanuel Fromager

Lecture 8: Introduction to Density Functional Theory

The GW Approximation. Manish Jain 1. July 8, Department of Physics Indian Institute of Science Bangalore 1/36

Models for Time-Dependent Phenomena

BSE and TDDFT at work

GW quasiparticle energies

Multi-Scale Modeling from First Principles

This is a repository copy of Self-interaction in Green's-function theory of the hydrogen atom.

IV. Calculations of X-ray Spectra in Real-space and Real-time. J. J. Rehr

Preface Introduction to the electron liquid

VASP: Dielectric response Perturbation theory, linear response, and finite electric fields

André Schleife Department of Materials Science and Engineering

Models for Time-Dependent Phenomena. I. Laser-matter interaction: atoms II. Laser-matter interaction: molecules III. Model systems and TDDFT

Spin gaps and spin flip energies in density functional theory

Electron energy loss spectroscopy (EELS)

DFT in practice : Part II. Ersen Mete

arxiv:cond-mat/ v1 [cond-mat.other] 24 Mar 2005

Density functional theory

MD simulation: output

Chapter 3 The Microscopic Description of a Macroscopic Experiment

Solutions to selected problems from Giuliani, Vignale : Quantum Theory of the Electron Liquid

Excited state dynamics of nanostructures and extended systems within TDDFT

CHEM6085: Density Functional Theory

Plan of the lectures

Notes on Density Functional Theory

Electronic excitations in materials for photovoltaics

Core-level Spectroscopies with FEFF9 and OCEAN

J. Paier, M. Marsman, G. Kresse, Kerstin Hummer. Computational Materials Physics Faculty of Physics University of Vienna. Funded by the Austrian FWF

Adaptively Compressed Polarizability Operator

Applications of Time-Dependent Density Functional Theory

TDDFT Explorations in Phase-Space. Neepa T. Maitra Hunter College and the Graduate Center of the City University of New York

Transcription:

An Introduction Laboratoire des Solides Irradiés Ecole Polytechnique, Palaiseau - France European Theoretical Spectroscopy Facility (ETSF) Belfast, 29 Jun 2007

Outline 1 Introduction: why TD-DFT? 2 (Just) A bit of Formalism TDDFT: the Foundation Linear Response Formalism 3 TDDFT in practice: The ALDA: Achievements and Shortcomings 4 Resources

Outline 1 Introduction: why TD-DFT? 2 (Just) A bit of Formalism TDDFT: the Foundation Linear Response Formalism 3 TDDFT in practice: The ALDA: Achievements and Shortcomings 4 Resources

Density Functional... Why? Basic ideas of DFT 1 Any observable of a quantum system can be obtained from the density of the system alone. 2 The density of an interacting-particles system can be calculated as the density of an auxiliary system of non-interacting particles. Importance of the density Example: atom of Nitrogen (7 electron) Ψ(r 1,.., r 7) 21 coordinates 10 entries/coordinate 10 21 entries 8 bytes/entry 8 10 21 bytes 4.7 10 9 bytes/dvd 2 10 12 DVDs

Density Functional... Why?

Density Functional... Why?

Density Functional... Why? Basic ideas of DFT 1 Any observable of a quantum system can be obtained from the density of the system alone. 2 The density of an interacting-particles system can be calculated as the density of an auxiliary system of non-interacting particles. Importance of the density Example: atom of Carbon (6 electron) Ψ(r 1,.., r 6) 18 coordinates 10 entries/coordinate 10 18 entries 8 bytes/entry 8 10 18 bytes 5 10 9 bytes/dvd 10 13 DVDs Importance of non-interacting The Kohn-Sham one-particle equations H i (r)ψ i (r) = ɛ i (r)ψ i (r)

Density Functional... Why? Basic ideas of DFT 1 Any observable of a quantum system can be obtained from the density of the system alone. 2 The density of an interacting-particles system can be calculated as the density of an auxiliary system of non-interacting particles. Importance of the density Example: atom of Carbon (6 electron) Ψ(r 1,.., r 6) 18 coordinates 10 entries/coordinate 10 18 entries 8 bytes/entry 8 10 18 bytes 5 10 9 bytes/dvd 10 13 DVDs Importance of non-interacting The Kohn-Sham one-particle equations H i (r)ψ i (r) = ɛ i (r)ψ i (r)

Density Functional... Successfull? S. Redner http://arxiv.org/abs/physics/0407137

Time Dependent DFT... Why? Large field of research concerned with many-electron systems in time-dependent fields Different Phenomena absorption spectra energy loss spectra photo-ionization high-harmonic generation photo-emission

Time Dependent DFT... Why? Large field of research concerned with many-electron systems in time-dependent fields Different Phenomena absorption spectra energy loss spectra photo-ionization high-harmonic generation photo-emission

Time Dependent DFT... Why? Large field of research concerned with many-electron systems in time-dependent fields Different Phenomena absorption spectra energy loss spectra photo-ionization high-harmonic generation photo-emission

Time Dependent DFT... Why? Large field of research concerned with many-electron systems in time-dependent fields Different Phenomena absorption spectra energy loss spectra photo-ionization high-harmonic generation photo-emission

Time Dependent DFT... Why? Large field of research concerned with many-electron systems in time-dependent fields Different Phenomena absorption spectra energy loss spectra photo-ionization high-harmonic generation photo-emission

Time Dependent DFT... Why? Large field of research concerned with many-electron systems in time-dependent fields Different Phenomena absorption spectra energy loss spectra photo-ionization high-harmonic generation photo-emission ω 5ω

Time Dependent DFT... Why? Large field of research concerned with many-electron systems in time-dependent fields Different Phenomena absorption spectra energy loss spectra photo-ionization high-harmonic generation photo-emission

Time Dependent DFT... Why? We need a time dependent theory TDDFT is a promising candidate

Outline 1 Introduction: why TD-DFT? 2 (Just) A bit of Formalism TDDFT: the Foundation Linear Response Formalism 3 TDDFT in practice: The ALDA: Achievements and Shortcomings 4 Resources

Outline 1 Introduction: why TD-DFT? 2 (Just) A bit of Formalism TDDFT: the Foundation Linear Response Formalism 3 TDDFT in practice: The ALDA: Achievements and Shortcomings 4 Resources

The name of the game: TDDFT DFT Hohenberg-Kohn theorem 1 The ground-state expectation value of any physical observable of a many-electrons system is a unique functional of the electron density n(r) ϕ 0 Ô ϕ 0 = O[n] P. Hohenberg and W. Kohn Phys.Rev. 136, B864 (1964) (Fermi, Slater) Runge-Gross theorem TDDFT The expectation value of any physical time-dependent observable of a many-electrons system is a unique functional of the time-dependent electron density n(r, t) and of the initial state ϕ 0 = ϕ(t = 0) ϕ(t) Ô(t) ϕ(t) = O[n, ϕ 0 ](t) E. Runge and E.K.U. Gross Phys.Rev.Lett. 52, 997 (1984) (Ando,Zangwill and Soven)

The name of the game: TDDFT DFT Hohenberg-Kohn theorem 1 The ground-state expectation value of any physical observable of a many-electrons system is a unique functional of the electron density n(r) ϕ 0 Ô ϕ 0 = O[n] P. Hohenberg and W. Kohn Phys.Rev. 136, B864 (1964) (Fermi, Slater) Runge-Gross theorem TDDFT The expectation value of any physical time-dependent observable of a many-electrons system is a unique functional of the time-dependent electron density n(r, t) and of the initial state ϕ 0 = ϕ(t = 0) ϕ(t) Ô(t) ϕ(t) = O[n, ϕ 0 ](t) E. Runge and E.K.U. Gross Phys.Rev.Lett. 52, 997 (1984) (Ando,Zangwill and Soven)

The name of the game: TDDFT Static problem DFT Second-order differential equation Boundary-value problem. Hϕ(r 1,.., r N ) = Eϕ(r 1,.., r N ) TDDFT Time-dependent problem First-order differential equation Initial-value problem H(t)ϕ(r 1,.., r N ; t) = ı t ϕ(r 1,.., r N ; t)

The name of the game: TDDFT Static problem DFT Second-order differential equation Boundary-value problem. Hϕ(r 1,.., r N ) = Eϕ(r 1,.., r N ) TDDFT Time-dependent problem First-order differential equation Initial-value problem H(t)ϕ(r 1,.., r N ; t) = ı t ϕ(r 1,.., r N ; t)

The name of the game: TDDFT Runge-Gross theorem The expectation value of any physical time-dependent observable of a many-electrons system is a unique functional of the time-dependent electron density n(r, t) and of the initial state ϕ 0 = ϕ(t = 0) ϕ(t) Ô(t) ϕ(t) = O[n, ϕ 0 ](t) E. Runge and E.K.U. Gross Phys.Rev.Lett. 52, 997 (1984)

The name of the game: TDDFT Runge-Gross theorem V ext (r, t) V ext(r, t) j(r, t) j (r, t) [n V ext ] [n V ext] n(r, t) n (r, t) n(r, t) V ext (r, t) + c(t) ϕe ic(t) ϕ(t) Ô(t) ϕ(t) = O[n, ϕ 0 ](t) What about infinite systems?

The name of the game: TDDFT Runge-Gross theorem V ext (r, t) V ext(r, t) j(r, t) j (r, t) [n V ext ] [n V ext] n(r, t) n (r, t) n(r, t) V ext (r, t) + c(t) ϕe ic(t) ϕ(t) Ô(t) ϕ(t) = O[n, ϕ 0 ](t) What about infinite systems?

The name of the game: TDDFT Runge-Gross theorem V ext (r, t) V ext(r, t) j(r, t) j (r, t) [n V ext ] [n V ext] n(r, t) n (r, t) n(r, t) V ext (r, t) + c(t) ϕe ic(t) ϕ(t) Ô(t) ϕ(t) = O[n, ϕ 0 ](t) What about infinite systems?

The name of the game: TDDFT Runge-Gross theorem V ext (r, t) V ext(r, t) j(r, t) j (r, t) [n V ext ] [n V ext] n(r, t) n (r, t) n(r, t) V ext (r, t) + c(t) ϕe ic(t) ϕ(t) Ô(t) ϕ(t) = O[n, ϕ 0 ](t) What about infinite systems?

The name of the game: TDDFT Runge-Gross theorem V ext (r, t) V ext(r, t) j(r, t) j (r, t) [n V ext ] [n V ext] n(r, t) n (r, t) n(r, t) V ext (r, t) + c(t) ϕe ic(t) ϕ(t) Ô(t) ϕ(t) = O[n, ϕ 0 ](t) What about infinite systems?

The name of the game: TDDFT Runge-Gross theorem V ext (r, t) V ext(r, t) j(r, t) j (r, t) [n V ext ] [n V ext] n(r, t) n (r, t) n(r, t) V ext (r, t) + c(t) ϕe ic(t) ϕ(t) Ô(t) ϕ(t) = O[n, ϕ 0 ](t) What about infinite systems?

The name of the game: TDDFT DFT Hohenberg-Kohn theorem 2 The total energy functional has a minimum, the ground-state energy E 0, corresponding to the ground-state density n 0. E[n] TDDFT Runge-Gross theorem - No minimum Time-dependent Schrödinger eq. (initial condition ϕ(t = 0) = ϕ 0 ), corresponds to a stationary point of the Hamiltonian action A = t1 t 0 dt ϕ(t) ı H(t) ϕ(t) t E 0 n 0 n

The name of the game: TDDFT DFT Hohenberg-Kohn theorem 2 The total energy functional has a minimum, the ground-state energy E 0, corresponding to the ground-state density n 0. E[n] TDDFT Runge-Gross theorem - No minimum Time-dependent Schrödinger eq. (initial condition ϕ(t = 0) = ϕ 0 ), corresponds to a stationary point of the Hamiltonian action A = t1 t 0 dt ϕ(t) ı H(t) ϕ(t) t H[t] E 0 n 0 n t 0 t 1 t

The name of the game: TDDFT DFT Kohn-Sham equations TDDFT Time-dependent Kohn-Sham equations» 1 2 2 i + V tot (r) φ i (r) = ɛ i φ i (r) Z V tot (r) = V ext (r)+ dr v(r, r )n(r )+V xc ([n], r) δexc [n] V xc ([n], r) = δn(r)» 1 2 2 + V tot (r, t) φ i (r, t) = i t φ i (r, t) Z V tot (r, t) = V ext (r, t) + v(r, r )n(r, t)dr + V xc ([n]r, t) δaxc [n] V xc ([n], r, t) = δn(r, t) Unknown exchange-correlation potential. V xc functional of the density. Unknown exchange-correlation time-dependent potential. V xc functional of the density at all times and of the initial state.

The name of the game: TDDFT DFT Kohn-Sham equations TDDFT Time-dependent Kohn-Sham equations» 1 2 2 i + V tot (r) φ i (r) = ɛ i φ i (r) Z V tot (r) = V ext (r)+ dr v(r, r )n(r )+V xc ([n], r) δexc [n] V xc ([n], r) = δn(r)» 1 2 2 + V tot (r, t) φ i (r, t) = i t φ i (r, t) Z V tot (r, t) = V ext (r, t) + v(r, r )n(r, t)dr + V xc ([n]r, t) δaxc [n] V xc ([n], r, t) = δn(r, t) Unknown exchange-correlation potential. V xc functional of the density. Unknown exchange-correlation time-dependent potential. V xc functional of the density at all times and of the initial state.

The name of the game: TDDFT Demonstrations, further readings, etc. R. van Leeuwen Int.J.Mod.Phys. B15, 1969 (2001) V xc ([n], r, t) = δa xc[n] δn(r, t) δv xc ([n], r, t) δn(r, t ) = δ 2 A xc [n] δn(r, t)δn(r, t ) Causality-Symmetry dilemma

The name of the game: TDDFT Demonstrations, further readings, etc. R. van Leeuwen Int.J.Mod.Phys. B15, 1969 (2001) V xc ([n], r, t) = δa xc[n] δn(r, t) δv xc ([n], r, t) δn(r, t ) = δ 2 A xc [n] δn(r, t)δn(r, t ) Causality-Symmetry dilemma

The name of the game: TDDFT Demonstrations, further readings, etc. R. van Leeuwen Int.J.Mod.Phys. B15, 1969 (2001) V xc ([n], r, t) = δa xc[n] δn(r, t) δv xc ([n], r, t) δn(r, t ) = δ 2 A xc [n] δn(r, t)δn(r, t ) Causality-Symmetry dilemma

The name of the game: TDDFT Demonstrations, further readings, etc. R. van Leeuwen Int.J.Mod.Phys. B15, 1969 (2001) V xc ([n], r, t) = δa xc[n] δn(r, t) δv xc ([n], r, t) δn(r, t ) = δ 2 A xc [n] δn(r, t)δn(r, t ) Causality-Symmetry dilemma

The name of the game: TDDFT DFT Hohenberg-Kohn theorem The ground-state expectation value of any physical observable of a many-electrons system is a unique functional of the electron density n(r) D ϕ 0 b O ϕ 0 E = O[n] Runge-Gross theorem TDDFT The expectation value of any physical time-dependent observable of a many-electrons system is a unique functional of the time-dependent electron density n(r) and of the initial state ϕ 0 = ϕ(t = 0) D ϕ(t) O(t) ϕ(t) b E = O[n, ϕ 0 ](t) Kohn-Sham equations» 1 2 2 i + V tot(r) φ i (r) = ɛ i φ i (r) Kohn-Sham equations» 1 2 2 + V tot(r, t) φ i (r, t) = i t φ i (r, t)

First Approach: Time Evolution of KS equations [H KS (t)] φ i (r, t) = i t φ i(r, t) occ n(r, t) = φ i (r, t) 2 i φ(t) = Û(t, t 0)φ(t 0 ) U(t, t 0 ) = 1 i t t 0 dτh(τ)û(τ, t 0) A. Castro et al. J.Chem.Phys. 121, 3425 (2004)

First Approach: Time Evolution of KS equations [H KS (t)] φ i (r, t) = i t φ i(r, t) occ n(r, t) = φ i (r, t) 2 i φ(t) = Û(t, t 0)φ(t 0 ) U(t, t 0 ) = 1 i t t 0 dτh(τ)û(τ, t 0) A. Castro et al. J.Chem.Phys. 121, 3425 (2004)

First Approach: Time Evolution of KS equations [H KS (t)] φ i (r, t) = i t φ i(r, t) occ n(r, t) = φ i (r, t) 2 i φ(t) = Û(t, t 0)φ(t 0 ) U(t, t 0 ) = 1 i t t 0 dτh(τ)û(τ, t 0) A. Castro et al. J.Chem.Phys. 121, 3425 (2004)

First Approach: Time Evolution of KS equations Photo-absorption cross section σ σ(ω) = 4πω c Imα(ω) α(t) = drv ext (r, t)n(r, t) in dipole approximation (λ dimension of the system) σ zz (ω) = 4πω c Im α(ω) = 4πω c Im dr z n(r, ω)

First Approach: Time Evolution of KS equations Photo-absorption cross section σ: porphyrin

First Approach: Time Evolution of KS equations Other observables Multipoles M lm (t) = drr l Y lm (r)n(r, t) Angular momentum L z (t) = drφ i (r, t) ı (r ) z φ i (r, t) i

First Approach: Time Evolution of KS equations Advantages Direct application of KS equations Advantageous scaling Optimal scheme for finite systems All orders automatically included Shortcomings Difficulties in approximating the V xc [n](r, t) functional of the history of the density Real space not necessarily suitable for solids Does not explicitly take into account a small perturbation. Interesting quantities (excitation energies) are contained in the linear response function!

Outline 1 Introduction: why TD-DFT? 2 (Just) A bit of Formalism TDDFT: the Foundation Linear Response Formalism 3 TDDFT in practice: The ALDA: Achievements and Shortcomings 4 Resources

Linear Response Approach Polarizability interacting system δn = χδv ext non-interacting system δn n i = χ 0 δv tot

Linear Response Approach Polarizability interacting system δn = χδv ext non-interacting system Single-particle polarizability δn n i = χ 0 δv tot χ 0 = ij φ i (r)φ j (r)φ i (r )φ j (r ) ω (ɛ i ɛ j ) hartree, hartree-fock, dft, etc. G.D. Mahan Many Particle Physics (Plenum, New York, 1990)

Linear Response Approach Polarizability interacting system δn = χδv ext non-interacting system δn n i = χ 0 δv tot j unoccupied states χ 0 = ij φ i (r)φ j (r)φ i (r )φ j (r ) ω (ɛ i ɛ j ) i occupied states

Linear Response Approach Polarizability interacting system non-interacting system δn = χδv ext δn n i = χ 0 δv tot Density Functional Formalism δn = δn n i δv tot = δv ext + δv H + δv xc

Linear Response Approach Polarizability χδv ext = χ 0 (δv ext + δv H + δv xc ) ( χ = χ 0 1 + δv H + δv ) xc δv ext δv ext δv H = δv H δn = vχ δv ext δn δv ext δv xc = δv xc δn = f xc χ δv ext δn δv ext with f xc = exchange-correlation kernel

Linear Response Approach Polarizability χδv ext = χ 0 (δv ext + δv H + δv xc ) ( χ = χ 0 1 + δv H + δv ) xc δv ext δv ext δv H = δv H δn = vχ δv ext δn δv ext δv xc = δv xc δn = f xc χ δv ext δn δv ext with f xc = exchange-correlation kernel

Linear Response Approach Polarizability χδv ext = χ 0 (δv ext + δv H + δv xc ) ( χ = χ 0 1 + δv H + δv ) xc δv ext δv ext δv H = δv H δn = vχ δv ext δn δv ext δv xc = δv xc δn = f xc χ δv ext δn δv ext χ = χ 0 + χ 0 (v + f xc ) χ with f xc = exchange-correlation kernel

Linear Response Approach Polarizability χδv ext = χ 0 (δv ext + δv H + δv xc ) ( χ = χ 0 1 + δv H + δv ) xc δv ext δv ext δv H = δv H δn = vχ δv ext δn δv ext δv xc = δv xc δn = f xc χ δv ext δn δv ext χ = [ 1 χ 0 (v + f xc ) ] 1 χ 0 with f xc = exchange-correlation kernel

Linear Response Approach Polarizability χδv ext = χ 0 (δv ext + δv H + δv xc ) ( χ = χ 0 1 + δv H + δv ) xc δv ext δv ext δv H = δv H δn = vχ δv ext δn δv ext δv xc = δv xc δn = f xc χ δv ext δn δv ext χ = [ 1 χ 0 (v + f xc ) ] 1 χ 0 with f xc = exchange-correlation kernel

Linear Response Approach Polarizability χ in TDDFT 1 DFT ground-state calc. φ i, ɛ i [V xc ] 2 φ i, ɛ i χ 0 = ij 3 δv H δn δv xc δn = v = f xc 4 χ = χ 0 + χ 0 (v + f xc ) χ φ i (r)φ j (r)φ i (r )φ j (r ) ω (ɛ i ɛ j ) } variation of the potentials A comment { δvxc f xc = δn any other function

Linear Response Approach Polarizability χ in TDDFT 1 DFT ground-state calc. φ i, ɛ i [V xc ] 2 φ i, ɛ i χ 0 = ij 3 δv H δn δv xc δn = v = f xc 4 χ = χ 0 + χ 0 (v + f xc ) χ φ i (r)φ j (r)φ i (r )φ j (r ) ω (ɛ i ɛ j ) } variation of the potentials A comment { δvxc f xc = δn any other function

Linear Response Approach Polarizability χ in TDDFT 1 DFT ground-state calc. φ i, ɛ i [V xc ] 2 φ i, ɛ i χ 0 = ij 3 δv H δn δv xc δn = v = f xc 4 χ = χ 0 + χ 0 (v + f xc ) χ φ i (r)φ j (r)φ i (r )φ j (r ) ω (ɛ i ɛ j ) } variation of the potentials A comment { δvxc f xc = δn any other function

Linear Response Approach Polarizability χ in TDDFT 1 DFT ground-state calc. φ i, ɛ i [V xc ] 2 φ i, ɛ i χ 0 = ij 3 δv H δn δv xc δn = v = f xc 4 χ = χ 0 + χ 0 (v + f xc ) χ φ i (r)φ j (r)φ i (r )φ j (r ) ω (ɛ i ɛ j ) } variation of the potentials A comment { δvxc f xc = δn any other function

Linear Response Approach Polarizability χ in TDDFT 1 DFT ground-state calc. φ i, ɛ i [V xc ] 2 φ i, ɛ i χ 0 = ij 3 δv H δn δv xc δn = v = f xc 4 χ = χ 0 + χ 0 (v + f xc ) χ φ i (r)φ j (r)φ i (r )φ j (r ) ω (ɛ i ɛ j ) } variation of the potentials A comment { δvxc f xc = δn any other function

Linear Response Approach Polarizability χ in TDDFT 1 DFT ground-state calc. φ i, ɛ i [V xc ] 2 φ i, ɛ i χ 0 = ij 3 δv H δn δv xc δn = v = f xc 4 χ = χ 0 + χ 0 (v + f xc ) χ φ i (r)φ j (r)φ i (r )φ j (r ) ω (ɛ i ɛ j ) } variation of the potentials A comment { δvxc f xc = δn any other function

Finite systems Photo-absorption cross spectrum in Linear Response α(ω) = σ(ω) = 4πω c Imα(ω) drdr V ext (r, ω)δn(r, ω) σ zz (ω) = 4πω c Im drdr zχ(r, r, ω)z

Finite systems Photo-absorption cross spectrum in Linear Response α(ω) = σ(ω) = 4πω c Imα(ω) drdr V ext (r, ω)χ(r, r, ω)v ext (r, ω) σ zz (ω) = 4πω c Im drdr zχ(r, r, ω)z

Finite systems Photo-absorption cross spectrum in Linear Response α(ω) = σ(ω) = 4πω c Imα(ω) drdr V ext (r, ω)χ(r, r, ω)v ext (r, ω) σ zz (ω) = 4πω c Im drdr zχ(r, r, ω)z

Solids Reciprocal space χ 0 (r, r, ω) χ 0 GG (q, ω) G =reciprocal lattice vector q =momentum transfer of the perturbation

Solids Reciprocal space φvk e ı(q+g)r φ ck+q φck+q e ı(q+g )r φvk χ 0 GG (q, ω) = vck ω (ɛ ck+q ɛ vk ) + ıη j unoccupied states i occupied states

Solids Reciprocal space φvk e ı(q+g)r φ ck+q φck+q e ı(q+g )r φvk χ 0 GG (q, ω) = vck ω (ɛ ck+q ɛ vk ) + ıη χ GG (q, ω) = χ 0 + χ 0 (v + f xc ) χ ɛ 1 GG (q, ω) = δ GG + v G (q)χ GG (q, ω)

Solids Reciprocal space φvk e ı(q+g)r φ ck+q φck+q e ı(q+g )r φvk χ 0 GG (q, ω) = vck ω (ɛ ck+q ɛ vk ) + ıη χ GG (q, ω) = χ 0 + χ 0 (v + f xc ) χ ɛ 1 GG (q, ω) = δ GG + v G (q)χ GG (q, ω) ELS(q, ω) = Im { ɛ 1 00 (q, ω) } { } 1 ; Abs(ω) = lim Im q 0 ε 1 00 (q, ω) S.L.Adler, Phys.Rev 126, 413 (1962); N.Wiser Phys.Rev 129, 62 (1963)

Solids Reciprocal space φvk e ı(q+g)r φ ck+q φck+q e ı(q+g )r φvk χ 0 GG (q, ω) = vck ω (ɛ ck+q ɛ vk ) + ıη χ GG (q, ω) = χ 0 + χ 0 (v + f xc ) χ ɛ 1 GG (q, ω) = δ GG + v G (q)χ GG (q, ω) ELS(ω) = limim { ε 1 00 (q, ω) } { } 1 ; Abs(ω) = limim q 0 q 0 ε 1 00 (q, ω) S.L.Adler, Phys.Rev 126, 413 (1962); N.Wiser Phys.Rev 129, 62 (1963)

Solids Absorption and Energy Loss Spectra q 0 ELS(ω) = Im { { } 1 ε 1 00 (ω)} ; Abs(ω) = Im ε 1 00 (ω)

Solids Absorption and Energy Loss Spectra q 0 ELS(ω) = Im { { } 1 ε 1 00 (ω)} ; Abs(ω) = Im ε 1 00 (ω) ε 1 00 (ω) = 1 + v 0χ 00 (ω)

Solids Absorption and Energy Loss Spectra q 0 ELS(ω) = Im { ε 1 00 (ω)} ; Abs(ω) = Im ELS(ω) = v 0 Im { χ 00 (ω) } { ; Abs(ω) = v 0 Im { 1 ε 1 00 (ω) } 1 1+v 0 χ 00 (ω) }

Solids Absorption and Energy Loss Spectra q 0 ELS(ω) = Im { ε 1 00 (ω)} ; Abs(ω) = Im ELS(ω) = v 0 Im { χ 00 (ω) } { ; Abs(ω) = v 0 Im { 1 ε 1 00 (ω) 1 1+v 0 χ 00 (ω) ELS(ω) = v 0 Im { χ 00 (ω) } ; Abs(ω) = v 0 Im { χ 00 (ω) } } }

Solids Absorption and Energy Loss Spectra q 0 ELS(ω) = Im { ε 1 00 (ω)} ; Abs(ω) = Im ELS(ω) = v 0 Im { χ 00 (ω) } { ; Abs(ω) = v 0 Im { 1 ε 1 00 (ω) 1 1+v 0 χ 00 (ω) ELS(ω) = v 0 Im { χ 00 (ω) } ; Abs(ω) = v 0 Im { χ 00 (ω) } } } χ = χ 0 + χ 0 (v + f xc ) χ χ = χ 0 + χ 0 ( v + f xc ) χ { vg G 0 v G = 0 G = 0

Solids Absorption and Energy Loss Spectra q 0 ELS(ω) = Im { ε 1 00 (ω)} ; Abs(ω) = Im ELS(ω) = v 0 Im { χ 00 (ω) } { ; Abs(ω) = v 0 Im { 1 ε 1 00 (ω) 1 1+v 0 χ 00 (ω) ELS(ω) = v 0 Im { χ 00 (ω) } ; Abs(ω) = v 0 Im { χ 00 (ω) } } } Exerciseχ = χ 0 + χ 0 (v + f xc ) χ { } χ = 1 χ 0 + χ 0 ( v + f xc ) Im ε 1 = v { 0 Im { χ } 00 00 vg G 0 v G = 0 G = 0

Solids Abs and ELS (q 0) differs only by v 0 ELS(ω) = Im { { } 1 ε 1 00 (ω)} ; Abs(ω) = Im ε 1 00 (ω) ELS(ω) = v 0 Im { χ 00 (ω) } ; Abs(ω) = v 0 Im { χ 00 (ω) } χ = χ 0 + χ 0 (v + f xc ) χ χ = χ 0 + χ 0 ( v + f xc ) χ { vg G 0 v G = microscopic components 0 G = 0

Solids Microscopic components v v = local field effects χ NLF = χ 0 + χ 0 ( vx + f xc ) χ NLF

Solids Microscopic components v v = local field effects χ NLF = χ 0 + χ 0 ( vx + f xc ) χ NLF Abs NLF = v 0 Im { χ NLF}

Solids Microscopic components v v = local field effects χ NLF = χ 0 + χ 0 ( vx + f xc ) χ NLF Abs NLF = v 0 Im { χ NLF} Abs NLF = Im {ε 00 }

Solids Microscopic components v v = local field effects χ NLF = χ 0 + χ 0 ( vx + f xc ) χ NLF Abs NLF = v 0 Im { χ NLF} Abs NLF = Im {ε 00 } { } 1 Abs = Im ε 1 00

Solids Microscopic components v v = local field effects χ NLF = χ 0 + χ 0 ( vx + f xc ) χ NLF Abs NLF = v 0 Im { χ NLF} Abs NLF = Im {ε 00 } Exercise { } 1 Abs = Im Abs NLF = v ε 1 00 0 Im { χ NLF} = Im {ε 00 }

EELS of Graphite

Absorption of Silicon

Outline 1 Introduction: why TD-DFT? 2 (Just) A bit of Formalism TDDFT: the Foundation Linear Response Formalism 3 TDDFT in practice: The ALDA: Achievements and Shortcomings 4 Resources

TDDFT in practice Practical schema and approximations Ground-state calculation φ i, ɛ i [V xc LDA] χ 0 (q, ω) χ = χ 0 + χ 0 (v + f xc ) χ f xc = 0 RPA f ALDA xc (r, r ) = δvxc(r) δn(r ) δ(r r ) ALDA

Outline 1 Introduction: why TD-DFT? 2 (Just) A bit of Formalism TDDFT: the Foundation Linear Response Formalism 3 TDDFT in practice: The ALDA: Achievements and Shortcomings 4 Resources

ALDA: Achievements and Shortcomings Electron Energy Loss Spectrum of Graphite RPA vs EXP χ NLF = χ 0 + χ 0 v 0 χ NLF χ = χ 0 + χ 0 v χ ELS = v 0 Im { χ 00 } A.Marinopoulos et al. Phys.Rev.Lett 89, 76402 (2002)

ALDA: Achievements and Shortcomings Photo-absorption cross section of Benzene ALDA vs EXP Abs= 4πω c Im drzn(r, ω) K.Yabana and G.F.Bertsch Int.J.Mod.Phys.75, 55 (1999)

ALDA: Achievements and Shortcomings Inelastic X-ray scattering of Silicon ALDA vs RPA vs EXP S(q, ω)= 2 q 2 4π 2 e 2 n Imε 1 00 Weissker et al., PRL 97, 237602 (2006)

ALDA: Achievements and Shortcomings Absorption Spectrum of Silicon ALDA vs RPA vs EXP χ = χ 0 + χ 0 ( v + f ALDA xc ) χ Abs = v 0 Im { χ 00 }

ALDA: Achievements and Shortcomings Absorption Spectrum of Argon ALDA vs EXP χ = χ 0 + χ 0 ( v + f ALDA xc ) χ Abs = v 0 Im { χ 00 }

ALDA: Achievements and Shortcomings Good results Photo-absorption of small molecules ELS of solids Bad results Absorption of solids

ALDA: Achievements and Shortcomings Good results Photo-absorption of small molecules ELS of solids Bad results Absorption of solids Why?

ALDA: Achievements and Shortcomings Good results Photo-absorption of small molecules ELS of solids Bad results Absorption of solids Why? f ALDA xc is short-range f xc (q 0) 1 q 2

ALDA: Achievements and Shortcomings Absorption of Silicon f xc = α q 2 L.Reining et al. Phys.Rev.Lett. 88, 66404 (2002)

Outline 1 Introduction: why TD-DFT? 2 (Just) A bit of Formalism TDDFT: the Foundation Linear Response Formalism 3 TDDFT in practice: The ALDA: Achievements and Shortcomings 4 Resources

Resources Codes (more or less) available for TDDFT Octopus (Marques,Castro,Rubio) -(real space, real time) - mainly finite systems - GPL http://www.tddft.org/programs/octopus/ DP (Olevano,Reining,Sottile) - (reciprocal space, frequency domain) - solides and finite systems - open source for academics http://dp-code.org Self (Marini) - (reciprocal space, frequency domain) Fleszar code Rehr (core excitations) TDDFT (Bertsch) VASP, SIESTA, ADF, TURBOMOLE TD-DFPT (Baroni)

The DP code dp - Dielectric Properties Reciprocal space Frequency domain Planewave basis Optical absorption Loss Spectra (EELS,IXS) Different approximations (RPA, ALDA, NLDA, MT, etc.) Authors: Valerio Olevano, Lucia Reining, Contributors: Valérie Véniard, Eleonora Luppi non-linear Lucia Caramella Spin Silvana Botti kernel, Wannier functions Margherita Marsili Mapping-Theory kernel Christine Giorgetti metals

The DP code The algorithm ε 1 GG (q, ω) = δ GG + v G (q)χ GG (q, ω)

The DP code The algorithm ε 1 GG (q, ω) = δ GG + v G (q)χ GG (q, ω) χ GG (q, ω) = χ 0 + χ 0 (v + f xc ) χ

The DP code The algorithm ε 1 GG (q, ω) = δ GG + v G (q)χ GG (q, ω) χ GG (q, ω) = χ 0 + χ 0 (v + f xc ) χ φvk e ı(q+g)r φ ck+q φ ck+q e ı(q+g )r φ vk χ 0 GG (q, ω) = vck ω (ɛ ck+q ɛ vk ) + ıη

The DP code The algorithm ε 1 GG (q, ω) = δ GG + v G (q)χ GG (q, ω) χ GG (q, ω) = χ 0 + χ 0 (v + f xc ) χ χ 0 (q, ω) = φvk e ı(q+g)r φ ck+q φ ck+q e ı(q+g )r φ vk GG ω (ɛ ck+q ɛ vk ) + ıη vck φ vk e ı(q+g)r φ ck+q = drφ vk (r)eı(q+g)r φ ck+q (r)

The DP code The algorithm ε 1 GG (q, ω) = δ GG + v G (q)χ GG (q, ω) χ GG (q, ω) = χ 0 + χ 0 (v + f xc ) χ χ 0 (q, ω) = φvk e ı(q+g)r φ ck+q φ ck+q e ı(q+g )r φ vk GG ω (ɛ ck+q ɛ vk ) + ıη vck φ vk e ı(q+g)r φ ck+q = drφ vk (r)eı(q+g)r φ ck+q (r)

The DP code The algorithm ε 1 GG (q, ω) = δ GG + v G (q)χ GG (q, ω) χ GG (q, ω) = χ 0 + χ 0 (v + f xc ) χ χ 0 (q, ω) = φvk e ı(q+g)r φ ck+q φ ck+q e ı(q+g )r φ vk GG ω (ɛ ck+q ɛ vk ) + ıη vck φ vk e ı(q+g)r φ ck+q = drφ vk (r)eı(q+g)r φ ck+q (r)

The DP code The algorithm ε 1 GG (q, ω) = δ GG + v G (q)χ GG (q, ω) χ GG (q, ω) = χ 0 + χ 0 (v + f xc ) χ χ 0 (q, ω) = φvk e ı(q+g)r φ ck+q φ ck+q e ı(q+g )r φ vk GG ω (ɛ ck+q ɛ vk ) + ıη vck φ vk e ı(q+g)r φ ck+q = drφ vk (r)eı(q+g)r φ ck+q (r)

The DP code The algorithm ε 1 GG (q, ω) = δ GG + v G (q)χ GG (q, ω) χ GG (q, ω) = χ 0 + χ 0 (v + f xc ) χ χ 0 (q, ω) = φvk e ı(q+g)r φ ck+q φ ck+q e ı(q+g )r φ vk GG ω (ɛ ck+q ɛ vk ) + ıη vck φ vk e ı(q+g)r φ ck+q = drφ vk (r)eı(q+g)r φ ck+q (r)

The DP code The algorithm ε 1 GG (q, ω) = δ GG + v G (q)χ GG (q, ω) χ GG (q, ω) = χ 0 + χ 0 (v + f xc ) χ χ 0 (q, ω) = φvk e ı(q+g)r φ ck+q φ ck+q e ı(q+g )r φ vk GG ω (ɛ ck+q ɛ vk ) + ıη vck φ vk e ı(q+g)r φ ck+q = drφ vk (r)eı(q+g)r φ ck+q (r)

The DP code The algorithm ε 1 GG (q, ω) = δ GG + v G (q)χ GG (q, ω) χ GG (q, ω) = χ 0 + χ 0 (v + f xc ) χ χ 0 (q, ω) = φvk e ı(q+g)r φ ck+q φ ck+q e ı(q+g )r φ vk GG ω (ɛ ck+q ɛ vk ) + ıη vck φ vk e ı(q+g)r φ ck+q = drφ vk (r)eı(q+g)r φ ck+q (r)

TDDFT vs BSE scaling Scaling of TDDFT (DP) χ GG (q, ω)=χ 0 (q, GG ω)+χ0 (q, ω) [v xc GG G (q)+fg (q, ω)] χ G G G (q, ω)

TDDFT vs BSE scaling Scaling of TDDFT (DP) χ GG (q, ω)=χ 0 (q, GG ω)+χ0 (q, ω) [v xc GG G (q)+fg (q, ω)] χ G G G (q, ω) φ vk e ı(q+g)r φ ck+q φ ck+q e ı(q+g )r φ vk χ 0 GG (q, ω) = vck ω (ɛ ck+q ɛ vk ) + ıη

TDDFT vs BSE scaling Scaling of TDDFT (DP) χ GG (q, ω)=χ 0 (q, GG ω)+χ0 (q, ω) [v xc GG G (q)+fg (q, ω)] χ G G G (q, ω) φ vk e ı(q+g)r φ ck+q φ ck+q e ı(q+g )r φ vk χ 0 GG (q, ω) = vck ω (ɛ ck+q ɛ vk ) + ıη N t

TDDFT vs BSE scaling Scaling of TDDFT (DP) χ GG (q, ω)=χ 0 (q, GG ω)+χ0 (q, ω) [v xc GG G (q)+fg (q, ω)] χ G G G (q, ω) φ vk e ı(q+g)r φ ck+q φ ck+q e ı(q+g )r φ vk χ 0 GG (q, ω) = vck ω (ɛ ck+q ɛ vk ) + ıη N t N G

TDDFT vs BSE scaling Scaling of TDDFT (DP) χ GG (q, ω)=χ 0 (q, GG ω)+χ0 (q, ω) [v xc GG G (q)+fg (q, ω)] χ G G G (q, ω) φ vk e ı(q+g)r φ ck+q φ ck+q e ı(q+g )r φ vk χ 0 GG (q, ω) = vck ω (ɛ ck+q ɛ vk ) + ıη N t N G N G

TDDFT vs BSE scaling Scaling of TDDFT (DP) χ GG (q, ω)=χ 0 (q, GG ω)+χ0 (q, ω) [v xc GG G (q)+fg (q, ω)] χ G G G (q, ω) φ vk e ı(q+g)r φ ck+q φ ck+q e ı(q+g )r φ vk χ 0 GG (q, ω) = vck ω (ɛ ck+q ɛ vk ) + ıη N t N G N G N ω

TDDFT vs BSE scaling Scaling of TDDFT (DP) χ GG (q, ω)=χ 0 (q, GG ω)+χ0 (q, ω) [v xc GG G (q)+fg (q, ω)] χ G G G (q, ω) φ vk e ı(q+g)r φ ck+q φ ck+q e ı(q+g )r φ vk χ 0 GG (q, ω) = vck ω (ɛ ck+q ɛ vk ) + ıη N t N G N G N ω ; N t N r lnn r N ω

TDDFT vs BSE scaling Scaling of TDDFT (DP) χ GG (q, ω)=χ 0 (q, GG ω)+χ0 (q, ω) [v xc GG G (q)+fg (q, ω)] χ G G G (q, ω) φ vk e ı(q+g)r φ ck+q φ ck+q e ı(q+g )r φ vk χ 0 GG (q, ω) = vck ω (ɛ ck+q ɛ vk ) + ıη N t N G N G N ω ; N t N r lnn r N ω Scaling N 4 at

TDDFT vs BSE scaling Scaling of BSE (EXC) H v c k vck Scaling N 2 t N r N 5 at

TDDFT vs BSE scaling Scaling of BSE (EXC) H v c k vck A v c k λ = A λ A vck λ Scaling N 2 t N r N 5 at Scaling N 3 t N 6 at

TDDFT Some References van Leeuwen, Int. J. Mod. Phys. B15, 1969 (2001) Gross and Kohn, Adv. Quantum Chem. 21, 255 (1990) Marques and Gross, Annu. Rev. Phys. Chem. 55, 427 (2004) Botti et al. Rep. Prog. Phys. 70, 357 (2007) Marques et al. eds. Time Dependent Density Functional Theory, Springer (2006)