Supplementary Figure 1. 1 H and 13 C NMR spectra for compound 1a

Similar documents
Enantioselective Conjugate Addition of 3-Fluoro-Oxindoles to. Vinyl Sulfone: An Organocatalytic Access to Chiral. 3-Fluoro-3-Substituted Oxindoles

Singapore, #05 01, 28 Medical Drive, Singapore. PR China,

Supporting Information:

Supporting Information

The First Asymmetric Total Syntheses and. Determination of Absolute Configurations of. Xestodecalactones B and C

A Facile and General Approach to 3-((Trifluoromethyl)thio)- 4H-chromen-4-one

Supporting Information

Construction of Vicinal Quaternary Carbon Centers via Cobalt- Catalyzed Asymmetric Reverse Prenylation

Supporting Information. for. Angew. Chem. Int. Ed. Z Wiley-VCH 2003

Supporting Information

Supporting Information

Asymmetric Michael Addition of -Fluoro- -nitroalkanes to Nitroolefins: Facile Preparation of Fluorinated Amines and Tetrahydropyrimidines

Synthesis of Trifluoromethylated Naphthoquinones via Copper-Catalyzed. Cascade Trifluoromethylation/Cyclization of. 2-(3-Arylpropioloyl)benzaldehydes

Electronic Supplementary Information for Catalytic Asymmetric Hydrophosphonylation of Ynones

Supporting Information

Carbonylative Coupling of Allylic Acetates with. Arylboronic Acids

Supporting Information 1. Rhodium-catalyzed asymmetric hydroalkoxylation and hydrosufenylation of diphenylphosphinylallenes

David L. Davies,*, 1 Charles E. Ellul, 1 Stuart A. Macgregor,*, 2 Claire L. McMullin 2 and Kuldip Singh. 1. Table of contents. General information

guanidine bisurea bifunctional organocatalyst

Supporting Information

Supporting Information

Supporting Information

Nanocrystalline Magnesium Oxide-Stabilized Palladium(0): An Efficient and Reusable Catalyst for the Synthesis of N-(2- pyridyl)indoles

Tetrahydrofuran (THF) was distilled from benzophenone ketyl radical under an argon

Asymmetric Organocatalytic Strecker-Type Reactions of Aliphatic N,N- Dialkylhydrazones

Supporting Information

Palladium-Catalyzed Asymmetric [3+2] Cycloaddition to Construct 1,3-Indandione and Oxindole-Fused Spiropyrazolidine Scaffolds

Hai-Bin Yang, Xing Fan, Yin Wei,* Min Shi*

Supporting Information

Supplementary Materials for

A Mild, Catalytic and Highly Selective Method for the Oxidation of α,β- Enones to 1,4-Enediones. Jin-Quan Yu, a and E. J.

Supporting Information

1G (bottom) with the phase-transition temperatures in C and associated enthalpy changes (in

Aggregation-induced emission enhancement based on 11,11,12,12,-tetracyano-9,10-anthraquinodimethane

Ring-Opening / Fragmentation of Dihydropyrones for the Synthesis of Homopropargyl Alcohols

Synthetic Studies on Norissolide; Enantioselective Synthesis of the Norrisane Side Chain

Supporting Information

Domino reactions of 2-methyl chromones containing an electron withdrawing group with chromone-fused dienes

Supporting Information

Asymmetric Synthesis of Hydrobenzofuranones via Desymmetrization of Cyclohexadienones using the Intramolecular Stetter Reaction

Supporting Information

Organocatalytic asymmetric synthesis of 3,3-disubstituted oxindoles featuring two heteroatoms at C3 position

Supporting Information. Table of Contents. 1. General Notes Experimental Details 3-12

Organocatalytic Doubly Annulative Approach to 3,4-Dihydrocoumarins Bearing a Fused Pyrrolidine Scaffold. Dorota Kowalczyk, and Łukasz Albrecht*

Supporting Information. DBU-Mediated Metal-Free Oxidative Cyanation of α-amino. Carbonyl Compounds: Using Molecular Oxygen as the Oxidant

Supplementary information

Supporting Information

Supporting Information

Organocatalytic asymmetric biomimetic transamination of aromatic ketone to optically active amine

Copper Mediated Fluorination of Aryl Iodides

Supporting Information for Synthesis of C(3) Benzofuran Derived Bis-Aryl Quaternary Centers: Approaches to Diazonamide A

Supporting Text Synthesis of (2 S ,3 S )-2,3-bis(3-bromophenoxy)butane (3). Synthesis of (2 S ,3 S

Supporting Information

Silver-Catalyzed Cascade Reaction of β-enaminones and Isocyanoacetates to Construct Functionalized Pyrroles

Synthesis of Aminophenanthrenes and Benzoquinolines via Hauser-Kraus Annulation of Sulfonyl Phthalide with Rauhut- Currier Adducts of Nitroalkenes

SYNTHESIS OF A 3-THIOMANNOSIDE

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007

Metal-free general procedure for oxidation of secondary amines to nitrones

Active Trifluoromethylating Agents from Well-defined Copper(I)-CF 3 Complexes

Brønsted Base-Catalyzed Reductive Cyclization of Alkynyl. α-iminoesters through Auto-Tandem Catalysis

Reversible 1,2-Alkyl Migration to Carbene and Ammonia Activation in an NHC-Zirconium Complex.

Electronic Supplementary Material (ESI) for Medicinal Chemistry Communications This journal is The Royal Society of Chemistry 2012

Synergistic Cu/Ir Catalysis. Table of Contents

Enantioselective Synthesis of Hindered Cyclic Dialkyl Ethers via Catalytic Oxa- Michael/Michael Desymmetrization.

A Sumanene-based Aryne, Sumanyne

Electronic Supplementary Information

New Efficient Delayed-Action Catalysts Based on Guanidine Templates for Polyurethane Synthesis

Supporting information

Molecular Imaging of Labile Iron(II) Pools in Living Cells with a Turn-on Fluorescent Probe

Supporting Information

Supporting Information

Supporting Information. (1S,8aS)-octahydroindolizidin-1-ol.

Supplementary Note 1 : Chemical synthesis of (E/Z)-4,8-dimethylnona-2,7-dien-4-ol (4)

Supporting Information

SUPPORTING INFORMATION

Supporting Information

Catalytic Reductive Dehydration of Tertiary Amides to Enamines under Hydrosilylation Conditions

Diastereoselectivity in the Staudinger reaction of. pentafluorosulfanylaldimines and ketimines

Supporting Information

A Highly Chemoselective and Enantioselective Aza-Henry Reaction of Cyclic -Carbonyl Ketimines under Bifunctional Catalysis

Supplementary Materials for

SUPPORTING INFORMATION. A simple asymmetric organocatalytic approach to optically active cyclohexenones

Electronic Supplementary Information

SUPPLEMENTARY INFORMATION

Supporting Information. Rh (III)-Catalyzed Meta-C H Olefination Directed by a Nitrile Template

Supporting Information

Supporting Material. 2-Oxo-tetrahydro-1,8-naphthyridine-Based Protein Farnesyltransferase Inhibitors as Antimalarials

Supporting Information:

Hualong Ding, Songlin Bai, Ping Lu,* Yanguang Wang*

A Total Synthesis of Paeoveitol

Supporting Information

Supporting Information. Molecular Iodine-Catalyzed Aerobic α,β-diamination of Cyclohexanones with 2- Aminopyrimidine and 2-Aminopyridines

How to build and race a fast nanocar Synthesis Information

The version of SI posted May 6, 2004 contained errors. The correct version was posted October 21, 2004.

Supporting Information

Enantioselective Synthesis of Fused Heterocycles with Contiguous Stereogenic Centers by Chiral Phosphoric Acid-Catalyzed Symmetry Breaking

Supporting Information

Phil S. Baran*, Jeremy M. Richter and David W. Lin SUPPORTING INFORMATION

Supporting Information. Efficient N-arylation and N-alkenylation of the five. DNA/RNA nucleobases

Silver-catalyzed decarboxylative acylfluorination of styrenes in aqueous media

Transcription:

216.29 185.02 164.20 148.97 128.19 87.70 79.67 77.30 77.04 76.79 74.66 26.23 2.02 2.03 2.01 3.05 7.26 6.92 6.90 6.25 6.23 5.61 5.60 5.58 5.25 5.24 1.58 Supplementary Figure 1. 1 H and 13 C NMR spectra for compound 1a

216.24 185.21 164.08 148.13 129.09 87.66 79.54 77.61 77.43 77.17 76.92 32.26 7.62 2.00 2.00 2.00 2.01 3.03 7.26 6.79 6.77 6.23 6.21 5.56 5.54 5.53 5.19 5.18 1.86 1.84 1.83 1.81 0.87 0.85 0.84 Supplementary Figure 2. 1 H and 13 C NMR spectra for compound 1b

79.54 77.35 77.30 77.04 76.79 41.38 16.79 14.07 2.04 2.00 2.01 2.05 2.06 3.11 7.26 6.86 6.84 6.27 6.25 5.60 5.59 5.57 5.24 5.23 1.83 1.82 1.81 1.80 1.79 1.36 1.35 1.34 1.33 0.93 0.91 0.90 n-pr 1c 216.28 185.26 164.12 148.31 128.91 87.73 n-pr 1c Supplementary Figure 3. 1 H and 13 C NMR spectra for compound 1c

216.33 185.39 164.08 147.14 129.96 87.81 79.79 79.46 77.31 77.06 76.80 36.63 16.87 2.05 2.01 2.04 1.02 6.03 7.26 6.80 6.78 6.33 6.31 5.61 5.59 5.58 5.24 5.23 2.18 2.16 2.15 2.13 2.12 2.12 0.97 0.95 Supplementary Figure 4. 1 H and 13 C NMR spectra for compound 1d

79.53 77.39 77.28 77.02 76.77 38.97 25.40 22.67 13.80 2.02 2.01 2.01 2.07 4.49 3.21 7.26 6.85 6.84 6.29 6.26 5.61 5.60 5.58 5.24 5.23 1.85 1.84 1.83 1.83 1.82 1.82 1.31 1.31 1.30 1.29 0.90 0.88 0.87 n-bu 1e 216.29 185.29 164.13 148.29 128.96 87.75 n-bu 1e Supplementary Figure 5. 1 H and 13 C NMR spectra for compound 1e

133.80 131.03 128.84 128.15 127.49 87.73 79.64 77.39 77.14 76.88 76.51 46.48 3.03 2.02 2.01 2.03 2.02 2.05 7.30 7.29 7.29 7.29 7.28 7.28 7.28 7.27 7.27 7.26 7.21 7.20 7.20 7.19 7.19 6.81 6.79 6.26 6.24 5.59 5.58 5.57 5.28 5.27 3.07 Bn 1f 216.41 184.93 164.03 148.28 Bn 1f Supplementary Figure 6. 1 H and 13 C NMR spectra for compound 1f

129.21 128.64 128.29 126.40 87.71 79.63 77.36 77.11 76.93 76.85 41.22 29.85 2.05 1.01 2.00 2.01 2.01 2.02 2.06 2.00 7.30 7.29 7.28 7.27 7.27 7.26 7.21 7.21 7.20 7.20 7.18 7.14 7.14 7.13 6.92 6.90 6.33 6.31 5.63 5.62 5.61 5.27 5.26 2.69 2.68 2.68 2.67 2.66 2.17 2.16 2.15 2.15 2.14 2.13 Ph 1g 216.41 185.14 164.04 147.95 140.45 Ph 1g Supplementary Figure 7. 1 H and 13 C NMR spectra for compound 1g

216.39 184.80 172.54 163.85 147.21 129.80 129.54 87.51 79.73 77.32 77.06 76.81 76.31 51.91 33.86 28.10 2.04 2.01 2.00 3.05 2.12 2.09 7.26 6.81 6.79 6.29 6.27 5.59 5.58 5.56 5.25 5.23 3.65 2.35 2.33 2.31 2.22 2.21 2.20 2.19 Supplementary Figure 8. 1 H and 13 C NMR spectra for compound 1h

129.11 128.77 128.44 128.15 125.31 87.91 79.76 77.70 77.30 77.04 76.79 2.17 3.12 2.04 2.06 2.03 7.45 7.45 7.44 7.40 7.40 7.39 7.38 7.38 7.37 7.37 7.36 7.36 7.35 7.35 7.34 7.34 7.32 7.26 6.98 6.96 6.36 6.34 5.72 5.71 5.70 5.33 5.32 Ph 1i 216.52 185.51 163.69 147.49 136.29 Ph 1i Supplementary Figure 9. 1 H and 13 C NMR spectra for compound 1i

216.67 184.87 163.34 146.15 141.71 132.90 128.97 126.22 118.11 112.73 87.64 80.00 77.40 77.14 77.07 76.89 2.02 2.03 2.04 2.01 2.00 7.7 7.7 7.6 7.6 7.3 6.9 6.9 6.4 6.4 5.4 5.3 Supplementary Figure 10. 1 H and 13 C NMR spectra for compound 1j

164.0 163.5 162.1 146.8 139.0 139.0 130.7 130.7 128.5 121.0 121.0 115.8 115.7 112.9 112.7 87.8 79.9 77.3 77.1 76.8 1.04 2.00 1.03 2.02 2.03 2.01 7.4 7.3 7.3 7.3 7.3 7.3 7.3 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 6.9 6.9 6.4 6.3 5.7 5.7 5.7 5.3 5.3 F 1k 216.6 185.2 F 1k Supplementary Figure 11. 1 H and 13 C NMR spectra for compound 1k

216.58 185.24 163.54 146.98 134.95 134.84 129.31 128.38 126.78 87.81 79.85 77.31 77.19 77.06 76.81 4.12 2.04 2.00 2.02 7.38 7.38 7.37 7.36 7.35 7.35 7.34 7.33 7.26 6.94 6.92 6.35 6.35 6.34 6.33 5.71 5.70 5.68 5.33 5.32 Supplementary Figure 12. 1 H and 13 C NMR spectra for compound 1l

136.2 134.7 133.3 129.1 128.9 126.6 125.9 87.8 79.8 78.6 77.4 77.1 76.8 21.6 1.02 5.19 2.00 2.00 3.04 7.4 7.4 7.3 7.3 7.3 7.3 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.1 6.4 6.4 5.7 5.7 5.6 5.3 5.3 2.5 Me 1m 216.4 185.2 163.5 145.5 Me 1m Supplementary Figure 13. 1 H and 13 C NMR spectra for compound 1m

133.44 133.26 133.14 129.05 128.36 128.26 127.68 126.94 126.76 124.73 122.66 87.99 79.81 77.81 77.32 77.06 76.81 1.03 1.02 2.01 2.06 1.02 2.01 2.00 2.03 7.97 7.97 7.87 7.85 7.84 7.83 7.83 7.82 7.81 7.53 7.52 7.51 7.51 7.48 7.48 7.46 7.46 7.06 7.04 6.41 6.39 5.79 5.77 5.76 5.37 5.36 1n 216.64 185.58 163.73 147.40 1n Supplementary Figure 14. 1 H and 13 C NMR spectra for compound 1n

216.55 184.18 163.47 142.43 128.72 87.53 79.94 77.28 77.02 76.88 76.77 76.43 67.58 2.01 2.01 2.03 7.26 7.10 7.08 6.30 6.28 5.64 5.63 5.61 5.28 5.27 2.72 Supplementary Figure 15. 1 H and 13 C NMR spectra for compound 1o

216.51 185.25 163.64 159.53 126.71 87.13 79.74 79.10 77.31 77.06 76.80 26.33 17.70 2.04 2.01 6.06 3.06 7.26 6.06 5.65 5.64 5.63 5.27 5.26 1.93 1.50 Supplementary Figure 16. 1 H and 13 C NMR spectra for compound 1p

77.31 77.05 76.80 74.46 26.28 12.62 2.03 2.00 0.98 3.03 3.00 7.26 6.91 6.89 6.23 6.23 6.21 6.21 5.64 5.62 5.62 5.61 5.61 5.59 5.59 5.58 5.53 5.52 5.51 5.51 5.51 5.50 5.49 1.78 1.77 1.77 1.76 1.56 Me Me 6a 213.68 185.05 164.73 149.18 128.10 128.08 90.75 87.26 Me Me 6a Supplementary Figure 17. 1 H and 13 C NMR spectra for compound 6a

77.30 77.05 76.79 74.40 26.29 20.78 13.17 2.00 2.00 0.99 2.00 3.03 3.00 6.92 6.91 6.91 6.90 6.90 6.90 6.90 6.89 6.89 6.88 6.24 6.23 6.21 6.21 5.70 5.69 5.68 5.67 5.57 5.57 5.56 5.56 5.56 5.55 5.54 2.17 2.17 2.16 2.15 2.15 2.14 2.13 2.13 2.12 2.11 1.56 1.07 1.06 1.04 Et Me 6b 212.88 185.05 164.76 149.23 149.21 128.09 97.57 88.35 Et Me 6b Supplementary Figure 18. 1 H and 13 C NMR spectra for compound 6b

212.03 185.07 164.75 149.28 128.11 128.09 102.96 88.82 77.29 77.04 76.78 74.35 27.73 26.33 22.30 22.29 2.03 2.03 3.02 6.04 7.26 6.92 6.91 6.91 6.90 6.89 6.24 6.24 6.24 6.22 6.22 5.66 5.65 5.64 5.58 5.58 5.57 5.56 2.51 2.50 2.49 2.49 2.48 2.48 2.47 2.46 2.45 2.45 2.44 2.44 1.56 1.08 1.08 1.07 1.07 Supplementary Figure 19. 1 H and 13 C NMR spectra for compound 6c

213.01 185.05 164.75 149.23 128.09 95.77 87.75 77.29 77.04 76.78 74.39 30.82 27.07 26.30 21.95 13.75 2.04 2.01 0.99 2.17 3.02 2.23 2.38 3.54 7.26 6.93 6.92 6.91 6.91 6.90 6.90 6.89 6.88 6.24 6.22 5.64 5.63 5.61 5.60 5.54 5.53 5.52 5.52 5.51 2.16 2.15 2.14 2.14 2.13 2.12 2.11 2.11 1.56 1.44 1.42 1.40 1.39 1.38 1.36 0.91 0.90 0.88 Supplementary Figure 20. 1 H and 13 C NMR spectra for compound 6d

212.95 185.04 164.57 149.19 140.77 128.48 128.43 128.12 126.23 95.21 88.24 77.34 77.09 76.84 74.48 35.05 28.96 26.31 2.01 3.02 2.00 2.00 2.07 2.06 3.00 7.30 7.29 7.27 7.26 7.22 7.20 7.20 7.20 7.18 6.91 6.90 6.90 6.89 6.88 6.25 6.24 6.23 6.22 5.70 5.69 5.67 5.66 5.56 5.56 5.55 5.54 5.54 2.81 2.79 2.79 2.78 2.77 2.76 2.76 2.74 2.73 2.49 2.48 2.47 2.47 2.46 2.45 2.44 2.44 2.44 1.56 Supplementary Figure 21. 1 H and 13 C NMR spectra for compound 6e

212.42 185.03 164.76 149.28 128.06 101.45 88.52 77.33 77.07 76.82 74.32 36.59 32.74 32.65 26.33 25.89 25.70 25.67 2.00 2.00 0.97 2.32 2.12 1.03 3.04 5.67 6.91 6.91 6.90 6.89 6.89 6.89 6.89 6.88 6.87 6.22 6.22 6.20 6.20 5.61 5.60 5.59 5.55 5.54 5.53 5.53 2.19 2.19 2.18 2.17 2.16 2.16 2.15 2.14 2.14 2.13 1.78 1.76 1.75 1.69 1.30 1.29 1.27 1.27 1.26 1.25 1.25 1.24 1.24 1.22 1.21 1.21 1.19 1.18 1.16 1.14 1.12 1 11 Me 6f Me 6f Supplementary Figure 22. 1 H and 13 C NMR spectra for compound 6f

211.21 185.02 164.67 149.26 149.23 128.11 128.08 107.18 89.26 77.29 77.04 76.78 74.29 32.77 29.99 26.34 2.02 2.01 2.00 3.01 9.05 6.92 6.91 6.90 6.88 6.87 6.23 6.23 6.21 6.21 5.62 5.61 5.57 5.56 1.55 1.10 Supplementary Figure 23. 1 H and 13 C NMR spectra for compound 6g

212.13 185.59 164.20 147.83 147.80 136.37 129.04 128.71 128.04 128.02 125.36 102.97 89.11 77.43 77.32 77.07 76.81 27.81 22.40 22.23 1.95 3.07 2.00 2.00 1.93 6.21 7.46 7.45 7.44 7.38 7.38 7.37 7.35 7.34 7.34 7.33 7.33 7.31 7.31 6.96 6.96 6.94 6.94 6.94 6.35 6.34 6.33 5.74 5.74 5.73 5.73 5.72 5.71 5.70 5.69 5.69 5.69 5.68 5.68 5.68 5.67 2.57 2.56 2.55 2.55 2.54 2.53 2.53 2.52 2.51 2.51 2.50 2.49 1.13 1.13 1.13 1.13 1.12 1.12 1.11 1.11 Supplementary Figure 24. 1 H and 13 C NMR spectra for compound 6h

216.37 185.37 163.80 158.88 149.69 127.74 126.75 87.39 79.61 77.32 77.07 76.81 76.68 26.11 17.72 0.99 0.96 0.95 2.02 3.00 3.01 7.26 6.86 6.84 6.20 6.19 6.18 6.17 6.07 6.07 6.06 5.61 5.60 5.58 5.24 5.24 5.23 1.92 1.92 1.50 Supplementary Figure 25. 1 H and 13 C NMR spectra for compound 8

208.21 194.43 167.31 146.39 128.94 98.78 84.97 80.64 77.28 77.03 76.78 44.08 35.88 23.89 1.01 2.02 1.04 1.99 3.09 7.26 6.61 6.60 6.60 6.59 6.58 6.04 6.02 5.49 5.48 3.55 3.54 3.54 3.53 3.53 2.74 2.74 2.73 1.72 Me 2a Me 2a Supplementary Figure 26. 1 H and 13 C NMR spectra for compound 2a

85.00 83.13 77.30 77.05 76.79 41.59 36.41 30.54 7.86 0.99 2.00 2.01 2.04 3.00 7.26 6.62 6.61 6.60 6.59 6.09 6.07 5.49 5.48 5.47 5.47 3.60 3.60 3.59 3.59 3.58 3.58 3.58 3.57 3.57 3.56 2.71 2.70 2.08 2.06 2.05 2.03 2.02 2.02 2.01 1.99 1.98 1.96 1.12 1.11 1.09 Et 2b 208.31 194.67 167.38 145.64 129.82 99.12 Et 2b Supplementary Figure 27. 1 H and 13 C NMR spectra for compound 2b

42.14 39.75 36.33 16.99 14.26 2.01 2.01 2.04 2.01 3.01 7.26 6.61 6.61 6.59 6.59 6.06 6.04 5.47 5.46 3.59 3.58 3.58 3.58 3.57 3.57 3.57 3.56 3.56 3.56 3.55 2.74 2.71 2.70 2.70 2.67 2.66 1.98 1.97 1.95 1.92 1.91 1.89 1.56 1.54 1.53 1.51 1.50 1.01 0.99 n-pr 2c 208.26 194.69 167.40 145.81 129.57 99.02 84.99 82.91 77.33 77.08 76.82 n-pr 2c Supplementary Figure 28. 1 H and 13 C NMR spectra for compound 2c

208.52 194.90 167.30 144.82 130.74 99.76 85.31 85.14 77.32 77.07 76.81 39.34 37.52 35.84 17.44 16.59 0.98 2.04 1.01 2.06 1.04 6.04 7.26 6.62 6.62 6.60 6.59 6.15 6.13 5.52 5.50 5.50 5.49 5.48 5.48 5.47 5.45 5.44 3.66 3.65 3.65 3.64 3.64 3.64 3.63 3.63 3.63 3.62 3.62 3.61 2.75 2.73 2.72 2.71 2.70 2.67 2.27 2.26 2.24 2.23 2.22 2.20 1.69 1.11 1.10 1.09 Supplementary Figure 29. 1 H and 13 C NMR spectra for compound 2d

77.28 77.03 76.78 42.12 37.38 36.36 25.61 22.86 13.83 0.99 2.02 1.01 2.05 1.04 1.02 2.06 2.12 3.01 7.26 6.63 6.62 6.61 6.60 6.09 6.06 5.52 5.51 5.49 5.49 5.48 5.48 5.46 5.45 3.60 3.59 3.59 3.59 3.58 3.58 3.57 2.72 2.72 2.72 2.01 2.01 2.00 1.98 1.96 1.94 1.92 1.50 1.48 1.43 1.42 1.40 0.96 0.95 0.93 n-bu 2e 208.28 194.69 167.39 145.86 129.59 99.06 84.99 82.92 n-bu 2e Supplementary Figure 30. 1 H and 13 C NMR spectra for compound 2e

208.28 194.64 167.15 145.46 133.34 130.41 129.84 128.82 127.87 98.77 85.08 82.53 77.34 77.09 76.83 43.41 41.41 35.97 5.36 0.99 2.02 2.05 1.02 1.01 7.3 7.3 7.3 7.3 7.3 7.3 7.2 7.2 6.6 6.6 6.6 6.6 6.6 6.6 6.1 6.0 5.5 5.5 5.5 5.5 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 3.6 3.6 3.6 3.6 3.3 3.3 3.3 3.2 2.6 2.6 2.5 2.5 2.5 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 Supplementary Figure 31. 1 H and 13 C NMR spectra for compound 2f

208.35 194.49 167.29 145.33 140.14 129.80 128.78 128.23 126.59 98.84 85.12 82.53 77.34 77.09 76.83 42.22 39.32 36.15 29.81 2.02 3.00 1.01 2.06 1.02 2.11 2.03 1.03 1.03 7.32 7.31 7.29 7.26 7.24 7.22 7.21 7.21 7.19 6.68 6.68 6.66 6.66 6.11 6.08 5.53 5.52 5.50 5.49 5.47 5.45 3.65 3.65 3.65 3.64 3.64 3.63 3.63 3.63 3.62 3.62 3.61 3.61 2.86 2.86 2.85 2.85 2.73 2.72 2.37 2.36 2.34 2.34 2.33 2.33 2.32 2.30 2.27 2.25 2.24 2.24 2.23 2.23 2.22 2.20 Supplementary Figure 32. 1 H and 13 C NMR spectra for compound 2g

85.21 81.76 77.32 77.06 76.81 52.12 41.95 35.92 31.91 28.10 1.01 2.00 3.02 1.02 2.03 2.04 2.15 7.26 6.58 6.58 6.56 6.56 6.08 6.06 5.49 5.48 3.69 3.60 3.59 3.58 3.57 3.57 3.56 3.55 3.54 2.77 2.76 2.73 2.72 2.72 2.71 2.68 2.68 2.61 2.59 2.58 2.58 2.58 2.57 2.57 2.56 2.55 2.54 2.53 2.39 2.38 2.37 2.36 2.35 2.34 2.33 2.33 2.31 2.31 2.30 2.28 2.28 2 27 Me 2 C 2h 208.36 194.26 172.58 166.94 144.65 129.99 98.55 Me 2 C 2h Supplementary Figure 33. 1 H and 13 C NMR spectra for compound 2h

130.12 129.32 129.25 124.93 98.76 85.15 83.58 77.27 77.02 76.77 46.07 35.54 5.01 0.98 2.01 1.01 1.02 1.01 7.48 7.47 7.47 7.45 7.44 7.44 7.43 7.43 7.41 7.26 6.75 6.74 6.73 6.72 6.30 6.28 5.57 5.56 5.54 5.54 5.53 5.52 5.51 5.49 3.72 3.71 3.71 3.70 3.69 2.84 2.83 2.80 2.79 2.75 2.74 2.71 2.71 Ph 2i 208.18 194.58 167.13 144.49 137.78 Ph 2i Supplementary Figure 34. 1 H and 13 C NMR spectra for compound 2i

133.08 130.94 125.90 117.94 113.44 98.12 85.59 82.68 77.37 77.11 76.86 45.73 35.36 2.00 2.01 2.03 2.01 7.77 7.75 7.63 7.61 7.26 6.68 6.68 6.66 6.66 6.33 6.31 5.59 5.58 5.56 5.55 5.55 5.54 5.52 5.51 3.67 3.67 3.66 3.66 3.65 3.65 3.64 3.63 3.63 2.80 2.79 2.77 2.76 2.75 2.75 2.72 2.71 NC 2j 208.40 193.77 166.44 143.08 142.92 NC 2j Supplementary Figure 35. 1 H and 13 C NMR spectra for compound 2j

208.27 194.21 166.76 164.15 162.18 143.80 140.40 140.35 131.05 130.99 130.42 120.62 120.60 116.45 116.29 112.50 112.32 105.00 98.45 85.32 82.88 77.31 77.06 76.80 45.90 35.47 1.01 2.02 1.02 2.03 1.01 1.02 1.02 7.45 7.44 7.44 7.43 7.42 7.41 7.26 7.25 7.25 7.25 7.23 7.23 7.22 7.21 7.21 7.20 7.20 7.19 7.13 7.13 7.12 7.11 7.10 7.10 6.70 6.70 6.68 6.68 6.30 6.28 5.58 5.56 5.55 5.54 5.53 5.53 5.51 5.50 3.70 3.70 3.69 3.68 3.67 3.66 3.66 2.83 2.81 2.79 2.78 2.75 2.74 2.71 2.71 Supplementary Figure 36. 1 H and 13 C NMR spectra for compound 2k

130.40 129.48 126.45 98.48 85.31 83.03 77.31 77.05 76.80 46.03 35.41 4.00 1.01 2.03 1.01 1.01 1.02 7.44 7.43 7.42 7.42 7.40 7.26 6.70 6.70 6.68 6.68 6.30 6.28 5.57 5.56 5.54 5.54 5.53 5.53 5.51 5.50 3.67 3.66 3.65 3.65 3.64 3.64 2.80 2.79 2.76 2.75 2.74 2.74 2.71 2.70 Cl 2l 208.24 194.21 166.84 143.92 136.35 135.49 Cl 2l Supplementary Figure 37. 1 H and 13 C NMR spectra for compound 2l

208.46 194.88 167.25 144.99 136.60 134.45 133.69 129.69 129.61 127.04 126.17 98.43 85.19 85.05 77.33 77.07 76.82 43.73 35.80 21.77 4.42 1.01 2.04 1.02 2.10 3.03 7.33 7.33 7.32 7.30 7.29 7.28 7.26 7.25 7.23 7.21 7.20 6.83 6.83 6.81 6.81 6.30 6.28 5.57 5.55 5.53 5.53 5.52 5.52 5.50 5.49 3.98 3.97 3.97 3.96 3.96 3.95 3.94 2.71 2.71 2.68 2.68 2.67 2.64 2.63 2.50 Supplementary Figure 38. 1 H and 13 C NMR spectra for compound 2m

208.25 194.65 167.21 144.42 134.98 133.38 132.91 130.36 129.51 128.29 127.79 127.19 127.08 124.62 122.08 98.75 85.18 83.76 77.32 77.06 76.81 46.01 35.63 1.01 1.02 2.08 3.04 2.04 1.01 1.02 1.04 7.96 7.94 7.91 7.89 7.88 7.88 7.87 7.86 7.86 7.85 7.56 7.56 7.55 7.26 6.83 6.83 6.81 6.81 6.37 6.34 5.59 5.57 5.56 5.54 5.53 5.51 5.50 3.81 3.81 3.80 3.80 3.79 3.79 3.79 3.78 3.77 3.77 2.87 2.86 2.84 2.83 2.77 2.76 2.73 2.73 2.73 Supplementary Figure 39. 1 H and 13 C NMR spectra for compound 2n

78.48 77.86 77.28 77.02 76.77 73.73 44.51 35.64 1.99 1.01 1.02 0.99 0.98 7.26 7.26 6.65 6.65 6.65 6.63 6.63 6.11 6.09 5.54 5.53 3.98 3.97 3.96 3.96 3.95 3.95 3.94 3.94 2.94 2.93 2.91 2.90 2.90 2.77 2.77 2.74 2.73 2o 208.38 193.56 165.78 141.77 129.18 96.90 85.49 2o Supplementary Figure 40. 1 H and 13 C NMR spectra for compound 2o

206.82 194.59 167.36 158.10 127.83 103.87 85.45 85.17 77.30 77.05 76.79 46.95 43.31 29.69 24.76 18.63 17.75 2.04 1.01 1.04 3.00 3.00 3.08 7.26 5.90 5.90 5.48 5.45 5.44 5.41 2.66 2.62 2.48 2.45 2.04 1.58 1.31 Supplementary Figure 41. 1 H and 13 C NMR spectra for compound 2p

205.59 205.44 194.82 194.75 167.78 167.25 146.52 146.42 128.88 128.85 98.47 96.52 80.55 80.43 77.30 77.05 76.79 44.74 44.01 36.27 35.96 23.96 23.81 13.37 13.00 1.11 0.09 1.09 1.10 2.31 2.94 3.49 7.26 6.58 6.58 6.58 6.56 6.56 6.56 6.03 6.02 6.01 5.99 5.90 5.89 5.89 5.88 5.87 5.87 5.86 5.86 5.85 5.85 3.51 3.50 3.50 3.50 3.49 3.49 3.48 3.48 3.48 2.72 2.70 2.70 2.70 2.70 2.69 2.69 2.68 2.68 1.82 1.80 1.73 1.71 1.71 Me 7a Me Me 7a Me Supplementary Figure 42. 1 H and 13 C NMR spectra for compound 7a

204.67 194.68 167.74 146.51 128.84 103.48 99.62 80.33 77.29 77.03 76.78 44.12 35.96 23.97 21.20 13.13 2.00 2.34 2.00 3.29 3.00 7.26 6.58 6.58 6.56 6.56 6.01 5.99 5.98 5.97 5.97 5.96 5.94 3.51 3.50 3.50 3.49 3.49 3.49 3.48 3.48 3.48 2.74 2.72 2.71 2.70 2.69 2.67 2.21 2.20 2.19 2.18 2.18 2.17 1.71 1.07 1.06 1.04 Me 7b Et Me 7b Et Supplementary Figure 43. 1 H and 13 C NMR spectra for compound 7b

203.83 194.71 167.71 146.55 128.82 108.89 100.00 80.31 77.29 77.03 76.78 44.17 35.94 28.29 23.98 22.38 22.23 1.02 1.02 2.31 1.01 3.03 6.03 7.26 6.59 6.59 6.57 6.57 6.01 5.99 5.94 5.93 5.92 3.51 3.50 3.50 3.50 3.49 3.49 3.49 3.48 3.48 3.48 2.75 2.74 2.71 2.70 2.69 2.69 2.66 2.65 2.54 2.52 2.51 2.50 1.71 1.09 1.08 1.07 1.07 Me 7c Me 7c Supplementary Figure 44. 1 H and 13 C NMR spectra for compound 7c

204.87 194.71 167.76 146.55 128.84 101.65 98.93 80.32 77.27 77.01 76.76 44.09 36.02 30.73 27.39 23.98 22.01 13.73 0.98 1.02 2.17 2.01 3.00 2.01 2.04 3.01 7.26 6.59 6.59 6.57 6.57 6.02 6.00 5.93 5.92 5.91 5.89 3.50 3.50 3.49 3.49 3.48 3.48 3.47 2.75 2.74 2.71 2.70 2.70 2.67 2.20 2.18 2.17 2.15 1.72 1.44 1.42 1.39 1.37 1.36 0.92 0.90 0.89 Me 7d n-bu Me 7d n-bu Supplementary Figure 45. 1 H and 13 C NMR spectra for compound 7d

128.92 128.51 128.48 126.22 101.05 99.35 80.49 77.28 77.03 76.77 44.67 36.23 34.85 29.79 23.87 2.14 3.06 0.06 0.06 0.98 0.99 1.04 4.29 2.13 3.02 7.31 7.29 7.28 7.26 7.21 7.20 7.18 6.61 6.60 6.58 6.58 6.05 6.03 5.95 5.94 5.93 5.92 3.50 3.49 3.49 3.48 3.48 3.47 2.73 2.72 2.70 2.70 2.67 2.65 2.40 2.39 2.39 2.38 2.37 2.37 2.36 1.72 Ph Me 7e 204.76 194.77 167.65 146.56 140.58 Ph Me 7e Supplementary Figure 46. 1 H and 13 C NMR spectra for compound 7e

204.29 194.74 167.80 146.56 128.80 107.32 99.69 80.32 77.32 77.07 76.82 44.11 37.11 35.95 32.84 32.68 25.80 25.69 25.66 23.96 0.05 1.05 1.03 2.27 1.01 2.10 6.33 1.22 2.40 2.48 7.26 6.57 6.57 6.55 6.55 5.99 5.97 5.89 5.88 5.87 3.49 3.48 3.48 3.47 3.47 3.46 2.73 2.72 2.70 2.69 2.68 2.67 2.64 2.21 2.20 2.20 2.19 1.79 1.76 1.70 1.68 1.67 1.31 1.29 1.27 1.24 1.21 1.21 1.19 1.18 1.17 1.16 1.13 1.11 Supplementary Figure 47. 1 H and 13 C NMR spectra for compound 7f

203.84 194.84 167.51 144.65 138.11 129.97 129.18 124.92 109.09 99.95 83.31 77.30 77.05 76.79 46.12 35.59 28.32 22.38 22.24 5.00 0.99 0.97 0.97 1.02 1.03 0.99 6.02 7.50 7.50 7.49 7.48 7.48 7.48 7.47 7.47 7.45 7.45 7.44 7.43 7.42 7.42 7.41 7.26 6.72 6.72 6.70 6.70 6.26 6.24 5.99 5.98 5.97 3.67 3.67 3.66 3.66 3.65 3.65 3.64 2.81 2.80 2.78 2.77 2.70 2.70 2.67 2.67 2.56 2.55 2.54 2.52 2.51 2.50 1.09 1.07 Supplementary Figure 48. 1 H and 13 C NMR spectra for compound 7h

207.15 195.36 167.24 147.75 128.63 104.00 85.17 83.13 77.27 77.02 76.76 46.22 43.72 24.38 19.23 0.94 0.91 1.94 3.00 3.01 7.26 6.61 6.59 6.04 6.02 5.50 5.47 5.47 5.44 2.69 2.65 2.49 2.46 1.57 1.31 Supplementary Figure 49. 1 H and 13 C NMR spectra for compound 9

207.91 194.07 167.34 156.91 127.65 98.59 84.92 82.79 77.28 77.02 76.77 45.06 35.53 22.79 18.33 0.92 2.00 2.00 3.00 3.00 7.26 5.90 5.47 5.46 3.55 3.54 3.54 3.53 3.52 3.52 3.51 2.71 2.70 2.03 1.73 Supplementary Figure 50. 1 H and 13 C NMR spectra for compound 10

146.26 144.87 141.32 133.75 133.11 132.50 129.97 129.03 128.89 128.30 127.29 126.98 125.69 84.30 77.30 77.24 77.04 76.79 52.77 51.99 39.26 38.35 38.10 38.02 25.21 22.51 21.67 13.70 2.00 2.04 2.05 0.97 1.03 2.07 1.01 1.01 3.00 1.04 3.00 1.05 1.01 1.06 1.03 4.06 3.05 7.77 7.75 7.35 7.34 7.27 7.26 7.08 7.06 7.01 6.99 6.68 6.67 6.04 6.02 4.69 4.67 4.66 4.65 4.64 4.60 3.94 3.22 3.18 2.68 2.67 2.66 2.66 2.46 2.35 2.34 2.33 1.97 1.95 1.85 1.82 1.31 1.30 1.29 1.28 1.27 1.26 0.87 0.86 0.85 0.07 H H Ph n-bu 13 N Ts C 2 Me 192.64 170.49 165.53 158.98 H H Ph n-bu 13 N Ts C 2 Me Supplementary Figure 51. 1 H and 13 C NMR spectra for compound 13

Supplementary Figure 52. CSY spectra for compound 13 Supplementary Figure 53. HMBC spectra for compound 13

Supplementary Figure 54. HMQC spectra for compound 13 H H H H N Ts CH 3 Supplementary Figure 55. NESY spectra for compound 13

Me 6g Racemic 6g ptically pure 6g-1 Recover of 6g-1 for compound 6g obtained via by use of a chiral Supplementary Figure 56. HPLC spectra stationary phase column (see Supplementary methods) )

Mee 2a Racemic 2a Enantiomerically enriched 2a Supplementary Figure 57. HPLC spectraa for compound 2a

Ett 2b Racemic 2b Enantiomerically enriched 2b Supplementary Figure 58. HPLC spectraa for compound 2b

n-pr 2c Racemic 2c Enantiomerically enriched 2c Supplementary Figure 59. HPLC spectraa for compound 2c

i-pr 2d Racemic 2d Enantiomerically enriched 2d Supplementary Figure 60. HPLC spectraa for compound 2d

n-bu 2e Racemic 2e Enantiomerically enriched 2e Supplementary Figure 61. HPLC spectraa for compound 2e

Bnn 2f Racemic 2f Enantiomerically enriched 2f Supplementary Figure 62. HPLC spectraa for compound 2f

Ph 2g Racemic 2g Enantiomerically enriched 2g Supplementary Figure 63. HPLC spectraa for compound 2g

Me 2 C 2h Racemic 2h Enantiomerically enriched 2h Supplementary Figure 64. HPLC spectraa for compound 2h

Phh 2i Racemic 2i Enantiomerically enriched 2i Supplementary Figure 65. HPLC spectraa for compound 2i

NC 2j Racemic 2j Enantiomerically enriched 2j Supplementary Figure 66. HPLC spectraa for compound 2j

F 2k Racemic 2k Enantiomerically enriched 2k Supplementary Figure 67. HPLC spectraa for compound 2k

Cl 2l Racemic 2l Enantiomerically enriched 2l Supplementary Figure 68. HPLC spectraa for compound 2l

Me 2m Racemic 2m Enantiomerically enriched 2m Supplementary Figure 69. HPLC spectraa for compound 2m

2n Racemic 2n Enantiomerically enriched 2n Supplementary Figure 70. HPLC spectraa for compound 2n

2o Racemic 2o Enantiomerically enriched 2o Supplementary Figure 71. HPLC spectraa for compound 2o

Mee Me 2p Me Racemic 2p Chiral 2pp before recrystallization Enantiomerically enriched 2p after recrystallization Supplementary Figure 72. HPLC spectraa for compound 2p

Me Me 7a Racemic 7a Enantiomerically enriched 7a ptically pure 7a after Recrystallization 7a Supplementary Figure 73. HPLC spectraa for compound 7a

Et Me 7b Racemic 7b Enantiomerically enriched 7b Supplementary Figure 74. HPLC spectraa for compound 7b

Mee 7c Racemic 7c Enantiomerically enriched 7c 7c 7c Supplementary Figure 75. HPLC spectraa for compound 7c

Me 7d n-bu Racemic 7d Enantiomerically enriched 7d Supplementary Figure 76. HPLC spectraa for compound 7d

Ph Me 7e Racemic 7e Enantiomerically enriched 7e Supplementary Figure 77. HPLC spectraa for compound 7e

Me 7f Racemic 7f Enantiomerically enriched 7f Supplementary Figure 78. HPLC spectraa for compound 7f

Ph 7h Racemic 7h Enantiomerically enriched 7h Supplementary Figure 79. HPLC spectraa for compound 7h

Mee 9 Me Racemic 9 Enantiomerically enriched 9 Supplementary Figure 80. HPLC spectraa for compound 9

Me Me 10 Racemic 10 Enantiomerically enriched 10 Supplementary Figure 81. HPLC spectraa for compound 10

H H Ph n-bu 13 N Ts C 2 Me Racemic 13 Enantiomerically enriched 13 Supplementary Figure 82. HPLC spectraa for compound 13

Supplementary Table 1. Crystal data and structure refinement for 2a Empirical formula C 11 H 10 3 Formula weight 190.19 Temperature Wavelength Crystal system Space group 100(2) K 1.54178 Å Triclinic P1 Unit cell dimensions a = 7.1339(4) Å a= 82.4350(10). b = 7.3602(4) Å b= 72.1990(10). c = 9.4972(6) Å g = 81.3930(10). Volume 467.49(5) Å 3 Z 2 Density (calculated) 1.351 Mg/m 3 Absorption coefficient 0.816 mm -1 F(000) 200 Crystal size 0.154 x 0.142 x 0.104 mm 3 Theta range for data collection 4.911 to 72.411. Index ranges -8<=h<=8, -9<=k<=8, -11<=l<=11 Reflections collected 12888 Independent reflections 3494 [R(int) = 0.0208] Completeness to theta = 67.679 98.9 % Absorption correction Semi-empirical from equivalents Max. and min. transmission 0.920 and 0.885 Refinement method Full-matrix least-squares on F 2 Data / restraints / parameters 3494 / 6 / 268 Goodness-of-fit on F 2 1.073 Final R indices [I>2sigma(I)] R1 = 0.0246, wr2 = 0.0631 R indices (all data) R1 = 0.0246, wr2 = 0.0631 Absolute structure parameter 0.07(2) Extinction coefficient 0.050(4) Largest diff. peak and hole 0.170 and -0.166 e.å -3

Supplementary Table 2. Crystal data and structure refinement for 2n Empirical formula C 20 H 14 3 Formula weight 302.31 Temperature Wavelength Crystal system 100(2) K 1.54178 Å rthorhombic Space group P2 1 2 1 2 1 Unit cell dimensions a = 7.5440(3) Å a= 90. b = 9.7264(4) Å b= 90. c = 20.4603(10) Å g = 90. Volume 1501.29(11) Å 3 Z 4 Density (calculated) 1.338 Mg/m 3 Absorption coefficient 0.724 mm -1 F(000) 632 Crystal size 0.277 x 0.230 x 0.128 mm 3 Theta range for data collection 4.322 to 68.245. Index ranges -9<=h<=8, -11<=k<=11, -20<=l<=24 Reflections collected 9213 Independent reflections 2748 [R(int) = 0.0196] Completeness to theta = 67.679 99.8 % Absorption correction Semi-empirical from equivalents Max. and min. transmission 0.913 and 0.825 Refinement method Full-matrix least-squares on F 2 Data / restraints / parameters 2748 / 1 / 215 Goodness-of-fit on F 2 1.064 Final R indices [I>2sigma(I)] R1 = 0.0272, wr2 = 0.0702 R indices (all data) R1 = 0.0280, wr2 = 0.0709 Absolute structure parameter -0.06(6) Extinction coefficient n/a Largest diff. peak and hole 0.203 and -0.180 e.å -3

Supplementary Table 3. Crystal data and structure refinement for 7b Empirical formula C 14 H 16 3 Formula weight 232.27 Temperature Wavelength Crystal system 100(2) K 1.54178 Å rthorhombic Space group P2 1 2 1 2 1 Unit cell dimensions a = 6.4002(4) Å a= 90. b = 7.3555(4) Å b= 90. c = 26.1963(15) Å g = 90. Volume 1233.23(12) Å 3 Z 4 Density (calculated) 1.251 Mg/m 3 Absorption coefficient 0.707 mm -1 F(000) 496 Crystal size 0.471 x 0.372 x 0.210 mm 3 Theta range for data collection 6.249 to 72.378. Index ranges -7<=h<=7, -9<=k<=6, -32<=l<=31 Reflections collected 10988 Independent reflections 2416 [R(int) = 0.0427] Completeness to theta = 67.679 99.9 % Absorption correction Semi-empirical from equivalents Max. and min. transmission 0.866 and 0.732 Refinement method Full-matrix least-squares on F 2 Data / restraints / parameters 2416 / 0 / 173 Goodness-of-fit on F 2 1.098 Final R indices [I>2sigma(I)] R1 = 0.0362, wr2 = 0.0905 R indices (all data) R1 = 0.0364, wr2 = 0.0909 Absolute structure parameter 0.11(5) Extinction coefficient n/a Largest diff. peak and hole 0.322 and -0.273 e.å -3

Supplementary Note 1 Crystal data of all these crystals CCDC No. 1444859 (2a), 144860 (2n) and 1444861 (7b) were collected on a Bruker AXS D8 Venture equipped with a Photon 100 CMS active pixel sensor detector using graphite-monochromated Cu-Kα radiation (λ = 1.54178 Å) using a sealed tube. Absorption corrections were made with the program SADABS 1, and the crystallographic package SHELXTL 2,3 was used for all calculations. 2a at 100(2) K: C 11 H 10 3, FW = 190.19, triclinic, P1; a = 7.1339(4) Å, b = 7.3602(4) Å, c = 9.4972(6) Å, = 82.4350(10), = 72.1990(10), = 81.3930(10), V = 467.49(5) Å 3, Z = 2, calc = 1.351 g cm 3, μ = 0.82 mm 1, GF = 1.073, final R 1 = 0.0246, wr 2 = 0.0631 [for 3492 data I > 2σ(I)]. Flack parameter, 0.09(14) and Parson, 0.066(23). There are two formula units in the asymmetric unit. The coordinates of the hydrogen atoms for C10A and C10B were refined with SADI option as the AFIX 93 did not work probably for the allylic group. However a riding model was used for the thermal parameters of the H atoms. The absolute structure parameter and chirality could not be determined reliably as the compound does not have heavier elements. 2n at 100(2) K: C 20 H 14 3, FW = 302.31, orthorhombic, P2 1 2 1 2 1 ; a = 7.5440(3) Å, b = 9.7264(4) Å, c = 20.4603(10) Å, V = 1501.29(11) Å 3, Z = 2, calc = 1.338 g cm 3, μ = 0.724 mm 1, GF = 1.064, final R 1 = 0.0280, wr 2 = 0.0709 [for 2689 data I > 2σ(I)]. Flack parameter, -0.12(24) and Parson, 0.058(57). The coordinates of the hydrogen atoms for C20 were refined with SADI option as the AFIX 93 did not work probably for the allylic group. However a riding model was used for the thermal parameters of the H atoms. The absolute structure parameter and chirality could not be determined reliably as the compound does not have heavier elements. 7b at 100(2) K: C 14 H 16 3, FW = 232.27, orthorhombic, P2 1 2 1 2 1 ; a = 6.4002(4) Å, b = 7.3555(4) Å, c = 20.4603(10) Å, V = 1233.23(12) Å 3, Z = 4, calc = 1.251 g cm 3, μ = 0.707 mm 1, GF = 1.098, final R 1 = 0.0364, wr 2 = 0.0909 [for 2399 data I > 2σ(I)]. Flack parameter, 0.11(5) and Parson, 0.048(27). The absolute structure parameter and chirality could not be determined reliably as the compound does not have heavier elements.

Supplementary Methods General Information Unless otherwise specified, all reactions were carried out under a nitrogen atmosphere, with dry, freshly distilled solvents in anhydrous conditions. THF, ether and toluene were distilled from sodium; while CH 2 Cl 2 and MeCN were distilled from CaH 2 and ethyl acetate (Ea) and CHCl 3 were used without further purification. All chemicals were used without further purification as commercially available unless otherwise noted. Thin-layer chromatography (TLC) was performed on silica gel plates (60F-254) using UV-light (254 and 365 nm). Flash chromatography was conducted on silica gel (300 400 mesh). 1 H and 13 C NMR spectra were recorded on a Bruker AMX500 (500 MHz) spectrometer. Chemical shifts were reported in parts per million (ppm). All high resolution mass spectra were obtained on a Finnigan/MAT 95XL-T spectrometer. ptical rotations were measured using a Jasco DIP 1000 polarimeter. Enantiomeric excesses were determined by HPLC analysis on a chiral stationary phase. The racemic sample was prepared by DABC catalysis. Representative procedure for the synthesis of allenoates 1, 6 and 8 Allenoates 1, 6 and 8 were synthesized by reacting in-situ prepared allenic acid chloride A2 with the corresponding tert-alcohol S1 4 8, which were easily accessible from the corresponding phenols. To a stirred solution of allenic acid A1 9 (2.2 mmol) in anhydrous CH 2 Cl 2 (10 ml) under N 2 atmosphere at room temperature was added oxalyl chloride (2.2 mmol, 189 L), followed by DMF (5 L). The resulting mixture was stirred further 1 h and was used directly in the next step. To a flame dried round bottle flask with a magnetic stirring bar under N 2 were added tert-alcohol S1 (2.0 mmol) and Et 3 N (2.0 mmol, 278 L), followed by anhydrous CH 2 Cl 2 (10 ml). The resulting mixture was cooled to 20 o C, and the above A2 solution was added dropwise over 15 min under N 2 atmosphere. The reaction mixture was kept at 20 o C for 1 h and then at 10 o C for another 2 h. The reaction was then quenched with iced water, and extracted with CH 2 Cl 2 (2 30 ml). The combined organic extracts were washed by brine (50 ml) and concentrated. The residue was dissolved in EtAc (40 ml) and washed by 0.1 N NaH (20 ml), Brine (20 ml) successively. The organic phase was dried over Na 2 S 4, filtered and concentrated. The residue was purified directly by flash column chromatography to afford 1, 6 or 8 and recovered S1. Analytical data of allenoates 1, 6 and 8 1-Methyl-4-oxocyclohexa-2,5-dien-1-yl buta-2,3-dienoate (1a)

32% yield, white solid; 1 H NMR (500 MHz, CDCl 3 ) δ 6.91 (d, J = 10.1 Hz, 2H), 6.24 (d, J = 10.1 Hz, 2H), 5.60 (t, J = 6.5 Hz, 1H), 5.24 (d, J = 6.5 Hz, 2H), 1.58 (s, 3H); 13 C NMR (125 MHz, CDCl 3 ) δ 216.3, 185.0, 164.2, 149.0, 128.2, 87.7, 79.7, 74.7, 26.2. HRMS (ESI) m/z calcd for C 11 H 10 Na 3 [M+Na] + = 213.0522, found = 213.0529. 2-Ethyl-4-oxocyclohexa-2,5-dien-1-yl buta-2,3-dienoate (1b) 29% yield, white solid; 1 H NMR (500 MHz, CDCl 3 ) δ 6.78 (d, J = 10.2 Hz, 2H), 6.22 (d, J = 10.2 Hz, 2H), 5.54 (t, J = 6.5 Hz, 1H), 5.18 (d, J = 6.5 Hz, 2H), 1.83 (q, J = 7.5 Hz, 2H), 0.85 (t, J = 7.5 Hz, 3H); 13 C NMR (125 MHz, CDCl 3 ) δ 216.2, 185.2, 164.1, 148.1, 129.1, 87.7, 79.5, 77.6, 32.3, 7.6. HRMS (ESI) m/z calcd for C 12 H 12 Na 3 [M+Na] + = 227.0679, found = 227.0685. 4-xo-1-propylcyclohexa-2,5-dien-1-yl buta-2,3-dienoate (1c) 27% yield, Colorless oil; 1 H NMR (500 MHz, CDCl 3 ) δ 6.85 (d, J = 10.2 Hz, 2H), 6.26 (d, J = 10.2 Hz, 2H), 5.59 (t, J = 6.5 Hz, 1H), 5.23 (d, J = 6.6 Hz, 2H), 1.96 1.72 (m, 2H), 1.45 1.23 (m, 2H), 0.91 (t, J = 7.4 Hz, 3H); 13 C NMR (125 MHz, CDCl 3 ) δ 216.3, 185.3, 164.1, 148.3, 128.9, 87.7, 79.5, 77.4, 41.4, 16.8, 14.1. HRMS (ESI) m/z calcd for C 12 H 12 Na 3 [M+Na] + = 241.0835, found = 241. 0827. 1-Isopropyl-4-oxocyclohexa-2,5-dien-1-yl buta-2,3-dienoate (1d) 17% yield, Pale yellow oil; 1 H NMR (500 MHz, CDCl 3 ) δ 6.79 (d, J = 10.3 Hz, 2H), 6.32 (d, J = 10.3 Hz, 2H), 5.59 (t, J = 6.5 Hz, 1H), 5.23 (d, J = 6.5 Hz, 2H), 2.53 1.85 (m, 1H), 0.96 (d, J = 6.9 Hz, 6H); 13 C NMR (125 MHz, CDCl 3 ) δ 216.3, 185.4, 164.1, 147.1, 130.0, 87.8, 79.8, 79.5, 36.6, 16.9. HRMS (ESI) m/z calcd for C 13 H 14 Na 3 [M+Na] + = 241.0835, found = 241.0829. 1-Butyl-4-oxocyclohexa-2,5-dien-1-yl buta-2,3-dienoate (1e)

31% yield, pale yellow oil; 1 H NMR (500 MHz, CDCl 3 ) δ 6.84 (d, J = 1.8 Hz, 2H), 6.27 (d, J = 10.2 Hz, 2H), 5.60 (t, J = 6.5 Hz, 1H), 5.24 (d, J = 6.5 Hz, 2H), 1.93 1.74 (m, 2H), 1.37 1.21 (m, 4H), 0.88 (t, J = 7.0 Hz, 3H); 13 C NMR (125 MHz, CDCl 3 ) δ 216.3, 185.3, 164.1, 148.3, 129.0, 87.8, 79.5, 77.4, 39.0, 25.4, 22. 7, 13.8; HRMS (ESI) m/z calcd for C 14 H 16 Na 3 [M+Na] + = 255.0992, found = 255.1003. 1-Benzyl-4-oxocyclohexa-2,5-dien-1-yl buta-2,3-dienoate (1f) 23% yield, white solid; 1 H NMR (500 MHz, CDCl 3 ) δ 7.30 7.26 (m, 3H), 7.22 7.17 (m, 2H), 6.80 (d, J = 10.2 Hz, 2H), 6.25 (d, J = 10.2 Hz, 2H), 5.58 (t, J = 6.5 Hz, 1H), 5.27 (d, J = 6.5 Hz, 2H), 3.07 (s, 2H); 13 C NMR (125 MHz, CDCl 3 ) δ 216.4, 184.9, 164.0, 148.3, 133.8, 131.0, 128.8, 128.2, 127.5, 87.7, 79.6, 76.5, 46.5. HRMS (ESI) m/z calcd for C 17 H 14 Na 3 [M+Na] + = 289.0835, found = 289.0827. 4-xo-1-phenethylcyclohexa-2,5-dien-1-yl buta-2,3-dienoate (1g) 22% yield, pale yellow oil; 1 H NMR (500 MHz, CDCl 3 ) δ 7.31 7.25 (m, 2H), 7.23 7.18 (m, 1H), 7.16 7.10 (m, 2H), 6.91 (d, J = 10.2 Hz, 2H), 6.32 (d, J = 10.2 Hz, 2H), 5.62 (t, J = 6.5 Hz, 1H), 5.26 (d, J = 6.5 Hz, 2H), 2.73 2.62 (m, 2H), 2.19 2.09 (m, 2H); 13 C NMR (125 MHz, CDCl 3 ) δ 216.4, 185.1, 164.0, 148.0, 140.5, 129.2, 128.6, 128.3, 126.4, 87.7, 79.6, 76.9, 41.2, 29.9. HRMS (ESI) m/z calcd for C 18 H 16 Na 3 [M+Na] + = 303.0992, found =303.0988. 1-(3-Methoxy-3-oxopropyl)-4-oxocyclohexa-2,5-dien-1-yl buta-2,3-dienoate (1h) 16% yield, pale yellow oil; 1 H NMR (500 MHz, CDCl 3 ) δ 6.80 (d, J = 10.0 Hz, 2H), 6.28 (d, J = 10.1 Hz, 2H), 5.58 (t, J = 6.5 Hz, 1H), 5.24 (d, J = 6.5 Hz, 2H), 3.65 (s, 3H), 2.33 (t, J = 7.8 Hz, 2H), 2.21 (dd, J = 8.7, 6.9 Hz, 2H); 13 C NMR (125 MHz, CDCl 3 ) δ 216.4, 184.8, 172.5, 163.9, 147.2, 129.8, 129.5, 87.5, 79.7, 76.3, 51.9, 33.9, 28.1; HRMS (ESI) m/z calcd for C 14 H 14 Na 5 [M+Na] + = 285.0733, found = 285.0742.

4-xo-[1,1'-biphenyl]-1(4H)-yl buta-2,3-dienoate (1i) 18% yield, pale yellow solid; 1 H NMR (500 MHz, CDCl 3 ) δ 7.48 7.43 (m, 2H), 7.41 7.31 (m, 3H), 6.97 (d, J = 10.1 Hz, 2H), 6.35 (d, J = 10.1 Hz, 2H), 5.71 (t, J = 6.5 Hz, 1H), 5.32 (d, J = 6.5 Hz, 2H); 13 C NMR (125 MHz, CDCl 3 ) δ 216.5, 185.5, 163.7, 147.5, 136.3, 129.1, 128.8, 128.4, 128.2, 125.3, 87.9, 79.8, 77.7; HRMS (ESI) m/z calcd for C 16 H 11 3 [M-H] - = 251.0714, found = 251.0704. 4'-Cyano-4-oxo-[1,1'-biphenyl]-1(4H)-yl buta-2,3-dienoate (1j) 18% yield, pale yellow solid; 1 H NMR (500 MHz, CDCl 3 ) δ 7.68 (d, J = 8.3 Hz, 2H), 7.56 (d, J = 8.6 Hz, 2H), 6.92 (d, J = 10.1 Hz, 2H), 6.39 (d, J = 9.9 Hz, 2H), 5.71 (t, J = 6.5 Hz, 1H), 5.35 (d, J = 6.5 Hz, 2H); 13 C NMR (125 MHz, CDCl 3 ) δ 216.7, 184.8, 163.3, 146.1, 141.8, 132.9, 129.0, 126.2, 118.1, 112.8, 105.0, 87.7, 80.0, 77.1; HRMS (ESI) m/z calcd for C 17 H 10 N 3 [M-H] - = 276.0666, found = 276.0674. 3'-Fluoro-4-oxo-[1,1'-biphenyl]-1(4H)-yl buta-2,3-dienoate (1k) 16% yield, pale yellow solid; 1 H NMR (500 MHz, CDCl 3 ) δ 7.33 (td, J = 8.2, 5.9 Hz, 1H), 7.18 (ddd, J = 7.2, 4.2, 2.0 Hz, 2H), 7.05 6.99 (m, 1H), 6.93 (d, J = 10.1 Hz, 2H), 6.34 (d, J = 10.1 Hz, 2H), 5.70 (t, J = 6.5 Hz, 1H), 5.33 (d, J = 6.5 Hz, 2H); 13 C NMR (125 MHz, CDCl 3 ) δ 216.6, 185.2, 163.1 (d, J = 247.4 Hz), 163.5, 146.8, 139.0 (d, J = 7.3 Hz), 130.7 (d, J = 8.2 Hz), 128.5, 121.0 (d, J = 3.0 Hz), 115.8 (d, J = 21.1 Hz), 112.8 (d, J = 24.1 Hz), 87.8, 79.9; HRMS (ESI) m/z calcd for C 16 H 10 F 3 [M-H] - = 269.0619, found = 269.0610. 4'-Chloro-4-oxo-[1,1'-biphenyl]-1(4H)-yl buta-2,3-dienoate (1l)

21% yield, pale yellow solid; 1 H NMR (500 MHz, CDCl 3 ) δ 7.52 7.32m, 4), 6.93 (d, J = 10.1 Hz, 2), 6.52 6.14 (m, 2), 5.70 (t, J = 6.5 Hz, 1H), 5.32 (d, J = 6.5 Hz, 2); 13 C NMR (125MHz, CDCl 3 ) δ 216.6 185.2, 163.5, 147.0, 135.0, 134.8, 129.3, 128.4, 126. 8, 87.8, 79.9, 77.2; HRMS (ESI) m/z calcd for C 16 H 11 ClNa 3 [M+Na] + = 309.0289, found = 309.0301. 2'-Methyl-4-oxo-[1,1'-biphenyl]-1(4H)-yl buta-2,3-dienoate (1m) 14% yield, pale yellow oil; 1 H NMR (500 MHz, CDCl 3 ) δ 7.36 (d, J = 7.8 Hz, 1H), 7.28 7.13 (m, 5H), 6.36 (d, J = 10.2 Hz, 2H), 5.66 (t, J = 6.5 Hz, 1H), 5.27 (d, J = 6.5 Hz, 2H), 2.52 (s, 3H); 13 C NMR (125 MHz, CDCl 3 ) δ 216.4, 185.2, 163.5, 145.5, 136.2, 134.7, 133.3, 129.1, 128.9, 126.6, 125.9, 87.9, 79.8, 78.6, 21.6; HRMS (ESI) m/z calcd for C 17 H 14 Na 3 [M+Na] + = 289.0835, found = 289.0844. 1-(Naphthalen-2-yl)-4-oxocyclohexa-2,5-dien-1-yl buta-2,3-dienoate (1n) 15% yield, pale yellow solid; 1 H NMR (500 MHz, CDCl 3 ) δ 7.97 (d, J = 1.2 Hz, 1H), 7.86 (d, J = 8.8 Hz, 1H), 7.82 (dd, J = 6.1, 3.4 Hz, 2H), 7.55 7.49 (m, 2H), 7.47 (dd, J = 8.7, 1.9 Hz, 1H), 7.05 (d, J = 10.1 Hz, 2H), 6.40 (d, J = 10.1 Hz, 2H), 5.77 (t, J = 6.5 Hz, 1H), 5.36 (d, J = 6.5 Hz, 2H); 13 C NMR (125 MHz, CDCl 3 ) δ 216.6, 185.6, 163.7, 147.4, 133.4, 133.3, 133.1, 129.1, 128.4, 128.3, 127.7, 126.9, 126.8, 124.7, 122.7, 88.0, 79.8, 77.8; HRMS (ESI) m/z calcd for C 20 H 14 Na 3 [M+Na] + =325.0835, found = 325.0843. 1-Ethynyl-4-oxocyclohexa-2,5-dien-1-yl buta-2,3-dienoate (1o) 28% yield, white solid; 1 H NMR (500 MHz, CDCl 3 ) δ 7.09 (d, J = 10.1 Hz, 2H), 6.29 (d, J = 10.1 Hz, 2H), 5.63 (t, J = 6.5 Hz, 1H), 5.28 (d, J = 6.5 Hz, 2H), 2.72 (s, 1H); 13 C NMR (125 MHz, CDCl 3 ) δ 216.6, 184.2, 163.5, 142.4, 128.7, 87.5, 79.9, 76.9, 76.4, 67.6; HRMS (ESI) m/z calcd for C 12 H 7 3 [M-H] - = 199.0401, found = 199.0390. 1,2,6-Trimethyl-4-oxocyclohexa-2,5-dien-1-yl buta-2,3-dienoate (1p)

31% yield, white solid; 1 H NMR (500 MHz, CDCl 3 ) δ 6.06 (s, 2H), 5.64 (t, J = 6.5 Hz, 1H), 5.26 (d, J = 6.5 Hz, 2H), 1.93 (s, 6H), 1.50 (s, 3H); 13 C NMR (125 MHz, CDCl 3 ) δ 216.5, 185.3, 163.6, 159.5, 126.7, 87.1, 79.7, 79.1, 26.3, 17.7; HRMS (ESI) m/z calcd for C 13 H 14 Na 3 [M+Na] + =241.0835, found = 241.0833. 1-Methyl-4-oxocyclohexa-2,5-dien-1-yl penta-2,3-dienoate (6a) 21% yield, white solid; 1 H NMR (500 MHz, CDCl 3 ) δ 6.90 (d, J = 10.2 Hz, 2H), 6.22 (dd, J = 10.0, 0.9 Hz, 2H), 5.61 (qd, J = 7.4, 6.3 Hz, 1H), 5.56 5.45 (m, 1H), 1.77 (dd, J = 7.4, 3.2 Hz, 3H), 1.56 (s, 3H); 13 C NMR (125 MHz, CDCl 3 ) δ 213.7, 185.1, 164.7, 149.2, 128.1, 128.1, 90.8, 87.3, 74.5, 26.3, 12.6; HRMS (ESI) m/z calcd for C 12 H 12 Na 3 [M+Na] + =227.0679, found = 227.0674. 1-Methyl-4-oxocyclohexa-2,5-dien-1-yl hexa-2,3-dienoate (6b) 19% yield, white solid; 1 H NMR (500 MHz, CDCl 3 ) δ 6.99 6.73 (m, 2H), 6.22 (q, J = 2.8 Hz, 2H), 5.69 (q, J = 6.4 Hz, 1H), 5.59 5.45 (m, 1H), 2.14 (pd, J = 7.3, 3.2 Hz, 2H), 1.56 (s, 3H), 1.06 (t, J = 7.4 Hz, 3H); 13 C NMR (125 MHz, CDCl 3 ) δ 212.9, 185.1, 164.8, 149.2, 149.2, 128.1, 97.6, 88.4, 74.4, 26.3, 20. 8, 13.2; HRMS (ESI) m/z calcd for C 13 H 14 Na 3 [M+Na] + =241.0835, found = 241.0844. 1-Methyl-4-oxocyclohexa-2,5-dien-1-yl 5-methylhexa-2,3-dienoate (6c) 15% yield, white solid; 1 H NMR (500 MHz, CDCl 3 ) δ 6.91 (ddd, J = 10.6, 9.0, 3.5 Hz, 2H), 6.26 6.17 (m, 2H), 5.65 (t, J = 6.1 Hz, 1H), 5.57 (dd, J = 6.1, 3.0 Hz, 1H), 2.47 (dqd, J = 13.3, 6.7, 3.0 Hz, 1H), 1.56 (s, 3H), 1.08 (dd, J = 6.7, 0.8 Hz, 6H); 13 C NMR (125 MHz, CDCl 3 ) δ 212.0, 185.1, 164.8, 149.3, 128.1, 128.1, 103.0, 88.8, 74.4, 27.7, 26.3, 22.3, 22.3; HRMS (ESI) m/z calcd for C 14 H 16 Na 3 [M+Na] + =255.0992, found = 255.1003.

1-Methyl-4-oxocyclohexa-2,5-dien-1-yl octa-2,3-dienoate (6d) 18% yield, pale yellow oil; 1 H NMR (500 MHz, CDCl 3 ) δ 6.90 (ddd, J = 9.6, 7.7, 3.5 Hz, 2H), 6.23 (d, J = 9.7 Hz, 2H), 5.62 (dd, J = 13.3, 7.1 Hz, 1H), 5.52 (dt, J = 6.0, 2.9 Hz, 1H), 2.13 (qd, J = 7.1, 3.0 Hz, 2H), 1.56 (s, 3H), 1.47 1.41 (m, 2H), 1.38 (dt, J = 13.6, 6.7 Hz, 2H), 0.90 (t, J = 7.2 Hz, 3H); 13 C NMR (125 MHz, CDCl 3 ) δ 213.0, 185.1, 164.8, 149.2, 128.1, 95.8, 87.8, 74.4, 30.8, 27.1, 26.3, 22.0, 13.8; HRMS (ESI) m/z calcd for C 15 H 18 Na 3 [M+Na] + = 269.1148, found = 269.1143. 1-Methyl-4-oxocyclohexa-2,5-dien-1-yl 6-phenylhexa-2,3-dienoate (6e) 15% yield, pale yellow oil; 1 H NMR (500 MHz, CDCl 3 ) δ 7.29 (t, J = 7.5 Hz, 2H), 7.23 7.17 (m, 3H), 6.99 6.75 (m, 2H), 6.24 (dd, J = 9.9, 1.6 Hz, 2H), 5.68 (q, J = 6.8 Hz, 1H), 5.55 (dt, J = 6.0, 2.9 Hz, 1H), 3.01 2.63 (m, 2H), 2.58 2.27 (m, 2H), 1.56 (s, 3H); 13 C NMR (125 MHz, CDCl 3 ) δ 213.0, 185.0, 164.6, 149.2, 140.8, 128.5, 128.4, 128.1, 126.2, 95.2, 88.2, 74.5, 35.1, 29.0, 26.3; HRMS (ESI) m/z calcd for C 19 H 17 3 [M-H] - = 293.1183, found = 293.1192. 1-Methyl-4-oxocyclohexa-2,5-dien-1-yl 4-cyclohexylbuta-2,3-dienoate (6f) 15% yield, colorless oil; 1 H NMR (500 MHz, CDCl 3 ) δ 6.94 6.85 (m, 2H), 6.21 (dd, J = 10.0, 1.4 Hz, 2H), 5.60 (t, J = 6.1 Hz, 1H), 5.54 (dd, J = 6.1, 3.0 Hz, 1H), 2.28 2.07 (m, 1H), 1.80 1.75 (m, 2H), 1.74 1.67 (m, 2H), 1.61 (dd, J = 9.1, 3.4 Hz, 1H), 1.54 (d, J = 7.2 Hz, 3H), 1.33 1.03 (m, 5H); 13 C NMR (125 MHz, CDCl 3 ) δ 212.4, 185.0, 164.8, 149.3, 128.1, 101.5, 88.5, 74.3, 36.6, 32.7, 32.7, 26.3, 25.9, 25.7, 25.7; HRMS (ESI) m/z calcd for C 17 H 20 Na 3 [M+Na] + = 295.1305, found = 295.1296. 1-Methyl-4-oxocyclohexa-2,5-dien-1-yl 5,5-dimethylhexa-2,3-dienoate (6g)

11% yield, colorless oil; 1 H NMR (500 MHz, CDCl 3 ) δ 6.98 6.81 (m, 2H), 6.22 (dd, J = 10.3, 1.6 Hz, 2H), 5.59 (dd, J = 24.8, 6.0 Hz, 2H), 1.55 (s, 3H), 1.10 (s, 9H); 13 C NMR (125 MHz, CDCl 3 ) δ 211.2, 185.0, 164.7, 149.3, 149.2, 128.1, 128.1, 107.2, 89.3, 74.3, 32.8, 30.0, 26.3; HRMS (ESI) m/z calcd for C 15 H 18 Na 3 [M+Na] + = 269.1148, found = 269.1139. ptical resolution was carried out by use of a chiral stationary phase column [Chiralpak IA (2.0 cm I.D. 25 cm), hexane/ch 2 Cl 2 = 3:1, flow 8 ml/min, five cycles, fifth cycle: t 2 = 102-105 min to get optically pure 6g-1. with ee value >99%, t R (major) =12.9 min (Chiralpak IE, λ = 254 nm, 10% i-prh/hexane, flow rate = 1.0 ml/min). 4-xo-[1,1'-biphenyl]-1(4H)-yl 5-methylhexa-2,3-dienoate (6h) 15% yield, pale yellow solid; 1 H NMR (500 MHz, CDCl 3 ) δ 7.55 7.42 (m, 2H), 7.41 7.31 (m, 3H), 7.02 6.85 (m, 1H), 6.39 6.20 (m, 1H), 5.80 5.62 (m, 1H), 2.62 2.47 (m, 1H), 1.12 (ddd, J = 6.8, 3.1, 1.1 Hz, 6H); 13 C NMR (125 MHz, CDCl 3 ) δ 212.1, 185.6, 164.2, 147.8, 147.8, 136.4, 129.0, 128.7, 128.0, 128.0, 125.4, 103.0, 89.101, 77.4, 27.8, 22.4, 22.2; HRMS (ESI) m/z calcd for C 19 H 18 Na 3 [M+Na] + = 317.1148, found = 317.1154. 1,2-Dimethyl-4-oxocyclohexa-2,5-dien-1-yl buta-2,3-dienoate (8) 28% yield, white solid; 1 H NMR (500 MHz, CDCl3) δ 6.85 (d, J = 10.1 Hz, 1H), 6.19 (dd, J = 10.1, 1.9 Hz, 1H), 6.09 6.02 (m, 1H), 5.60 (t, J = 6.5 Hz, 1H), 5.23 (d, J = 6.5 Hz, 2H), 1.92 (d, J = 1.3 Hz, 3H), 1.50 (s, 3H); 13 C NMR (125 MHz, CDCl3) δ 216.4, 185.4, 163.8, 158.9, 149.7, 127.7, 126.8, 87.4, 79.6, 76.7, 26.1, 17.7; HRMS (ESI) m/z calcd for C 12 H 12 Na 3 [M+Na] + = 227.0679, found = 227.0668. Representative procedure of the intramolecular allenoate Rauhut Currier reaction To a flame dried round bottle flask with a magnetic stirring bar at room temperature under N 2 were added allenoate 1 (0.15 mmol) and EtAc (3 ml), followed by the addition of -ICD (1 mol %, 0.5 mg). The resulting mixture was stirred for 24 h. The solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel to afford annulation adduct 2.

Analytical data products 2 (3aS,7aS)-7a-Methyl-3-vinylidene-3a,7a-dihydrobenzofuran-2,5(3H,4H)-dione (2a) White solid, [α] 25 D = +122 (c 1.0, EtAc); 1 H NMR (500 MHz, CDCl 3 ) δ 6.76 6.40 (m, 1H), 6.03 (d, J = 10.3 Hz, 1H), 5.49 (d, J = 6.2 Hz, 2H), 3.58 3.37 (m, 1H), 2.86 2.58 (m, 2H), 1.72 (s, 3H); 13 C NMR (125 MHz, CDCl 3 ) δ 208.2, 194.4, 167.3, 146.4, 128.9, 98.8, 85.0, 80.6, 44.1, 35.9, 23.9; HRMS (ESI) m/z calcd for C 11 H 9 3 [M-H] - = 189.0557, found = 189.0555. The ee value was 96%, t R (major) = 22.08 min, t R (minor) = 25.12 min (Chiralpak IE, λ = 215 nm, 20% i-prh/hexane, flow rate = 1.0 ml/min). (3aS,7aS)-7a-Ethyl-3-vinylidene-3a,7a-dihydrobenzofuran-2,5(3H,4H)-dione (2b) White solid, [α] 25 D = +113 (c 1.0, EtAc); 1 H NMR (500 MHz, CDCl 3 ) δ 6.61 (dd, J = 10.4, 1.7 Hz, 1H), 6.08 (d, J = 10.4 Hz, 1H), 5.48 (dd, J = 6.2, 1.6 Hz, 2H), 3.58 (dtd, J = 6.0, 4.0, 1.8 Hz, 1H), 2.71 (d, J = 4.2 Hz, 2H), 2.22 1.80 (m, 2H), 1.11 (t, J = 7.5 Hz, 3H); 13 C NMR (125 MHz, CDCl 3 ) δ 208.3, 194. 7, 167.4, 145.6, 129.8, 99.1, 85.0, 83.1, 41.6, 36.4, 30.5, 7.9; HRMS (ESI) m/z calcd for C 12 H 12 Na 3 [M+Na] + =227.0679, found = 227.0688. The ee value was 98%, t R (major) = 11.12 min, t R (minor) = 12.43 min (Chiralpak IE, λ = 215 nm, 35% i-prh/hexane, flow rate = 1.0 ml/min). (3aS,7aS)-7a-Propyl-3-vinylidene-3a,7a-dihydrobenzofuran-2,5(3H,4H)-dione (2c) Colorless oil, [α] 25 D = +101 (c 0.6, EtAc); 1 H NMR (500 MHz, CDCl 3 ) δ 6.60 (dd, J = 10.4, 1.1 Hz, 1H), 6.05 (d, J = 10.4 Hz, 1H), 5.46 (d, J = 6.2 Hz, 2H), 3.81 3.26 (m, 1H), 2.87 2.51 (m, 2H), 2.02 1.85 (m, 2H), 1.59 1.49 (m, 2H), (t, J = 7.3 Hz, 3H); 13 C NMR (125 MHz, CDCl 3 ) δ 208.3, 194.7, 167.4, 145.8, 129.6, 99.0, 85.0, 82.9, 42.1, 39.8, 36.3, 17.0, 14.3; HRMS (ESI) m/z calcd for C 13 H 14 Na 3 [M+Na] +

=241.0835, found = 241.0827. The ee value was 96%, t R (minor) = 18.14 min, t R (major) = 19.73 min (Chiralpak IA, λ = 215 nm, 5% i-prh/hexane, flow rate = 1.0 ml/min). (3aS, 7aS)-7a-Isopropyl-3-vinylidene-3a,7a-dihydrobenzofuran-2,5(3H,4H)-dione (2d) Colorless oil, [α] 25 D = +83 (c 1.0, EtAc); 1 H NMR (500 MHz, CDCl 3 ) δ 6.61 (dd, J = 10.5, 1.7 Hz, 1H), 6.14 (d, J = 10.5 Hz, 1H), 5.55 5.40 (m, 2H), 3.77 3.51 (m, 1H), 2.80 2.59 (m, 2H), 2.24 (hept, J = 6.9 Hz, 1H), 1.10 (t, J = 6.9 Hz, 6H); 13 C NMR (125 MHz, CDCl 3 ) δ 208.5, 194.9, 167.3, 144.8, 130.7, 99.8, 85.3, 85.1, 39.3, 37.5, 35.8, 17.4, 16.6; HRMS (ESI) m/z calcd for C 13 H 14 Na 3 [M+Na] + =241.0835, found = 241.0843. The ee value was 91%, t R (major) = 10.48 min, t R (minor) = 11.68 min (Chiralpak IE, λ = 215 nm, 35% i-prh/hexane, flow rate = 1.0 ml/min). (3aS,7aS)-7a-Butyl-3-vinylidene-3a,7a-dihydrobenzofuran-2,5(3H,4H)-dione (2e) Colorless oil, [α] 25 D = +73 (c 1.0, EtAc); 1 H NMR (500 MHz, CDCl 3 ) δ 6.61 (dd, J = 10.4, 1.7 Hz, 1H), 6.08 (d, J = 10.4 Hz, 1H), 5.71 5.23 (m, 2H), 3.73 3.37 (m, 1H), 3.03 2.57 (m, 2H), 2.05 1.97 (m, 1H), 1.96 1.89 (m, 1H), 1.54 1.46 (m, 2H), 1.45 1.37 (m, 2H), 0.95 (t, J = 7.2 Hz, 3H); 13 C NMR (125 MHz, CDCl 3 ) δ 208.3, 194.7, 167.4, 145.9, 129.6, 99.1, 85.0, 82.9, 42.1, 37.4, 36.4, 25.6, 22.9, 13.8; HRMS (ESI) m/z calcd for C 14 H 15 3 [M-H] - = 231.1027, found = 231.1015. The ee value was 96%, t R (minor) = 12.23 min, t R (major) = 13.05 min (Chiralpak IB, λ = 215 nm, 15% i-prh/hexane, flow rate = 1.0 ml/min). (3aS, 7aS)-7a-Benzyl-3-vinylidene-3a,7a-dihydrobenzofuran-2,5(3H,4H)-dione (2f) White solid, [α] 25 D = +39 (c 1.0, EtAc); 1 H NMR (500 MHz, CDCl 3 ) δ 7.36 7.28 (m, 3H), 7.28 7.21 (m, 2H), 6.58 (dt, J = 10.4, 1.5 Hz, 1H), 6.05 (d, J = 10.4 Hz, 1H), 5.70 5.19 (m, 2H), 3.60 (dt, J = 8.2, 6.0 Hz,

1H), 3.36 (dd, J = 20.2, 14.1, 2H), 2.66 2.43 (m, 1H), 2.30 (ddd, J = 17.2, 5.8, 1.1 Hz, 1H); 13 C NMR (125 MHz, CDCl 3 ) δ 208.3, 194.6, 167.2, 145.5, 133.3, 130.4, 129.8, 128.8, 127.9, 98.8, 85.1, 82.5, 43.4, 41.4, 36.0; HRMS (ESI) m/z calcd for C 17 H 13 3 [M-H] - = 265.0870, found = 265.0878. The ee value was 94%, t R (major) = 11.24 min, t R (minor) = 12.45 min (Chiralpak IE, λ = 215 nm, 35% i-prh/hexane, flow rate = 1.0 ml/min). (3aS,7aS)-7a-Phenethyl-3-vinylidene-3a,7a-dihydrobenzofuran-2,5(3H,4H)-dione (2g) Colorless oil, [α] 25 D = +31 (c 1.0, EtAc); 1 H NMR (500 MHz, CDCl 3 ) δ 7.31 (t, J = 7.4 Hz, 2H), 7.25 7.16 (m, 3H), 6.67 (dd, J = 10.4, 1.8 Hz, 1H), 6.10 (d, J = 10.4 Hz, 1H), 5.66 5.39 (m, 2H), 3.70 3.58 (m, 1H), 2.72 (d, J = 4.2 Hz, 2H), 2.34 (ddd, J = 14.4, 11.2, 6.0 Hz, 1H), 2.24 (ddd, J = 14.4, 11.2, 5.8 Hz, 1H); 13 C NMR (125 MHz, CDCl 3 ) δ 208.4, 194.5, 167.3, 145.3, 140.1, 129.8, 128.8, 128.2, 126.6, 98.8, 85.1, 82.5, 42.2, 39.3, 36.2, 29.8; HRMS (ESI) m/z calcd for C 18 H 15 3 [M-H] - = 279.1027, found = 279.1033. The ee value was 94%, t R (minor) = 13.03 min, t R (major) = 14.18 min (Chiralpak IE, λ = 215 nm, 35% i-prh/hexane, flow rate = 1.0 ml/min). Methyl 3-((3aS,7aS)-2,5-dioxo-3-vinylidene-3,3a,4,5-tetrahydrobenzofuran-7a(2H)-yl)propanoate (2h) Colorless oil, [α] 25 D = +72 (c 1.0, EtAc); 1 H NMR (500 MHz, CDCl 3 ) δ 6.57 (dd, J = 10.4, 1.8 Hz, 1H), 6.07 (d, J = 10.4 Hz, 1H), 5.49 (d, J = 6.2 Hz, 2H), 3.69 (s, 3H), 3.63 3.51 (m, 1H), 2.79 2.66 (m, 2H), 2.63 2.51 (m, 2H), 2.41 2.23 (m, 2H); 13 C NMR (125 MHz, CDCl 3 ) δ 208.4, 194.3, 172.6, 166.9, 144.7, 130.0, 98.6, 85.2, 81.8, 52.1, 42.0, 35.9, 31.9, 28.1; HRMS (ESI) m/z calcd for C 14 H 14 Na 5 [M+Na] + = 285.0733, found = 285.0742. The ee value was 96%, t R (minor) = 29.87 min, t R (major) = 37.44 min (Chiralpak IE, λ = 215 nm, 35% i-prh/hexane, flow rate = 1.0 ml/min). (3aS,7aS)-7a-Phenyl-3-vinylidene-3a,7a-dihydrobenzofuran-2,5(3H,4H)-dione (2i)

White solid, [α] 25 D = -14 (c 0.7, EtAc); 1 H NMR (500 MHz, CDCl 3 ) δ 7.56 7.37 (m, 5H), 6.73 (dd, J = 10.3, 1.8 Hz, 1H), 6.29 (d, J = 10.3 Hz, 1H), 5.77 5.32 (m, 2H), 3.79 3.54 (m, 1H), 2.81 (dd, J = 17.3, 5.5 Hz, 1H), 2.73 (dd, J = 17.3, 2.6 Hz, 1H); 13 C NMR (125 MHz, CDCl 3 ) δ 208.2, 194.6, 167.1, 144.5, 137. 8, 130.1, 129.3, 129.3, 124.9, 98.8, 85.2, 83.6, 46.1, 35.5; HRMS (ESI) m/z calcd for C 16 H 11 3 [M-H] - = 251.0714, found = 251.0711. The ee value was 96%, t R (minor) = 15.34 min, t R (major) = 19.15 min (Chiralpak IE, λ = 215 nm, 35% i-prh/hexane, flow rate = 1.0 ml/min). 4-((3aS,7aS)-2,5-Dioxo-3-vinylidene-3,3a,4,5-tetrahydrobenzofuran-7a(2H)-yl)benzonitrile (2j) Pale yellow solid, [α] 25 D = -41 (c 1.0, EtAc); 1 H NMR (500 MHz, CDCl 3 ) δ 7.76 (d, J = 8.3 Hz, 2H), 7.62 (d, J = 8.4 Hz, 2H), 6.67 (dd, J = 10.3, 1.7 Hz, 1H), 6.32 (d, J = 10.3 Hz, 1H), 5.70 5.41 (m, 2H), 3.82 3.55 (m, 1H), 2.98 2.50 (m, 2H); 13 C NMR (125 MHz, CDCl 3 ) δ 208.4, 193.8, 166.4, 143.1, 142.9, 133.1, 130.9, 125.9, 117.9, 113.4, 98.1, 85.6, 82.7, 45.7, 35.4; RMS (ESI) m/z calcd for C 17 H 10 N 3 [M-H] - = 276.0666, found = 276.0658. The ee value was 96%, t R (minor) = 23.33 min, t R (major) = 46.17 min (Chiralpak IE, λ = 215 nm, 35% i-prh/hexane, flow rate = 1.0 ml/min). (3aS,7aS)-7a-(3-Fluorophenyl)-3-vinylidene-3a,7a-dihydrobenzofuran-2,5(3H,4H)-dione (2k) Pale yellow solid, [α] 25 D = -8 (c 1.0, EtAc); 1 H NMR (500 MHz, CDCl 3 ) δ 7.43 (td, J = 8.0, 5.9 Hz, 1H), 7.25 7.18 (m, 2H), 7.12 (td, J = 8.3, 2.5 Hz, 1H), 6.69 (dd, J = 10.3, 1.7 Hz, 1H), 6.29 (d, J = 10.3 Hz, 1H), 5.63 5.44 (m, 2H), 3.79 3.59 (m, 1H), 2.80 (dd, J = 17.4, 5.4 Hz, 1H), 2.73 (dd, J = 17.4, 2.7 Hz, 1H); RMS (ESI) m/z calcd for C 16 H 10 F 3 [M-H] - = 269.0619, found = 269.0630; The ee value was 96%, t R (minor) = 12.6 min, t R (major) = 30.54 min (Chiralpak IE, λ = 215 nm, 35% i-prh/hexane, flow rate = 1.0 ml/min). (3aS,7aS)-7a-(4-Chlorophenyl)-3-vinylidene-3a,7a-dihydrobenzofuran-2,5(3H,4H)-dione (2l)