Chamber Development Plan and Chamber Simulation Experiments

Similar documents
Progress Report on Chamber Dynamics and Clearing

Chamber Dynamics and Clearing Code Development Effort

High-Average-Power Laser Optics and Chamber Studies: Report on Research Performed During FY01

Ultrafast X-Ray-Matter Interaction and Damage of Inorganic Solids October 10, 2008

Fundamental investigation on CO 2 laser-produced Sn plasma for an EUVL source

Laser matter interaction

Optimization of laser-produced plasma light sources for EUV lithography

Introduction to Liquid-Wall Chamber Configurations and Phenomena

Wolter Imaging On Z. Chris Bourdon, Manager Z Imaging and Spectroscopy Julia Vogel, LLNL; Ming Wu, SNL ICF Diagnostics Workshop, October 5 th 2015

Nanosecond Broadband Spectroscopy For Laser-Driven Compression Experiments

Laser Ablation Studies at UCSD and Plans for Time and Space Resolved Ejecta Measurements

International Journal of Scientific & Engineering Research, Volume 8, Issue 2, February-2017 ISSN

5.5. Calibration and Test Procedures

Diagnostics for Burning Plasma Physics Studies: A Status Report.

Results from ARIES-IFE Study and Research Activities on IFE Chamber and Optics at UC San Diego

Inertial Confinement Fusion Experiments & Modeling

EUV lithography and Source Technology

Cesium Dynamics and H - Density in the Extended Boundary Layer of Negative Hydrogen Ion Sources for Fusion

6. ELECTRODE EXPERIMENT

Investigation of fundamental mechanisms related to ambient gas heating and hydrodynamics of laser-induced plasmas

Plasma shielding during ITER disruptions

BETTER DESIGN AND NEW TECHNOLOGIES IMPROVE LASER POWER MEASUREMENT INSTRUMENTATION

Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source

SIB 52 - THERMO Stakeholder meeting May 16

Inertial Confinement Fusion DR KATE LANCASTER YORK PLASMA INSTITUTE

Table of Content. Mechanical Removing Techniques. Ultrasonic Machining (USM) Sputtering and Focused Ion Beam Milling (FIB)

Experimental X-Ray Spectroscopy: Part 2

Introduction to Fourier Transform Infrared Spectroscopy

The Magnetic Recoil Spectrometer (MRSt) for time-resolved measurements of the neutron spectrum at the National Ignition Facility (NIF)

Lecture 6. Rapid Thermal Processing. Reading: Chapter 6

Laser Ablation for Chemical Analysis: 50 Years. Rick Russo Laser Damage Boulder, CA September 25, 2012

X-Rays From Laser Plasmas

Polar-Drive Hot-Spot Ignition Design for the National Ignition Facility

Outline. LIBS Background. LIBS Developments. LIBS Overview. Atomic Emission Spectroscopy

Fatigue Testing of Materials by UV Pulsed Laser Irradiation

Magnetic Intervention Dump Concepts

Secondary ion mass spectrometry (SIMS)

Introduction to Fourier Transform Infrared Spectroscopy

high temp ( K) Chapter 20: Atomic Spectroscopy

Understanding the femtosecond laser-solid interaction near and beyond the material damage threshold.

Exploration of the Feasibility of Polar Drive on the LMJ. Lindsay M. Mitchel. Spencerport High School. Spencerport, New York

TARGET INJECTION INTO A GAS-FILLED CHAMBER

Transmissive Final Optic for Laser IFE

The role of PMI in MFE/IFE common research

Optical and THz investigations of mid-ir materials exposed

Plasma Spectroscopy in ISTTOK

SUPPLEMENTARY INFORMATION

Electric Field Measurements in Atmospheric Pressure Electric Discharges

Temperature measurement and real-time validation

Let us consider a typical Michelson interferometer, where a broadband source is used for illumination (Fig. 1a).

What is. Inertial Confinement Fusion?

Dynamo on the OMEGA laser and kinetic problems of proton radiography

Lecture 6. Ion acceleration in solids. Zoltán Tibai

Ion Acceleration from the Interaction of Ultra-Intense Laser Pulse with a Thin Foil

Spectral analysis of K-shell X-ray emission of magnesium plasma produced by ultrashort high-intensity laser pulse irradiation

Bolometry. H. Kroegler Assciazione Euratom-ENEA sulla Fusione, Frascati (Italy)

A Multi-beamlet Injector for Heavy Ion Fusion: Experiments and Modeling

Damage to Molecular Solids Irradiated by X-ray Laser Beam

Unit-2 LASER. Syllabus: Properties of lasers, types of lasers, derivation of Einstein A & B Coefficients, Working He-Ne and Ruby lasers.

Laser Plasma Monochromatic Soft X-ray Source Using Nitrogen Gas Puff Target

Measurement of Long-Scale-Length Plasma Density Profiles for Two-Plasmon Decay Studies

6.5 Optical-Coating-Deposition Technologies

NUCLEAR TRANSMUTATION IN DEUTERED PD FILMS IRRADIATED BY AN UV LASER

ULTRA-INTENSE LASER PLASMA INTERACTIONS RELATED TO FAST IGNITOR IN INERTIAL CONFINEMENT FUSION

Uncertainty Analysis for Heat-flux DSC Measurements

Laser-produced extreme ultraviolet (EUV) light source plasma for the next generation lithography application

Ablation Dynamics of Tin Micro-Droplet Target for LPP-based EUV light Source

UC San Diego EUV Lithography Group Progress Report

Scaling Hot-Electron Generation to High-Power, Kilojoule-Class Lasers

Modelling Dynamical Fluorescent Micro Thermal Imaging of the Heat Diffusion in the La 5 Ca 9 Cu 24 O 41 Spin Ladder Compound.

SUPPLEMENTARY INFORMATION

Fundamentals of Mass Spectrometry. Fundamentals of Mass Spectrometry. Learning Objective. Proteomics

Answers to questions on exam in laser-based combustion diagnostics on March 10, 2006

Metal Deposition. Filament Evaporation E-beam Evaporation Sputter Deposition

Large Plasma Device (LAPD)

Investigations on warm dense plasma with PHELIX facility

Tokamak Divertor System Concept and the Design for ITER. Chris Stoafer April 14, 2011

Lecture 1: Vapour Growth Techniques

phase retardance THz intensity ratio THz filling factor in air : 0.2 filling factor in si : 0.8 length of air : 4um length of si : 16um depth : 27.

Update on MJ Laser Target Physics

Multiple charge states of titanium ions in laser produced plasma

All about sparks in EDM

Vacuum Pumps. Two general classes exist: Gas transfer physical removal of matter. Mechanical, diffusion, turbomolecular

Cluster fusion in a high magnetic field

Time and space resolved spectroscopy of nanoenergetic materials Dana Dlott

ITER A/M/PMI Data Requirements and Management Strategy

Ion Induced Beam disruption Mechanism

PISCES Laser Transient Systems

Simulation of the Beam Dump for a High Intensity Electron gun

ABB temperature measurement Radiation thermometry. Measurement made easy. Process temperature measurement practice--non-contacting

FLASH SIMULATIONS OF EXPERIMENTS TO EXPLORE THE GENERATION OF COSMOLOGICAL MAGNETIC FIELDS AT LABORATOIRE d'utilisation DES LASERS INTENSES (LULI)

TMT4320 Nanomaterials November 10 th, Thin films by physical/chemical methods (From chapter 24 and 25)

CHARACTERIZING CRACKS WITH ACTIVE THERMOGRAPHY

Laboratory experiments on the formation and recoil jet transport of aerosol by laser ablation

Experimental Study on Light Flash Radiant Intensity Generated by Strong Shock 2A12 Aluminum Plate

Jlab FEL Photoemission DC Guns

COST MP0601 Short Wavelength Laboratory Sources

ICALEPCS Oct. 6-11, 2013

BEAM PROPAGATION FOR THE LASER INERTIAL CONFINEMENT FUSION-FISSION ENERGY ENGINE. S. C. Wilks, B. I. Cohen, J. F. Latkowski, and E. A.

LIST OF TOPICS BASIC LASER PHYSICS. Preface xiii Units and Notation xv List of Symbols xvii

Transcription:

Chamber Development Plan and Chamber Simulation Experiments Farrokh Najmabadi HAPL Meeting November 12-13, 2001 Livermore, CA Electronic copy: http://aries.ucsd.edu/najmabadi/talks UCSD IFE Web Site: http://aries.ucsd.edu/ife

Development of Practical Chambers is a Feasibility Issue for Laser IFE Many IFE chamber concepts have been proposed. Feasibility of any chamber concept is highly uncertain due to absence of experimental data and insufficient predictive capabilities. Never before a coordinated research program has been launched to validate concepts as is proposed to be done under HAPL program; The phenomena present in IFE chambers are highly complex, and cannot be duplicated completely in present experimental facilities or in IRE. ETF would be the first facility that achieves integrated prototypical condition. But, we cannot wait for ETF. High confidence in success of IFE chambers is necessary for ETF to go forward. We can develop high confidence in IFE chamber concepts with a parallel modeling and experiments in simulation facilities.

A Coordinated Chamber Development Plan Is Essential in the First Phase of Laser IFE Program Goals: Identify at least two credible and attractive chamber concepts ready for testing in the IRE. Develop predictive capability for chambers through a parallel and coordinated experimental and modeling activity. Chamber Research Framework: Integrated: Start with a self-consistent chamber concept. Credible: Focus on key feasibility issues. Predictive Capability: Devise experiments to validate model for each phenomena.

Chamber Development Plan Aims at Developing Necessary Predictive Capability For each concept, Plan defines an iterative process to Identify underlying processes and their scaling Focus is on practical rather than ideal systems Devise and/or compare models used for each phenomena. Identify shortcomings in data bases; Devise relevant and well-diagnosed experiments that isolate and resolve each phenomena to benchmark models. Plan allows for development of new chamber concepts Plan does not list critical issues only but includes R&D direction to understand and resolve them. A draft is available for interested parties. We aim at finalizing the plan in a couple of weeks.

Most of the Critical Feasibility Issues for Various Chambers Fall Under Four Generic Categories All chamber concepts share four broad science and technology challenges: Propagation of target emissions in the chamber, Thermo-mechanical response of the chamber wall, Relaxation of the chamber environment to pre-shot level that is consistent with target injection and laser propagation, Long-term mass transport that might affect changes in wall morphology, final optics contamination, safety, etc. By focusing on generic critical issues, single experimental facilities and modeling/computer simulation tools can be utilized to resolve feasibility issue for several concepts. Understanding of the underlying scientific basis will enable informed down-selection of concepts as progress is made.

Chamber Development Plan 5.2. Thermo-mechanical Response of the Chamber Wall

Wall Survival Critically Depends on Its Thermo-Mechanical Response Idealized estimates of wall survival have been made: Energy flux Estimates assume idealized chamber conditions prior to target implosion Temperature Evolution Temperature evolution is computed for a perfectly flat wall using steady-state and bulk properties for pure material Mass Loss Mass loss is estimated based on sublimation and/or melting correlations.

Temperature Evolution: All Action Occurs in the First Few µm of the Wall Thermal response of a W flat wall to NRL direct-drive target (6.5-m chamber with no gas protection): Pure material and perfectly flat wall is assumed. ~1,500 C peak temperature Wall surface Time (µs) 20µm depth Temperature variation mainly in a thin (<100 µm) region. Temperature spikes only in the first few µm. Response dominated by thermal capacity of material. But in a Practical System: Surface features are probably much larger than 10-20 µm due to manufacturing tolerances, surface morphology, etc. Impurities and contaminants can cause hot spots. There is a large uncertainty in calculated temperature evolution.

Material Loss: Only Material Loss by Melting/sublimation Has Been Considered Sublimation is sensitive to local temperature and partial pressure conditions. Accurate estimate of surface temperature is essential. Experiments should be done at relevant surface temperature range because heat capacity is much smaller than phase change energy. Real-time temperature should be measured. Experiments must be done at relevant surface temperature. Steady-state data for sublimation rates may not be applicable. Sublimation rates also depends on the atomic form of sublimated species; Sublimation at local hot spots (contaminants, surface morphology) may dominate. Is avoidance of melting a good criteria? Sublimation rates should be measured at relevant surface temperature range in-situ.

Material Loss: Only Material Loss by Melting/sublimation Has Been Considered Indirect material loss due to contaminants on the surface may be important: Formation WC on the wall which has a melting point much lower than W; Formation of CH on the wall that can vaporizes at very low temperature. Experiments should be performed in the presence of possible contaminants. Sputtering (physical, chemical, etc.): Estimates are being made. Requires knowledge of ion spectrum on the wall. Experiment planning is differed until initial estimates are made.

Mechanical Response: Wall life May Be Limited by Thermal Shock and Thermal Stresses "Instantaneous" heat deposition gives rise to large local pressure and shock wave propagation in the material. If the resulting local stresses exceed the ultimate strength of the material catastrophic failure can occur. High surface T & dt/dx - High local stress - Fatigue Differential thermal expansion due to the sharp temperature gradient through the armor leads to cyclic local stresses: If the local stress exceeds the ultimate strength, the material will fail; Thermal fatigue failure can also occur over the numerous cycles of operation. High P Shock wave Armor Thermal shock and thermal stress effects should be calculated and compared with simulation experiments.

Long-term Changes in the Wall May Have a Large Impact on Wall Survivability Additional uncertainties arise due to long-term changes that occur at the wall surface over wall life time: Surface contaminants and impurities; Formation of compounds; Changes in surface morphology (grain size, micro-cracking, diffusion of impurities); Changes in thermo-physical properties due to: o Rep-rated, large temperature excursions; o Large ion flux; o Neutron flux. Need input from material community. Samples exposed in rep-rated simulation facilities can be used for experimental analysis.

Thermo-mechanical Response of the Wall Is Mainly Dictated by Wall Temperature Evolution Most phenomena encountered depend on wall temperature evolution (temporal and spatial) and chamber environment Only sputtering and radiation (ion & neutron) damage effects depend on how the energy is delivered. Most energy sources (lasers, X-rays, ion beam) can generate similar temperature temporal and spatial profiles. Comparison of results from facilities with different heating sources (e.g., lasers, X-ray and ion beam) would isolate impact of threat spectrum, if any. In order to develop predictive capability: There is no need to exactly duplicate wall temperature temporal and spatial profiles. (We do not know them anyway!) Rather, we need to understand the wall response in a relevant range of wall temperature profiles (and we need to measure them in real time!)

One Laser Pulse Can Simulate Wall Temperature Evolution due to X-rays NRL Target, X-ray Only 1 J/cm 2, 10 ns Rectangular pulse Laser 0.24 J/cm 2,10 ns Gaussian pulse Wall surface 10µm depth Time (µs) Time (µs) Only laser intensity is adjusted to give similar peak temperatures. Spatial temperature profile can be adjusted by changing laser pulse shape.

Three Laser Pulses Can Simulate the Complete Surface Temperature Evolution NRL Target, X-ray and Ions Laser 0.24 J/cm 2,10 ns Gaussian pulse 0.95 J/cm 2,1 µs Rectangular pulse 0.75 J/cm 2,1.5 µs Rectangular pulse Wall surface 20µm depth Time (µs) Time (µs)

Thermo-mechanical Response of the Chamber Wall UCSD Simulation Experiments

Thermo-Mechanical Response of Chamber Wall Can Be Explored in Simulation Facilities Requirements: Laser pulse simulates temperature evolution Capability to simulate a variety of wall temperature profiles A suite of diagnostics: Real-time temperature, thermal shock, and stress Per-shot ejecta mass and constituents Rep-rated experiments to simulate fatigue and material response Vacuum Chamber provides a controlled environment Capability to isolate ejecta and simulate a variety of chamber environments & constituents

Real-time Temperature Measurements Can Be Made With Fast Optical Thermometry MCFOT Multi-Color Fiber Optic Thermometry Compares the thermal emission intensity at several narrow spectral bands. Time resolution ~100 ps to 1 ns. Measurement range is from ambient to ionization self-calibrating. Simple design, construction, operation and analysis. Easy selection of spectral ranges, via filter changes. Emissivity must be known.

FOTERM-S Is a Self-Referential Fast Optical Thermometry Technique FOTERM-S: Fiber Optic Temperature & Emissivity Radiative Measurement Self standard Compares the direct thermal emission and its self-reflection at a narrow spectral band to measure both temperature and emissivitiy. Time resolution ~100 ps to 1 ns. Measurement range is from ambient to ionization self-calibrating. More complex design and construction, but simple operation and analysis. A-A B-B A-A view B- B view Baffle Baffle Mirror Absorber A-A Absorber Mirror ε B-B Front view Fiber collimator/focuser Fiber collimator/focuser

QCM Measures Single-Shot Mass Ablation Rates With High Accuracy QCM: Quartz Crystal Microbalance Measures the drift in oscillation frequency of the quartz crystal. QCM has extreme mass sensitivity: 10-9 to 10-12 g/cm 2. Time resolution is < 0.1 ms (each single shot). Quartz crystal is inexpensive. It can be detached after several shots. Composition of the ablated ejecta can be analyzed by surface examination.

Composition of Ejecta Can Be Measured with RGA RGA: Residual Gas Analyzer is a mass spectrometer. Ejecta spectrum can be measured to better than 1 ppm. Time resolution is ~1 ms (each single shot). Inexpensive, commercially available diagnostics. 1) Repeller 2) Anode Grid 3) Filament 4) Focus Plate

Spectroscopy Can Identify the Ejecta Constituents Near the Sample Laser propagation and Breakdown experiment setup Acton Research SpectraPro 500i Focal Length: 500 mm Aperture Ratio: f/6.5 Scan Range: 0 to 1400-nm mechanical range Maximum resolution: 0.04 nm Grating size: 68x68 mm in a triple-grating turret Gratings: 150g/mm, 600g/mm, 2400g/mm

Laser Interferometry Can Measure the Velocity History of the Target Surface VISAR: Velocity Interferometer System for Any Reflector Measures the motion of a surface Time resolution of 0.1 to 1 ns. Accuracy is better than 1%-2% for velocities up to 3000 m/s. Measuring velocity histories of the front and back surfaces of the target allows to calculate the thermal and mechanical stresses inside it.

A Coordinated Modeling/Experimental Activity Will Provide Predictive Capability for Thermo- Mechanical Response of Chamber Wall Laser pulse simulates temperature evolution A suite of diagnostics is identified Real Time Thermal shock and stress ε Real Time Temperature Per shot Ejecta Mass and Constituents Vacuum Chamber provides a controlled environment Sample can be examined for material behavior after high rep-rate experiments

Backup Slides

Adjusting Laser Pulse Duration Can Improve the Fidelity of Simulation NRL Target, X-ray Only 1 J/cm 2, 10 ns Rectangular pulse Laser* 0.47 J/cm 2,50 ns Gaussian pulse Time (µs) Time (µs) *Laser intensity is adjusted to give similar peak temperatures.

Ionized Species Can Affect Prorogation of Target Emissions in The Chamber Radiation Transport: Physics is well understood Atomic data base (e.g., opacity, ionization/recombination rates) is not complete specially at low temperatures. Ion Transport: Interaction of charged particles with matter is well understood. X-ray flash (and initial fast ions) will ionize the chamber gas. This will affect ion slowing processes. Pre-shot chamber environment may not be completely neutralized. R&D: Benchmark models and codes. Compute ion flux and spectrum at the chamber wall. Devise experiments to validate calculation.