AIR DENSITY AND ITS UNCERTAINTY. Manuel Salazar Maria Vega

Similar documents
6. Gas dynamics. Ideal gases Speed of infinitesimal disturbances in still gas

Key Chemistry 102 Discussion #4, Chapter 11 and 12 Student name TA name Section. ; u= M. and T(red)=2*T(yellow) ; t(yellow)=4*t(red) or

15/03/1439. Lecture 4: Linear Time Invariant (LTI) systems

The order of reaction is defined as the number of atoms or molecules whose concentration change during the chemical reaction.

A Kalman filtering simulation

Particle Filtering. CSE 473: Artificial Intelligence Particle Filters. Representation: Particles. Particle Filtering: Elapse Time

September 20 Homework Solutions


Motion. Part 2: Constant Acceleration. Acceleration. October Lab Physics. Ms. Levine 1. Acceleration. Acceleration. Units for Acceleration.

Background and Motivation: Importance of Pressure Measurements

2IV10/2IV60 Computer Graphics

1. Consider a PSA initially at rest in the beginning of the left-hand end of a long ISS corridor. Assume xo = 0 on the left end of the ISS corridor.

P a g e 3 6 of R e p o r t P B 4 / 0 9

Section P.1 Notes Page 1 Section P.1 Precalculus and Trigonometry Review

A L A BA M A L A W R E V IE W

PHYSICS 1210 Exam 1 University of Wyoming 14 February points

S Radio transmission and network access Exercise 1-2

Par+cle Filtering. CSE 473: Ar+ficial Intelligence Par+cle Filters. Par+cle Filtering: Elapse Time. Representa+on: Par+cles

Some algorthim for solving system of linear volterra integral equation of second kind by using MATLAB 7 ALAN JALAL ABD ALKADER

Properties of Logarithms. Solving Exponential and Logarithmic Equations. Properties of Logarithms. Properties of Logarithms. ( x)

0 for t < 0 1 for t > 0

Physic 231 Lecture 4. Mi it ftd l t. Main points of today s lecture: Example: addition of velocities Trajectories of objects in 2 = =

MASS, STIFFNESS, AND DAMPING MATRICES FROM MEASURED MODAL PARAMETERS

2D Motion WS. A horizontally launched projectile s initial vertical velocity is zero. Solve the following problems with this information.

Lecture 3: 1-D Kinematics. This Week s Announcements: Class Webpage: visit regularly

Phys 110. Answers to even numbered problems on Midterm Map

Additional Exercises for Chapter What is the slope-intercept form of the equation of the line given by 3x + 5y + 2 = 0?

28. Quantum Physics Black-Body Radiation and Plank s Theory

Average & instantaneous velocity and acceleration Motion with constant acceleration

Our main purpose in this section is to undertake an examination of the stock

Chapter Direct Method of Interpolation

ME 311 Mechanical Measurements Page 1 of 6 Wind Tunnel Laboratory. Name: Group: Campus Mail:

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 10: The High Beta Tokamak Con d and the High Flux Conserving Tokamak.

Calculation method of flux measurements by static chambers

Module 5: Two Dimensional Problems in Cartesian Coordinate System

A 1.3 m 2.5 m 2.8 m. x = m m = 8400 m. y = 4900 m 3200 m = 1700 m

For the reaction, R P, the is given by,

û s L u t 0 s a ; i.e., û s 0

MATH 124 AND 125 FINAL EXAM REVIEW PACKET (Revised spring 2008)

First Law of Thermodynamics. Control Mass (Closed System) Conservation of Mass. Conservation of Energy

Contraction Mapping Principle Approach to Differential Equations

STATE CONTROLLER DESIGN OF THE ACTIVELY CONTROLLED DRIVER S SEAT

An object moving with speed v around a point at distance r, has an angular velocity. m/s m

1. Find a basis for the row space of each of the following matrices. Your basis should consist of rows of the original matrix.

T h e C S E T I P r o j e c t

The Predom module. Predom calculates and plots isothermal 1-, 2- and 3-metal predominance area diagrams. Predom accesses only compound databases.

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

ON A NEW SOLUTION OF FRACTIONAL DIFFERENTIAL EQUATION USING COMPLEX TRANSFORM IN THE UNIT DISK

Magnetostatics Bar Magnet. Magnetostatics Oersted s Experiment

Some Inequalities variations on a common theme Lecture I, UL 2007

Physics 2A HW #3 Solutions

Comparison between the Discrete and Continuous Time Models

4.8 Improper Integrals

27.1 The Heisenberg uncertainty principles

Ultrafast Spectroscopy

Introduction to LoggerPro

We are looking for ways to compute the integral of a function f(x), f(x)dx.

Available online at Pelagia Research Library. Advances in Applied Science Research, 2011, 2 (3):

Chapter 11. Molecular Composition of Gases

Thermal neutron self-shielding factor in foils: a universal curve

Chapter 10. Simple Harmonic Motion and Elasticity. Goals for Chapter 10

Chapter 2. Motion along a straight line. 9/9/2015 Physics 218

Name. Objective 1: Describe, at the molecular level, the difference between a gas, liquid, and solid phase.

Diffusivity Equations for Flow in Porous Media

Transport Phenomena and Shrinkage Modeling During Convective Drying of Vegetables.

Introduction to Numerical Modeling. 7. An Example: QG Barotropic Channel Model (Weather Prediction)

Example problems. Chapter 3: The Kinetic Theory of Gases. Homework: 13, 18, 20, 23, 25, 27 (p )

Motion in a Straight Line

Method For Solving Fuzzy Integro-Differential Equation By Using Fuzzy Laplace Transformation

CHM Physical Chemistry I Chapter 1 - Supplementary Material

Computing with diode model

The Atmosphere. Atmospheric composition Measures of concentration Atmospheric pressure Barometric law

ln y t 2 t c where c is an arbitrary real constant

Math 2214 Sol Test 2B Spring 2015

Neural assembly binding in linguistic representation

ME 321: FLUID MECHANICS-I

Acid-Base Equilibria

THE CATCH PROCESS (continued)

Chapter 14. Gas-Vapor Mixtures and Air-Conditioning. Study Guide in PowerPoint

Joule-Thomson effect TEP

MAE 320 Thermodynamics HW 4 Assignment

Version 001 test-1 swinney (57010) 1. is constant at m/s.

Positive and negative solutions of a boundary value problem for a

Strategy: Use the Gibbs phase rule (Equation 5.3). How many components are present?

F (u) du. or f(t) = t

( ) ( ) ( ) () () Signals And Systems Exam#1. 1. Given x(t) and y(t) below: x(t) y(t) (A) Give the expression of x(t) in terms of step functions.

Relationship between Delay Time and Gamma Process Models

02. MOTION. Questions and Answers

CONSIDERATIONS REGARDING THE OPTIMUM DESIGN OF PRESTRESSED ELEMENTS

NUMERICAL ANALYSIS ON HUMIDITY DISTRIBUTION IN A VENTILATED ROOM

T-Match: Matching Techniques For Driving Yagi-Uda Antennas: T-Match. 2a s. Z in. (Sections 9.5 & 9.7 of Balanis)

Asymmetry and Leverage in Conditional Volatility Models*

PROBLEMS

Composite Reinforcement of Cylindrical Pressure Vessels

CHAPTER 20: Second Law of Thermodynamics

Measurements of the flow resistance and inductance of inertance tubes at high acoustic amplitudes

Econ 401A Three extra questions John Riley. Homework 3 Due Tuesday, Nov 28

First, we will find the components of the force of gravity: Perpendicular Forces (using away from the ramp as positive) ma F

An Integral Two Space-Variables Condition for Parabolic Equations

e t dt e t dt = lim e t dt T (1 e T ) = 1

Transcription:

AIR DENSIY AND IS UNCERAINY Mnel Slzr Mri Veg

CONENS Air nd is comosiion Wys o clcle e ir densiy Cr CIPM Eqion Aroxime eqion Unceriny

Air nd is comosiion e ir is mixre of seerl gses dry ir, nd wer in sem form. roosere is e inferior lyer of e erresril mosere, erresril srfce lide of 6 o 8 kilomeers, e ir we breed is concenred ere. e dry ir s e wer sem bees like idel gses. ey e been deeloed o emiricl lws rele e mcroscoic les, in idel gses, ese les inclde ressre (), olme (V) nd emerre () Ley de Crles Ley de Gy-Lssc Ley de Boyle IDEAL GAS LAW

Air nd is comosiion I is consied by nirogen mixre nd of oxygen like bsic elemen (99%) nd e res like noble gses. e comosiion is similr rond e world. Wer Sem (0-5%), Crbon dioxide, ydrocrbons, rs, ses, ds nd SO. Elemeno Nirógeno Oxigeno Argón Neón Helio Crión COMPOSICION DEL AIRE PURO Proorción en olmen 78,4 0,9,5 0-3 5 0-4 0-4 0,7 0-4 Elecricl deliery form CH, H0, 03, NO3H, NH3, Hidrogeno 5 0-5 NO3NH4. enón 0-5 4 0 0,94 Proorción en eso 75,6 3, 0,3 0-3 3 0-4 0,35 0-5 4 0-5

Wys o clcle e ir densiy Densiy defined in qliie mnner s e mesre of e relie mss of objecs wi consn olme Hyoesis de Aogdro wo gses sme olme (sme ressre nd emerre) conin e sme nmber of ricles, or molecles Sndrd Lw gses P.V n. R. n m/mr

Wys o clcle e ir densiy As fncion of lide Using refrcomeer Air boyncy refcs meods Eqion CIPM /8 Aroxime eqion

Wys o clcle e ir densiy AS FUNCION OF ALIUDE Amoseric ressre dros bo or bo. mbr (kp( kp) for ec 00 meers. Densiy decreses

Wys o clcle e ir densiy AS FUNCION OF ALIUDE L 6,5 emerre lse re, deg K/km H geooencil lide geomericl lide o emerre ºK Po Amoseric Pressre

Wys o clcle e ir densiy REFRACROMERY Cnges in ir densiy cn be deermined wi good recision sing n oicl meod bsed on e ig correlion beween ir densiy nd ir index of refrcion. R secific refrcion or e refrcionl inrin in ncion comosiion of ir nd e locl moseric condiions n is deermined by simle rio of lser freqencies: n ν ν cio ire ν cio lser freqency locked o one rnsmission ek of e inerferomeer nder cm ν ire e freqency locked o e sme ek of e inerferomeer lced in ir.

Wys o clcle e ir densiy AIR BUOYANCY AREFACS MEHODS e meod is bsed on e weiging of wo refcs ing e sme nominl mss nd e sme srfce re b wi ery differen olmes. wo weigings re necessry o deermine e ir densiy, one in ir nd one in cm m ire I I ( V V ) m m I e I blnce redings in ir mss V m e V m olme of m y m ir densiy m cío nd mss I 3 I 4 I 3 e I 4 e blnce redings in cm mss y mss m m σ S ire S S e difference in srfce re beween e wo refcs nd σ mss of dsorion er ni re. I cio 3 I 4 ( I I σ S) V m V m

Wys o clcle e ir densiy FORMULA CIPM From e eqion of se of non-idel gs nd e exerimenl condiions e densiy of mois ir Were M x 3 [,9635,0( x 0,0004) ]*0 8 co kgmol f (, ) s ( ) P ressre ermodynmic emerre 73,5 M molr mss of e wer comressibiliy fcor R molr gses consn

Wys o clcle e ir densiy APPROIMAE EQUAION From BIPM forml we obin one nmericl roxime eqion : 0,34848* 0,00904* 73,5 r * e 0,06*

Wys o clcle e Wys o clcle e ir densiy ir densiy PSYCHROMERY ermodynmic roeries of mixres of gs wi or.. srion ressre nd emerre of dew, Indexes of midiy, Volme, e nd mid enly, emerre of srion dibic nd we ermomeer. Some definiions: Relie Hmidiy. e relie midiy is e ercen of srion midiy,, generlly clcled in relion o sred or densiy, in (%): HR 00 P/Ps (%) emerre of dibic srion,, is e idel emerre of eqilibrim will e e ir non sred fer ndergoing n dibic nd isobric rocess (iso( enlic), i kes i emerre o e srion by mens of liqid eorion of wer o is. emerre of we ermomeer is e emerre i reces ermomeer coered wi we clo is exosed o n irflow wio sring i flows seeds ner 5 m/s Dew oin is e emerre, wic e moisre conen in e ir will sre e ir, If e ir is cooled frer, some of e moisre will condense.

Wys o clcle e ir densiy o mesre e midiy : PSYCHROMERY AREFAC MEHOD sycromeer ermodynmic ygromeer of ir or oers merils Hygromeer of dew oin Hygromeer of Cemis bsorion Hygromeer digil Hygroscoic Condension Grimeric Vriion of elecricl roeries

Wys o clcle e ir densiy PSYCHROMERY Psycromeer nd siro sycromeer Consis wo ermomeers, one norml (dry) nd noer wi eir blb ermnenly midified nks o clo or we gze i recoers i. e midiy cn be mesred beween bo sring from e difference of emerre rses

Wys o clcle e ir densiy Digrm Crrier. - e reresens (ºC) in e bsciss xis (xis x) nd e mixre reson or midiy (, in kg of wer/kg of dry ir) in e xis of orderly (xis nd, o e rig). - e srion cre (HR 00%) i scends owrd e rig nd i reresens e end of e digrm. In is cre e emerres of mid ermomeer nd e emerres of dew re loced. - - e cres of midiy relie consn re similr o of srion, dncing down (lying down more) s i diminises e midiy of e ir. PSYCHROMERY

Wys o clcle e ir densiy CHAR 0.8.8 0.79 0.78 ( 9, 40 %, ) 0.77 ( 0, 40 %, ) 0.76 0.75 (, 40 %, ) 0.74 ( 4, 40 %, ) 0.73 0.7 0.7 0.7 0.7 600 60 60 630 640 650 660 670 680 690 700 600 700...6. ( 9, 50%, ).08 ( 0, 50%, ).04 (, 50%, ) 0.96 ( 4, 50%, ) 0.9 0.88 0.84 0.8 0.8 660 694 78 76 796 830 864 898 93 966 000 660 000 Air densiy eled wi Relie midiy 40 %, emerre 9 ºC 4 ºC, ressre 600 mbr 700 mbr Air densiy wi eled wi Relie midiy 50 %, emerre 9 ºC 4 ºC, ressre 660 mbr 000 mbr

Wys o clcle e ir densiy..85.5 ( ) (,, 800) (,, 700) (,, 600) 0, r, 000 0 r 0 r 0 r..05 0.95 0.9 0.85 0.8 Air densiy eled wi CHAR 0.75 0.7 0.7 40 4 44 46 48 50 5 54 56 58 60 40 r Relie midiy 40 % - 60 %, emerre 0 ºC, ressre 600 mbr 000 mbr 60

Wys o clcle e ir densiy CHAR Air densiy eled wi Relie midiy 40 %,..89.7.4. (, 40, 000).08.05 (, 40, 800).0 0.99 0.96 0.93 0.99 0.9 9 9.6 0. 0.8.4.6 3. 3.8 4.4 5 emerre 9 ºC 5 ºC, 9 ressre 800 mbr 000 mbr 5

CALCULAION OF HE AIR DENSIY CIPM M R x M M Were: M R M Pressre of ir in P. molr mss of dry ir. Comressibiliy fcor Uniersl consn of idel gses emerre of ir in K molr frcion of wer sem molr mss of wer

Molr mss of dry ir, M If i considers consn of ir comonen M 0,08963 5440 kg mol - If i cn mesre e concenrion of CO M [8,9635,0 (( CO. - 0,0004)]* 0-3 kg mol -

Comressibiliy fcor, [ ( ) ( ) ] b b x c c x ( d ex ) 0 0 0 Were: Air ressre in P Air emerre in K Enironmenl emerre in o C 0, 58 3 0-6 K P - -,933 x 0-8 P -,043 x 0-0 K - P - b 0 5,707 x 0-6 K P - b -,05 0-8 P - C 0.9898 x 0-4 K P - C -,376 x 0-6 P - d,83 x 0-K K P - e -0,765 x 0-8 K P -

Uniersl Consn of idel gses, R R 8.3450 ± 8,4 x lo-6 6 J. mol -. K - Molr s frcion of wer sem, In fncion of relie midiy, x f (, ) s ( ) In fncion of emerre of dew oin, r s Were: s f, ) ( r f (, r ( Relie midiy Pressre of sred sem Fgciy fcor ) s r )

Enncemen fcor f f(, r ) f α β γ Were: α β γ,000 6 3.4 x 0-8 P - 5,6 x 0-7 K - Air ressre in P Air emerre in O C or dew oin emerre ( r ) in O C

Pressre of sred sem, s Px ex A s B C D Were: A,37 884 7 x 0-5 K- B -,9 3 6 x 0- K- C 33,937 0 47 D -6,343 64 5 x 03 K Air emerre in K or dew oin emerre (r) in K

UNCERAINY OF AIR DENSIY SOURCES OF UNCERAINY Amoseric emerre Clibrion of bromeric Resolion of bromeric Vriion of moseric ressre dring clibrion 3 3 U k d B B 4

Enironmenl condiions 3 Clibrion of ermomeer U k Resolion of insrmen d Vriion of emerre dring clibrion 3 4

Relie midiy of ir 3 Clibrion of ygromeer U k Resolion of ygromeer d Vriion of e ir relie midiy dring clibrion 3 4

Consn R of idel gses R 84x 0-7 J mol - K - Eqion djsmen for e deerminion of ir densiy ec 4 5 (x0 )(0,9495) 9,50x0 kgm 3

Sensiiiy Coefficien Pressre emerre Relie midiy. f f f f c P P f f P P f f c s s s s C

Were: ex D B A D C B A P s 8 0 3,4 P x f β f γ fp s P f x s

fp x s f P s ( ) [ ] ( ) 0 0 0 ) ( ex d C C b b ( ) ( ) [ ] ( ) 3 0 0 ex d C C b b o ( ) c b ( ) 0 e x c x c b b o

Consn R M M R M M M x R M M M R M M M R M M M R M R R C R molk j kgm CR 3 0,40368

Eqion Unceriny elion Degrees of freedom Exnded nceriny C ec ( ) [ ] i i x c ec ec R R n x ef 4 4 4 4 4 4 4 4 γ k U

: Were : ( ) ( ) ( )( ) ()( ) s s n n r n k k k, ( ) ( ) ( )( ) ()() s s n n r n k k k, ( ) ( ) ( )( ) ( ) () s s n n r n k k k, ( ) ( ) ( ) ( ) ( ) ( ), N i N i j j i j i j i i i i x x r x x c c x c Consider e moseric ressre, emerre nd relie midiy re correled, is nceriny:

Reference Esimciòn de l inceridmbre en l deerminciòn de l densidd del ire, Lis Omr Becerr Snigo y mrì Elen Grddo gonzàlez,, CENAM, Abril 003. Eqion for e deerminion of e densiy of Moir Air, R.S. Dis, Merologi 99,9,67-70. 70. Eqion for e deriminion of e densiy of mois ir,, P. gicomo.merologi 8,33-40 98. ree meods of deermining e densiy of mois ir dring mss comrisons,, A. Picrd y. Fng. Merologi 00, 39, 3-40. Discrencies in ir densiy deerminion beween e ermodynmic forml nd grimeric meod: eidence for new le of e mole frcion of rgon in ir,, A Picrd, H. Fng, Merologi 4, 396-400

nks for e enion