Plasma diagnostics and abundance determinations for planetary nebulae current status. Xiaowei Liu Department of Astronomy, Peking University

Similar documents
Planetary nebulae and H II of the local group of galaxies

Very deep spectroscopy of planetary nebula NGC7009 The rich optical recombination spectrum and new effective recombination coefficients

Helium recombination spectra as temperature diagnostics for planetary nebulae

An Example file... log.txt

Spitzer Infrared Spectrograph (IRS) Observations of Large Magellanic Cloud Planetary Nebula SMP 83


Pagel s Method to derive the O/H ratio in galaxies

Integral field spectroscopy of Orion proplyds: metallicity and other proper7es

QUESTIONS ON QUARKONIUM PRODUCTION IN NUCLEAR COLLISIONS

Framework for functional tree simulation applied to 'golden delicious' apple trees

LA PRISE DE CALAIS. çoys, çoys, har - dis. çoys, dis. tons, mantz, tons, Gas. c est. à ce. C est à ce. coup, c est à ce

Model of Hydrogen Deficient Nebulae in H II Regions at High Temperature

Optimal Control of PDEs

HII regions and massive stars are very valuable tools to measure present-day oxygen abundances across the Universe.

Elemental abundances of Galactic bulge planetary nebulae from optical recombination lines

Massive Stars as Tracers for. Stellar & Galactochemical Evolution

objects via gravitational microlensing

OPTICAL RECOMBINATION LINES AND TEMPERATURE FLUCTUATIONS

Theory of optically thin emission line spectroscopy

Obtain from theory/experiment a value for the absorbtion cross-section. Calculate the number of atoms/ions/molecules giving rise to the line.

The radial metallicity gradient from. OB star and HII region studies. Norbert Przybilla

Areappraisal of the chemical composition of the Orion nebula based on Very Large Telescope echelle spectrophotometry

Astrophysical Quantities

Photoionization Modelling of H II Region for Oxygen Ions

PoS(NIC XI)013. Nucleosynthesis and chemical evolution of intermediate-mass stars: results from planetary nebulae

ETIKA V PROFESII PSYCHOLÓGA

The Interstellar Medium

arxiv:astro-ph/ v1 3 Aug 2004

V. Chemical Evolution of the Galaxy: C, N, and O Gradients. Manuel Peimbert Instituto de Astronomía, UNAM

OC330C. Wiring Diagram. Recommended PKH- P35 / P50 GALH PKA- RP35 / RP50. Remarks (Drawing No.) No. Parts No. Parts Name Specifications

AGN Physics of the Ionized Gas Physical conditions in the NLR Physical conditions in the BLR LINERs Emission-Line Diagnostics High-Energy Effects

AN IDENTIFICATION ALGORITHM FOR ARMAX SYSTEMS

6. Interstellar Medium. Emission nebulae are diffuse patches of emission surrounding hot O and

Electron temperatures and free-electron energy distributions of nebulae from C II dielectronic recombination lines

Astrophysics of Gaseous Nebulae

Vectors. Teaching Learning Point. Ç, where OP. l m n

arxiv:astro-ph/ v1 4 Apr 2002

Astrophysics of Gaseous Nebulae and Active Galactic Nuclei

M.Phys., M.Math.Phys., M.Sc. MTP Radiative Processes in Astrophysics and High-Energy Astrophysics

arxiv:astro-ph/ v1 10 Sep 2004

Physics and Chemistry of the Interstellar Medium

Inhomogeneous planetary nebulae: carbon and oxygen abundances

Planning for Reactive Behaviors in Hide and Seek

General Neoclassical Closure Theory: Diagonalizing the Drift Kinetic Operator

" #$ P UTS W U X [ZY \ Z _ `a \ dfe ih j mlk n p q sr t u s q e ps s t x q s y i_z { U U z W } y ~ y x t i e l US T { d ƒ ƒ ƒ j s q e uˆ ps i ˆ p q y

arxiv: v1 [astro-ph.ga] 10 Feb 2017

arxiv: v1 [astro-ph.sr] 9 Mar 2011

Max. Input Power (W) Input Current (Arms) Dimming. Enclosure

LECTURE NOTES. Ay/Ge 132 ATOMIC AND MOLECULAR PROCESSES IN ASTRONOMY AND PLANETARY SCIENCE. Geoffrey A. Blake. Fall term 2016 Caltech

Principal Secretary to Government Haryana, Town & Country Planning Department, Haryana, Chandigarh.

Small-spatial scale variations of nebular properties and the abundance discrepancy in three Galactic H ii regions

Lec. 4 Thermal Properties & Line Diagnostics for HII Regions

The incident energy per unit area on the electron is given by the Poynting vector, '

Stellar atmospheres: an overview

Interstellar Dust and Extinction

arxiv:astro-ph/ v1 8 Mar 2006

Lecture 18 - Photon Dominated Regions

Post-AGB stars and Planetary Nebulae. Stellar evolution Expansion and evolution Molecules and dust 3He SKA

INDEX OF SUBJECTS 6, 14, 23, 50, 95, 191 4, 191, 234

Some emission processes are intrinsically polarised e.g. synchrotron radiation.

THE CHEMICAL COMPOSITION OF THE GALACTIC H II REGIONS M8 AND M17. A REVISION BASED ON DEEP VLT ECHELLE SPECTROPHOTOMETRY 5

Improvements on the Determination of (PNe) Nebular Abundances

Letter to the Editor. Astronomy. Astrophysics. Chemical self-enrichment of HII regions by the Wolf-Rayet phase of an 85 M star

An Introduction to Optimal Control Applied to Disease Models

ON THE RELEVANCE AND FUTURE OF UV ASTRONOMY. Ana I Gómez de Castro

Lecture 5. Interstellar Dust: Optical Properties

The University of Bath School of Management is one of the oldest established management schools in Britain. It enjoys an international reputation for

ALTER TABLE Employee ADD ( Mname VARCHAR2(20), Birthday DATE );

Mapping the oxygen abundance in an elliptical galaxy (NGC 5128)

O STAR EFFECTIVE TEMPERATURES AND H ii REGION IONIZATION PARAMETER GRADIENTS IN THE GALAXY

Measurements of 4 He in metal-poor extragalactic H ii regions: the primordial Helium abundance and the ΔY/ΔO ratio

The Coriolis effect. Why does the cloud spin? The Solar Nebula. Origin of the Solar System. Gravitational Collapse

Examination paper for TFY4240 Electromagnetic theory

Recent Progress on our Understanding of He-Dominated Stellar Evolution

Molecular line survey observations toward nearby galaxies with IRAM 30 m

The Physics of the Interstellar Medium

Spectroscopy of Blue Supergiants in the Disks of Spiral Galaxies: Metallicities and Distances. Rolf Kudritzki

Lec 3. Radiative Processes and HII Regions

The Interstellar Medium

arxiv:astro-ph/ v2 5 Aug 2005

Symbols and dingbats. A 41 Α a 61 α À K cb ➋ à esc. Á g e7 á esc. Â e e5 â. Ã L cc ➌ ã esc ~ Ä esc : ä esc : Å esc * å esc *

Gas 1: Molecular clouds

Molecular clouds (see review in astro-ph/990382) (also CO [12.1,12.2])

arxiv:astro-ph/ v1 14 Jul 2004

New BaBar Results on Rare Leptonic B Decays

The Interstellar Medium. Papillon Nebula. Neutral Hydrogen Clouds. Interstellar Gas. The remaining 1% exists as interstellar grains or

arxiv: v2 [astro-ph.ga] 23 Jan 2017

The 158 Micron [C II] Line: A Measure of Global Star Formation Activity in Galaxies Stacey et al. (1991) ApJ, 373, 423

The Fomalhaut Debris Disk

Line Spectra / Spectroscopy Applications to astronomy / astrophysics

Astr 2310 Thurs. March 23, 2017 Today s Topics

Radiative Transfer and Stellar Atmospheres

arxiv:astro-ph/ v1 14 Sep 2006

Constructive Decision Theory

X-ray Radiation, Absorption, and Scattering

arxiv: v1 [astro-ph] 6 Feb 2008

Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc)

CNO abundances in the Sun and Solar Twins

Thermal Equilibrium in Nebulae 1. For an ionized nebula under steady conditions, heating and cooling processes that in

Astr 5465 March 6, 2018 Abundances in Late-type Galaxies Spectra of HII Regions Offer a High-Precision Means for Measuring Abundance (of Gas)

Transcription:

3 ' 4 2 - '. %! A?@ @ 3 +.?; <>= ; %,9 ' ü / :, %4 ' 9 8 +! (76 5 +. *". 34 %, /, /10 *$+,,' -+!. *$+ () ', ' & "$# Plasma diagnostics and abundance determinations for planetary nebulae current status Xiaowei Liu Department of Astronomy, Peking University

B The problem Recombination versus collision excitation 1) T e ORLs/Continua 2) X i+ H + T e ORLs for C,N,O,Ne CELs CX i+ H + CELs for C,N,O,Ne Both disparities are legitimate and of astrophysical origins, rather than caused by observational errors, uncertainties in atomic data or contaminations of (weak) ORLs by excitation mechanisms other than recombination (e.g. fluorescence)

D D D D Observations Layout Interpretation and evidence for a new component of H-deficient ultra-cold plasma Failure of the paradigm of temperature/density fluctuations Conclusions and what next? Tsamis et al., 2003, MN, 345, 186; 2004, MN, submitted (12 Galactic, 3 Magellanic) Liu Y., 2004ab, MN, submitted (12 Galactic) Wesson R., et al., 2004, MN, in preparation (23 Galactic) X.-W. Liu, in Planetary Nebulae: Their evolution and role in the Universe, IAU Symp. 209, eds. S. Kwok, M. Dopita and R. Sutherland, pp.339-346 (2003)

Observations

F E F Distribution of ORL/CEL abundance discrepancy factor (adf) 53 PNe Number of PNe adf LK G I J GGH G I MN L GGH Log adf Log adf > 0, i.e. ORL abundance always higher than CEL values Log adf 0.35 dex, i.e. about a factor of two Largest adf found so far, log adf 1.9, i.e. about two order of magnitude

Comparison of O/H derived from CELs and from ORLs [O/H] ORL & [O/H] CEL Solar Log adf [O/H] CEL 8.5, close to the solar value of 8.69 [O/H] ORL varies from 8.5 to 10 The wide range of adf is entirely caused by variations in [O/H] ORL

O O Correlation between temperature and abundance discrepancy factors Hf 2-2 T e = 8820 K ([O III]) = 900 K (BJ) O ++ /H + 4 = 1.1 10 ([O III]) 4 = 90. 10 (O II) Log adf(o ++ /H + ) Liu et al., 2001, MNRAS, 327, 141-168 Te([O III]) Te(BJ)

k k V S U ST Second row elements -- C, N, O and Ne Log (C ++ /O ++ ) from CEL Log (N ++ /O ++ ) from CEL Log (C ++ /O ++ ) from ORL Log (N ++ /O ++ ) from ORL Large values of adf's are found for all abundant second row elements, C, N, O and Ne For a given nebula, adf's for C, N, O and Ne are of similar magnitude, in other words, both CELs and ORLs yield Comparable C/O, N/O and Ne/O abundance ratios RQ P \ c b[ g X jg^ i h ^ gf ex cd ] _ ^ _\[ ab ` _\ ^ X \] [ YZ WX

k k V S U ST Third row element magnesium Mg/H Mg ++ /H + derived from Mg II λ4281 ORL Log ad f for O ++ /H + M 2-24 Solar The large ORL abundance enhancement observed for second row elements is not present for the third row element magnesium. Depletion onto dust grains unlikely to be significant Evidence for nuclear processed material? RQ P \ c b[ g X jg^ i h ^ gf ex cd ] _ ^ _\[ ab ` _\ ^ X \] [ YZ WX

V S U ST Nebular diameter and density Log ad f for O ++ /H + Log ad f for O ++ /H + Diameter (10 3 AU) Log Ne([S II]) (cm 3 ) Negative correlation between adf and S(Hβ), N e and E.C. Positive correlation between adf and nebular diameter Large, low-density (therefore old) PNe have higher adf's (and Te's) than young, compact ones RQ P \ c b[ g X jg^ i h ^ gf ex cd ] _ ^ _\[ ab ` _\ ^ X \] [ YZ WX

\ c b[ g X _ ^ _\[ N/O ratio Type-I and non-type-i PNe Log N/O = -0.13 (KB94) Log N/O = -0.3 (Peimbert 83) Log ad f for O ++ /H + Log N/O from CELs Type-I and non-type-i PNe have comparable adf's V S U ST RQ P jg^ i h ^ gf ex cd ] ab ` _\ ^ X \] [ YZ WX

l l V S U ST ORL abundance distributions along the major-axis of NGC7009 O ++ /H + N ++ /H + C ++ /H + N 3+ /H + Ne ++ /H + C 3+ /H + Luo et al., 2003, in Planetary Nebulae: Their Evolution and Role in the Universe, eds. S. Kwok et al., pp377 Strong central peaking of ORL abundances are also found in NGC 6153 (Liu et al., 2000, MN, 312, 585) NGC 6720 (Garnett & Dinerstein, 2001, ApJ, 558, 145) RQ P \ c b[ g X jg^ i h ^ gf ex cd ] _ ^ _\[ ab ` _\ ^ X \] [ YZ WX

m m m n V S U ST Galactic and extragalactic H II regions Galactic adf for O ++ /H + M 42 1.3 M 17 2.1 NGC 3576 1.8 M 8 2.0 Magellanic Clouds 30 Doradus 2.4 LMC N 11B 6 SMC N66 2.3 Extragalactic NGC 604 (M33) 1.6 NGC 5461 (M101) 2.0 NGC 5471 (M101) 1.6 NGC 2363 2.2 Esteban et al., 1998, MN, 295, 401 n M 42 Esteban et al., 1999, APJS, 120, 113 n M 8 Esteban et al., 1999, RmxAA, 35, 65 n M 17 (two positions; adf = 1.8, 2.2) Tsamis et al., 2003, MN, 338, 687 n M 42, M 17, NGC 3576, 30 Doradus, LMC N11B, SMC N66 Esteban et al., 2002, ApJ, 581, 241 NGC 604, NGC 5461, NGC 5471, NGC 2363 RQ P \ c b[ g X jg^ i h ^ gf ex cd ] _ ^ _\[ ab ` _\ ^ X \] [ YZ WX

{ z w ~ } ~{z Interpretation and evidence for a new component of H-deficient ultra-cold plasma u r t rs qp o } ˆ } w ƒ ~{ } w { z xy vw

Š Œ Š u r t rs Interpretations a bi-abundance nebular model A 'normal' component (0.3 solar masses): Normal electron temperature (T e Normal (solar) abundances where Emits strongly in CELs 10 4 K) A 'H-deficient' component (1 10 3 solar masses) Very low temperature (T e 10 3 K) Very high heavy elemental abundances (100 times solar) Emits strongly in heavy element ORLs but essentially no CELs ORLs and CELs disagree because they trace distinct ionized regions. Two empirical models envisaged for NGC 6153 (Liu et al. 2000) IR fine-structure lines suppressed by very low Te Survival of the inclusions? IR fine-structure lines suppressed by collisional de-excitation Low Te(BJ) problematic qp o { z w } ˆ } w ƒ ~ } ~{z ~{ } w { z xy vw

Ž Ž u r t rs Emissivities of ORLs and CELs as functions of T e and N e Collisionally excited lines j ν T 1/2 exp( E/kT); j ν N(X +i )N e for N e << N c N(X +i ) for N e >> N c Recombination lines j ν T α where α 1 j ν N(X +i+1 )N e qp o { z w } ˆ } w ƒ ~ } ~{z ~{ } w { z xy vw

u r t rs A bi-abundance model for NGC 6153 Model / Obs 2.0 1.5 1.0 0.5 H H I, He I, He II and metal ORLs He I 4471 He I 10830 C II 4267 C III 4649 N II 5679 N III 4379 O II 4651 Ne II 3336 2.0 1.5 1.0 0.5 [N I ] 5200 UV, opt. and IR CELs m [N III ] 57 m [O IV ] 26 m [Ne III ] 16 0.0 0.0 Component 1 ('metal-rich') Component 2 ('normal') H: 10000 He: 6300 C: 310 N: 220 O: 600 H: 10000 He: 1000 C: 2.9 N: 4.2 O: 5.6 Ne: 180 Mg-Ar: Solar by mass Ne: 1.8 Mg - Ar: Solar by mass 3 3 N(H): 4410 cm Filling factor: 0.005 N(H): 1170 cm Filling factor: 0.995 T e : 1390 K Mass: 0.0031 M T e : 9040 K Mass: 0.38 M Averaged over the whole nebula H: 10000 He: 1010 (em. ana: 1360) O: 6.9 ( solar; em. ana: CEL = 5, ORL = 41) T e ([O III]): 9090 K T e (H I BJ): 7080 K T e (He I J3421): 3550 K T e (C II, O II): 1400 K The model predicts T e (CNONe ORLs) T e (He I) T e (H I BJ) T e ([O III]) qp o { z w } ˆ } w ƒ ~ } ~{z ~{ } w { z xy vw

± ± ² š Ÿ œ ž T e from He I line ratios (2p 3 P o -3d 3 D λ5876)/(2p 3 P o -4d 3 D λ4471) (2p 1 P o -3d 1 D λ6678)/(2p 3 P o -4d 3 D λ4471) He I emission arises from regions of very low T e ( 10 3 K) in the most extreme nebulae Log N e 4.5 (/cm 3 ) in Hf 2 2, no evidence of very dense condensations Smits D. P., 1996, MNRAS, 278, 683; Sawey P., Berrington K. A., 1993, Atomic Data Nucl. Data Tables, 55, 81 ª «

š œ ž Ÿ Average T e 's of O II ORL emitting regions ³4076 O + 3d 4 F J = 9/2 J = 7/2 J = 5/2 J = 3/2 Reference line 4089 O + 4f G[5] o J = 11/2 J = 9/2 J = 7/2 J = 5/2 ³4649 O + 3p 4 D o J = 7/2 J = 5/2 J = 3/2 J = 1/2 O ++ 2p 2 3 P Direct recombination to the upper levels of λ4089, λ4076 and λ4649, levels of the highest J value of the given spectral term, are only possible from the J = 2 level of the ground 3 P term of recombining O ++ ions. (Liu 2003, in Planetary Nebulae: Their Evolution and Role in the Universe, eds. S. Kwok, M. Dopita and R. Sutherland, pp.339-346 (2003) J = 2 J = 1 J = 0 ª «

µ š œ ž Ÿ O ++ level population at T e = 10 3 K and N e = 3000 cm J Pop Therm 2 0.30 0.56 1 0.43 0.33 0 0.40 0.11 3 Liu 2003, in IAU Symp. 209 Planetary Nebulae: Their Evolution and Role in the Universe, eds. S. Kwok, M. Dopita and R. Sutherland, pp.339-346 (2003) Ruiz et al., 2003, ApJ, 595, 247 Tsamis et al., 2003, MN, 338, 687 ª «

Ÿ T e ([O III]) T e (H I BJ) T e (He I) T e (CNONe ORLs) Te([O III]) Te(He I) š ª «œ ž Log adf Log adf Log adf Log adf Te([O III]) Te(H I BJ) Te([O III]) Te(RL/RC) Te([O III]) Te(O II)

¾» ½»¼ ÀÒ Ñ Ð ÏÆ È ÇÄ Ã Â ÀÁ Comparison of T e (O II), T e (He I), T e (H I BJ) and T e ([O III]) T e (O II) T e (He I) T e (BJ) T e ([O III]) adf N e (cm 3 ) Hf 2-2 2360 775 900 8820 84 300 M 1-42 450 2310 3560 9220 22 1200 NGC 40 10600 7020 10600 18 1700 M 2-24 570 3000 16300 17 1800 Vy 2-2 1380 1890 9300 13910 12 11700 DdDm 1 3500 8730 12300 12 4000 NGC 2022 < 300 15900 13200 15000 16 1050 NGC 6153 3200 3370 6080 9120 9.2 4000 IC 2003 270 7670 8960 12650 7.3 5200 M 2-36 800 4160 5900 8380 6.9 3800 Vy 1-2 3250 4430 6630 10400 6.2 1160 M 3-27 4030 9020 13000 5.5 3200 NGC 2440 < 300 14000 16150 5.4 4000 NGC 7009 1600 5380 8150 9980 4.7 3900 M 3-34 950 8440 12230 4.2 4000 NGC 6543 16300 5220 8340 7940 4.2 6400 Hu 2-1 4370 8960 9860 4.0 7900 Liu X.-W., 2003, in IAU Symp. 209 Planetary Nebulae: Their Evolution and Role in the Universe, eds. S. Kwok, M. Dopita and R. Sutherland, pp.339-346 (2003); Tsamis Y. et al., 2004, MN, submitted; Liu Y. et al., 2004, MN, submitted; Wesson R. et al., 2004, MN, in preparation º¹ Ä Ë ÊÃ Ï Æ ÍÀÎÏ ÅËÌ Ç ÇÄÃÆ ÉÊ ÀÆ ÄÅ

Ó Ó Ó Ä Ë Êà ÀÒ Ï Ñ Ð ÏÆ ÀÆ ÄÅ Ã Â T e ([O III]) T e (H I BJ) T e (He I) T e (CNONe ORLs) ¾» ½»¼ º¹ Æ ÍÀÎÏ ÅËÌ Ç ÇÄÃÆ ÉÊ È ÇÄ ÀÁ

Ô Ô Ô ¾» ½»¼ ÀÒ Ñ Ð ÏÆ È ÇÄ Ã Â ÀÁ J2 J1 PA=330 J4 J3 H-deficient knots in A 30 O II ORLs arise from 500 K plasma! H contributes < 1% in these knots, Much more extreme than the hypothesised H-deficient clumps in e.g. NGC 6153 The knots are O-rich, rather than C-rich as reported previously (Wesson et al. 2003, MN, 340, 253) º¹ Ä Ë ÊÃ Ï Æ ÍÀÎÏ ÅËÌ Ç ÇÄÃÆ ÉÊ ÀÆ ÄÅ

Ö Bowen Õ Ä Ë Êà ÀÒ Ï Ñ Ð ÏÆ ÀÆ ÄÅ Ã Â WHT/ISIS spectra of knots J3 and J1 in Abell 30 C II [O II] [Ne III] He I [Ne III] He II + H O II M10 N II He I O III Bowen N III O II O II O II He II He II He I J3 J1 [O III] He I [O III] He II He I [Ne IV] [Ar IV] [O III] He I H He II O II M1 O II He I He II N III Ne II J3 O II J1 The observed ORLs from C, N, O & Ne ions and their relative strengths are remarkably similar to those observed in other Pne such as Hf 2-2, M 1-42 and N6153 ¾» ½»¼ º¹ Æ ÍÀÎÏ ÅËÌ Ç ÇÄÃÆ ÉÊ È ÇÄ ÀÁ

Te (K) Ä Ë Êà ÀÒ Ï Ñ Ð ÏÆ Ç ÇÄÃÆ È ÇÄ ÀÆ ÄÅ Ã Â Æ A 3-D photoionization model for a H-deficient knot in Abell 30 Envelope Te = 12000-16000K 12000 K Core Te = 500-1000K Ionizing star He/H = 40 O/He = 0.93 17000 K D = 1.68e+17 cm He/H = 40 O/He = 0.14 Ercolano et al. 2003, MNRAS, 344, 1145 R = 4.50e+15 cm 17000 K He + He He ++ 0 Te 12000 K Ionization fraction total dust Heating rate photo 500 K ¾» ½»¼ º¹ Radius (4.8e+15 cm) Radius (4.8e+15 cm) ÍÀÎÏ ÉÊ ÀÁ ÅËÌ

¾» ½»¼ ÀÒ Ñ Ð ÏÆ È ÇÄ Ã Â ÀÁ Implications for He abundances of ionized gaseous nebulae He Log adf 9903 NGC6153 10830 Solar He/H is well correlated with adf and with Te([O III]) Te(BJ) He/H overestimated? (Zhang et al., 2004, MN, in press; Liu et al., 2004, MNRAS, submitted) NGC6153 Component 1 Component 2 He/H=0.100 He/H = 0.63 Te = 9000 K Te = 1400 K M = 0.38 M sun M = 0.0031 M sun Average for the whole nebula He/H = 0.101 (empirical analysis: 0.136) C II 4f-5g He I 2s 3 S - 2p 3 P o º¹ Collisional excitation meta-stable Ä Ë ÊÃ Ï Æ ÍÀÎÏ ÅËÌ Ç ÇÄÃÆ ÉÊ ÀÆ ÄÅ

ä ë êã àò ï ñ ð ïæ àæ äå ã â Failure of the paradigm of temperature fluctuations and density inhomogeneities Þ Û Ý ÛÜ ÚÙ Ø æ íàîï åëì ç çäãæ éê è çä ßàá

ó ô ó õ õ õ Þ Û Ý ÛÜ àò ñ ð ïæ è çä ã â ßàá Effects of temperature/density fluctuations 86797 62137 [O III] 2p 2,2s2p 3 1661 1666 5 S o 3.4 10 10 2 1 S 2.5 10 7 0 Temperature fluctuations - Opposite effects on CELs and ORLs - T e derived from the [O III]na ratio will be overestimated, causing the O ++ /H + derived from the [O III]/H ratio being underestimated (Peimbert 1967; 1971) 29170 440 163 0 T ex 4363 4931 4959 5007 2321 2331 88µm 52µm 1 D 2 2 1 0 } 3 P 6.9 10 5 3500 500 N c Density inhomogeneities - CELs suppressed in high density regions - For condensations with 10 6 < N e < 10 7 cm -3, the 4959, 5007 lines are suppressed relative to the 4363 auroral line, causing T e derived from the [O III]na ratio being overestimated (Rubin 1988; Viegas & Clegg 1994) Both scenarios predict that: adf should correlate with E ex and/or N c ÚÙ Ø ä ë êã ï æ íàîï åëì ç çäãæ éê àæ äå

ö ö Þ Û Ý ÛÜ àò ñ ð ïæ è çä ã â ßàá CEL versus ORL abundances evidence against temperature fluctuations and density inhomogeneities ORLs NGC 6153 Optical CELs: E ex > 10 4 K IR CELs: E ex < 10 3 K For essentially all nebulae analysed: Abundances derived from various CELs -- UV, Opt. or IR, agree with each other ORL abundances consistently higher than CEL values Large low-density PNe have higher adf's and Te's ÚÙ Ø ä ë êã ï æ íàîï åëì ç çäãæ éê àæ äå

ü ü ü ü ý û ü ü ü ü Þ Û Ý ÛÜ àò ñ ð ïæ è çä ã â ßàá Temperature fluctuations in NGC7009 from HST/STIS spectroscopy Rubin et al., 2002, MNRAS, 334, 777 T ùø ú T NýN NýN þdl da þdl da û 2ú ÿ t T TýT 2 ùø ú ùø ú NýN 2 NýN þdl da þdl da [O III]: T 0,A = 9000 11000 K, t 2 A < 0.01 Similar conclusion for NGC 6543 (Wesson & Liu 2004, MN, in press) ÚÙ Ø ä ë êã ï æ íàîï åëì ç çäãæ éê àæ äå

Þ Û Ý ÛÜ àò ñ ð ïæ è çä ã â ßàá Temperature fluctuations in M 42 from HST/STIS spectroscopy [O III]: T 0,A = 7680 8360 K t 2 = 0.007 -- 0.018 A [N II]: T 0,A = 9130 -- 10230 K t 2 = 0.006 -- 0.018 A Rubin et al. 2003, MNRAS, 340, 362 WFPC2 imaging (O'Dell, Peimbert, Peimbert, 2003, AJ, 125, 2590) [O III]: T 0,A = 9240 9390 K, t 2 = 0.005 0.016 A Ground-based Long-slit spectroscopy (Liu et al., 1995, ApJ, 450, L59) Te([O III]) Te(BJ) constant across the nebula Consistent with ORL/CEL ~ 1 ÚÙ Ø ä ë êã ï æ íàîï åëì ç çäãæ éê àæ äå

Temperature fluctuations Diff. ff (2-comp. model) T e Diff. t 2 (temp. fluctuations) r Te(H I) < Te(He I) < Te([O III]) Two-component model WC T e Zhang, Liu & Liu, 2004, in preparation Te(He I) < Te(H I) < Te([O III]) A small amount of H-deficient gas (ω ~10 5 to 10 3 ) can account for the observations r

Comparison of ORL and CEL widths IC 418 (adf ~ 1) (Williams et al., 2004, in preparation ) Line widths {O II = 16.8±0.8 km/s} ~ {[O III] = 15.7±0.2 km/s} < {[O II] = 42.6±0.6 km/s} NGC 5307 (adf = 1.9) (Ruiz et al., 2003, ApJ, 595, 247) Line widths {O II = 44±7 km/s} ~ {[O III] = 48.4±0.7 km/s} Radial velocities {O II = 33±4 km/s} ~ {[O III] = 30.1±0.5 km/s} Similar results for NGC 5315 (adf = 1.7) (Peimbert et al. 2004, APJS, 150, 431) No evidence in favour of high velocity O-rich clumps in NGC 5307 and NGC 5315 (as in Abell 30 and Abell 58) Our H-deficient knot model doesn't require that the posited knots be high-velocity

Comparison of emission line widths of ORLs and CELs O II < [O III] < [O II] O II ORLs arise from either colder ionized regions or different spatial regions than those emitting [O III] and [O II] CELs NGC 7009 adf ~ 5 E N D = 2.7'' R = 48 000 ESO 1.52m FEROS

!!! Conclusions and what next? Conclusions ORLs good abundance tracers? CELs poor abundance tracers? Temperature/density fluctuations present? Full story? H-deficient ultra-cold plasma? Nature and origins of H-deficient inclusions Nuclear processed and then ejected material? Evaporating planetary disks? Future progress will rely on an intimate interplay between: Observations: deep, quantitative spectroscopy of faint emission lines Temperature, density, mass, composition (CNONe versus Mg) Atomic and plasma physics

Origins of cold, metal-rich plasmas evaporating planetesimals?