REDWOOD VALLEY SUBAREA

Similar documents
Stream Discharge and the Water Budget

Changing Hydrology under a Changing Climate for a Coastal Plain Watershed

Chiang Rai Province CC Threat overview AAS1109 Mekong ARCC

HYDROLOGIC AND WATER RESOURCES EVALUATIONS FOR SG. LUI WATERSHED

Lower Tuolumne River Accretion (La Grange to Modesto) Estimated daily flows ( ) for the Operations Model Don Pedro Project Relicensing

PRELIMINARY DRAFT FOR DISCUSSION PURPOSES

Illinois State Water Survey Division

3.0 TECHNICAL FEASIBILITY

Hydrogeology and Simulated Effects of Future Water Use and Drought in the North Fork Red River Alluvial Aquifer: Progress Report

Jackson County 2013 Weather Data

2. PHYSICAL SETTING FINAL GROUNDWATER MANAGEMENT PLAN. 2.1 Topography. 2.2 Climate

Climate Change and Water Supply Research. Drought Response Workshop October 8, 2013

2015 Fall Conditions Report

Typical Hydrologic Period Report (Final)

A Report on a Statistical Model to Forecast Seasonal Inflows to Cowichan Lake

A Review of the 2007 Water Year in Colorado

WHEN IS IT EVER GOING TO RAIN? Table of Average Annual Rainfall and Rainfall For Selected Arizona Cities

January 22, Coronado National Forest 300 West Congress Street Tucson, AZ Jim Upchurch, Forest Supervisor. Dear Mr.

Missouri River Basin Water Management

Evapo-transpiration Losses Produced by Irrigation in the Snake River Basin, Idaho

Climate also has a large influence on how local ecosystems have evolved and how we interact with them.

2 Groundwater Basin Monitoring

2 Precipitation and Evaporation

Hydrologic Conditions in the Delaware River Basin

Jackson County 2018 Weather Data 67 Years of Weather Data Recorded at the UF/IFAS Marianna North Florida Research and Education Center

Disentangling Impacts of Climate & Land Use Changes on the Quantity & Quality of River Flows in Southern Ontario

THE STATE OF SURFACE WATER GAUGING IN THE NAVAJO NATION

9. PROBABLE MAXIMUM PRECIPITATION AND PROBABLE MAXIMUM FLOOD

GAMINGRE 8/1/ of 7

February 10, Mr. Jeff Smith, Chairman Imperial Valley Water Authority E County Road 1000 N Easton, IL Dear Chairman Smith:

Drought in Southeast Colorado

Three main areas of work:

January 25, Summary

Modeling of peak inflow dates for a snowmelt dominated basin Evan Heisman. CVEN 6833: Advanced Data Analysis Fall 2012 Prof. Balaji Rajagopalan

Webinar and Weekly Summary February 15th, 2011

NATIONAL HYDROPOWER ASSOCIATION MEETING. December 3, 2008 Birmingham Alabama. Roger McNeil Service Hydrologist NWS Birmingham Alabama

N 2 3. Lake Huron. St. Clair River. Black River Assessment. Figure 1. Major tributaries to the Black River. 1. Berry Drain 2. Elk Creek.

FORECAST-BASED OPERATIONS AT FOLSOM DAM AND LAKE


Jackson County 2014 Weather Data

2 Precipitation and Evaporation

LAUREL MARCUS California Land Stewardship Institute OVERVIEW OF GROUNDWATER STUDIES IN THE RUSSIAN RIVER WATERSHED

The Climate of Oregon Climate Zone 4 Northern Cascades

Attachment B to Technical Memorandum No.2. Operations Plan of Ross Valley Detention Basins

Low-flow Estimates for Cedar Creek at Galesburg, Illinois

Colorado s 2003 Moisture Outlook

2016 Meteorology Summary

The Climate of Payne County

Variability of Reference Evapotranspiration Across Nebraska

San Francisco Public Utilities Commission Hydrological Conditions Report For April 2014

Hydrologic Monitoring Station Information Summary. December Brannon J. Ketcham Hydrologist

San Francisco Public Utilities Commission Hydrological Conditions Report For March 2016

Unconventional Wisdom and the Effects of Dams on Downstream Coarse Sediment Supply. Byron Amerson, Jay Stallman, John Wooster, and Derek Booth

Monthly Long Range Weather Commentary Issued: APRIL 1, 2015 Steven A. Root, CCM, President/CEO

Great Lakes Update. Volume 194: 2015 Annual Summary

4. THE HBV MODEL APPLICATION TO THE KASARI CATCHMENT

Rainfall Observations in the Loxahatchee River Watershed

Bushkill Creek 3 rd Street Dam Removal Analysis

CHAPTER-11 CLIMATE AND RAINFALL

APPLICATIONS OF DOWNSCALING: HYDROLOGY AND WATER RESOURCES EXAMPLES

CHAPTER 4 CRITICAL GROWTH SEASONS AND THE CRITICAL INFLOW PERIOD. The numbers of trawl and by bag seine samples collected by year over the study

Impacts of climate change on flooding in the river Meuse

PRELIMINARY ASSESSMENT OF SURFACE WATER RESOURCES - A STUDY FROM DEDURU OYA BASIN OF SRI LANKA

The Climate of Murray County

Folsom Dam Water Control Manual Update Joint Federal Project, Folsom Dam

2003 Moisture Outlook

APPENDIX J MODELING TEHCNICAL MEMORANDUM (RESSIM MODELING)

Geostatistical Analysis of Rainfall Temperature and Evaporation Data of Owerri for Ten Years

Technical Note: Hydrology of the Lukanga Swamp, Zambia

Missouri River Basin Water Management Monthly Update

Conceptual Model of Stream Flow Processes for the Russian River Watershed. Chris Farrar

Jackson County 2019 Weather Data 68 Years of Weather Data Recorded at the UF/IFAS Marianna North Florida Research and Education Center

National Integrated Drought Information System. Southeast US Pilot for Apalachicola- Flint-Chattahoochee River Basin 20-March-2012

Missouri River Basin Water Management Monthly Update

Weather History on the Bishop Paiute Reservation

MARMOT CREEK BASIN: MANAGING FORESTS FOR WATER

8.1 Attachment 1: Ambient Weather Conditions at Jervoise Bay, Cockburn Sound

Water Temperature Monitoring of the Klamath River Mainstem

Climate Variability. Eric Salathé. Climate Impacts Group & Department of Atmospheric Sciences University of Washington. Thanks to Nathan Mantua

Monthly Long Range Weather Commentary Issued: February 15, 2015 Steven A. Root, CCM, President/CEO

Appendix C Surface Water and Groundwater Interaction Memorandum

Monthly Long Range Weather Commentary Issued: APRIL 18, 2017 Steven A. Root, CCM, Chief Analytics Officer, Sr. VP,

Chapter 5 CALIBRATION AND VERIFICATION

The Climate of Kiowa County

Weather and Climate of the Rogue Valley By Gregory V. Jones, Ph.D., Southern Oregon University

The Climate of Marshall County

Champaign-Urbana 1998 Annual Weather Summary

Assessment of the Hood River Delta Hood River, Oregon

Highlights of the 2006 Water Year in Colorado

Low Low Water in Puget Sound vs. Mean Sea Level. What do the flood event gauge readings at Sedro Woolley really mean?

NRC Workshop Probabilistic Flood Hazard Assessment (PFHA) Jan 29-31, Mel Schaefer Ph.D. P.E. MGS Engineering Consultants, Inc.

APR-SEP. Forecast Are in KAF % Average 10 % 30 Year. Forecast Period

UPPER COSUMNES RIVER FLOOD MAPPING

Analysis of Historical Pattern of Rainfall in the Western Region of Bangladesh

2003 Water Year Wrap-Up and Look Ahead

SEPTEMBER 2013 REVIEW

The Climate of Texas County

Proposal to limit Namakan Lake to 1970 Upper Rule Curve for remainder of summer

Constructing a typical meteorological year -TMY for Voinesti fruit trees region and the effects of global warming on the orchard ecosystem

The Colorado Drought of 2002 in Perspective

Transcription:

Independent Science Review Panel Conceptual Model of Watershed Hydrology, Surface Water and Groundwater Interactions and Stream Ecology for the Russian River Watershed Appendices A-1

APPENDIX A A-2

REDWOOD VALLEY SUBAREA Table A-1. Peak flows recorded at the USGS gage 11461000 Russian River near Ukiah, West Fork Russian River. Date Stream flow (cfs) Nov. 06, 1912 13,600 Dec. 06, 1952 10,600 Jan. 17, 1954 9,280 Dec. 21, 1955 18,900 Jan. 20, 1957 8,340 Feb. 12, 1958 14,200 Jan. 12, 1959 5,590 Feb. 08, 1960 14,900 Feb. 11, 1961 5,610 Feb. 13, 1962 8,320 Jan. 31, 1963 11,800 Jan. 20, 1964 8,850 Dec. 22, 1964 17,900 Jan. 04, 1966 10,900 Jan. 20, 1967 6,300 Dec. 23, 1968 9,720 Jan. 23, 1970 11,000 Dec. 03, 1970 9,360 Jan. 11, 1973 7,320 Jan. 16, 1974 15,600 Mar. 21, 1975 10,200 Dec. 14, 1977 9,900 Jan. 11, 1979 9,780 Jan. 13, 1980 11,800 Nov. 23, 1981 11,300 Dec. 21, 1982 11,000 Nov. 17, 1983 9,390 Feb. 08, 1985 6,700 Feb. 17, 1986 12,300 Jan. 04, 1988 6,040 Nov. 22, 1988 5,730 Jan. 07, 1990 5,790 Jan. 20, 1993 17,700 A-3

Table A-1. Peak flows recorded at the USGS gage 11461000 Russian River near Ukiah, West Fork Russian River (cont.). Date Stream flow (cfs) Jan. 08, 1995 16,700 Jan. 24, 1996 9,900 Jan. 01, 1997 10,600 Feb. 07, 1998 8,710 Feb. 09, 1999 5,730 Dec. 01, 2001 5,560 Dec. 16, 2002 10,100 Feb. 17, 2004 9,100 Dec. 08, 2004 6,720 Dec. 30, 2005 22,600 Feb. 10, 2007 5,680 Jan. 04, 2008 11,200 Feb. 23, 2009 2,220 Jan. 20, 2010 8,250 Dec. 28, 2010 9,800 Jan. 20, 2012 7,180 Dec. 02, 2012 10,700 A-4

Table A-2. Monthly mean discharge at USGS stream flow gage 11461000 Russian River near Ukiah, West Fork Russian River. Year Monthly mean in cubic feet/second (cfs) (Calculation Period: 1911-10-01 -> 2014-06-30) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1911 0.039 0.303 3.50 1912 213.6 107.9 368.2 81.3 134.9 5.00 2.50 0.900 1.60 2.00 443.4 291.2 1913 761.2 69.4 74.4 109.2 16.3 7.27 2.03 0.500 0.200 1952 0.000 0.147 771.8 1953 1,306 77.0 257.6 107.1 75.7 34.6 5.84 1.89 1.27 2.12 69.0 119.7 1954 718.3 455.6 338.7 306.7 30.4 13.5 2.58 0.968 1.11 1.32 25.7 235.0 1955 285.9 73.1 58.8 134.5 42.3 5.71 1.11 0.200 0.100 0.100 27.5 1,639 1956 1,571 882.3 182.8 40.6 24.3 6.96 1.85 0.810 0.477 13.7 11.2 8.55 1957 287.9 562.9 499.5 81.8 127.9 17.8 2.76 0.545 2.55 143.4 150.5 303.4 1958 552.3 1,975 457.5 656.4 40.8 19.9 5.20 0.813 0.380 0.674 11.5 39.6 1959 521.0 563.4 86.4 45.9 11.2 4.32 0.794 0.323 0.210 0.187 0.780 1.77 1960 109.2 984.6 576.5 76.0 42.3 13.4 2.41 0.384 0.100 0.258 55.0 419.9 1961 136.4 639.9 517.8 123.3 61.5 12.5 2.58 0.268 0.183 0.090 60.9 187.1 1962 124.6 675.6 442.9 51.9 17.0 4.65 0.632 0.100 0.123 146.8 58.9 283.6 1963 223.9 328.8 294.2 770.4 100.8 13.8 5.66 1.29 0.427 3.28 261.7 64.7 1964 486.7 73.5 74.5 27.2 13.8 7.33 0.645 0.181 0.050 0.052 228.6 1,663 1965 872.8 144.8 66.2 311.0 34.0 11.7 2.30 1.01 0.507 0.935 165.1 171.1 1966 651.9 340.4 195.2 75.7 15.9 5.04 0.981 0.168 0.197 0.110 135.9 371.8 1967 713.6 155.7 383.1 387.7 64.5 22.3 2.73 0.929 0.270 1.44 3.74 88.4 1968 422.0 427.3 211.1 40.2 13.4 3.86 0.135 0.299 0.055 0.436 11.4 926.8 1969 1,202 1,017 291.0 71.4 23.1 6.92 1.24 0.153 0.154 1.35 3.75 367.3 1970 1,765 350.7 145.5 31.9 13.2 4.93 1.11 0.052 0.000 2.06 209.1 864.8 1971 716.7 58.9 465.1 99.6 27.9 10.8 2.03 0.136 0.249 0.215 11.9 177.2 1972 256.0 256.0 201.6 102.8 19.2 6.11 1.43 0.005 0.049 3.25 109.2 377.2 1973 964.0 592.3 384.1 95.6 18.1 4.80 0.296 0.040 0.083 7.20 682.4 658.4 1974 956.7 445.5 872.9 442.3 36.6 9.28 3.68 0.465 0.243 1.12 4.84 65.6 1975 215.1 1,196 1,201 132.4 37.9 6.43 0.571 0.027 0.056 6.21 34.7 78.6 1976 21.9 280.1 115.2 111.8 11.4 2.27 0.067 0.160 0.056 0.015 2.29 2.54 1977 9.24 14.3 33.4 4.33 3.15 0.219 0.000 0.000 0.000 0.000 43.2 431.8 1978 1,178 739.4 449.6 258.5 30.1 7.45 1.82 0.000 0.735 0.283 2.24 3.48 1979 278.7 606.6 252.1 54.3 55.3 4.97 0.804 0.000 0.000 16.8 308.9 297.0 1980 818.0 646.4 280.8 112.1 27.7 8.87 2.01 0.213 0.275 0.167 1.50 71.7 1981 385.2 220.1 243.4 50.6 11.8 1.58 0.059 0.000 0.056 15.6 534.0 916.4 1982 579.1 641.1 439.5 623.3 42.8 12.7 4.23 0.576 1.14 9.62 354.2 671.4 1983 653.3 1,185 1,436 586.5 148.6 26.3 10.8 2.52 2.70 3.44 666.6 1,111 A-5

Table A-2. Monthly mean discharge at USGS stream flow gage (11461000) Russian River near Ukiah, West Fork Russian River (cont.). Year Monthly mean in cfs (Calculation Period: 1911-10-01 -> 2014-06-30) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1984 150.9 273.3 175.6 107.4 30.7 9.13 1.68 0.684 0.336 5.18 442.5 162.9 1985 43.3 255.4 211.1 60.3 12.0 3.41 0.974 0.100 1.29 1.32 40.1 139.8 1986 438.1 1,609 600.8 48.0 19.1 4.66 2.49 1.57 1.10 1.91 4.15 11.1 1987 163.4 281.7 389.5 35.8 9.59 2.64 0.269 0.000 0.300 1.44 9.50 449.8 1988 573.2 63.3 20.0 14.7 9.99 3.33 0.546 0.219 0.025 0.450 158.7 163.9 1989 175.8 32.0 789.6 123.4 21.2 8.00 1.99 0.613 1.73 9.46 10.4 5.75 1990 236.3 216.2 112.6 18.0 115.8 40.6 2.70 0.315 0.589 0.729 1.72 3.15 1991 3.82 15.3 508.7 31.6 7.56 3.21 0.235 0.246 0.183 0.544 5.80 37.3 1992 95.4 644.7 269.7 52.0 6.36 2.43 0.966 0.016 0.567 3.23 10.3 504.6 1993 944.3 490.7 198.4 120.0 61.1 57.4 6.58 1.73 1.48 1.56 4.99 67.8 1994 149.0 376.4 49.7 31.1 16.9 3.20 0.217 0.140 0.154 0.653 25.3 137.5 1995 1,986 221.2 1,218 232.5 201.3 24.0 7.43 2.14 1.19 1.18 2.66 280.1 1996 856.8 671.2 321.3 146.2 86.8 17.1 3.44 1.05 1.29 1.34 25.6 899.7 1997 1,021 176.4 117.0 45.7 18.6 8.60 1.70 0.962 1.49 4.73 114.3 204.3 1998 1,342 1,781 364.4 249.9 109.0 52.6 9.68 3.75 2.17 2.96 87.5 179.1 1999 222.1 1,052 519.4 198.3 36.1 11.1 2.92 1.48 1.02 1.22 23.0 39.6 2000 277.8 772.5 257.7 56.4 26.0 6.40 2.30 1.04 0.829 3.34 6.14 20.5 2001 112.9 409.4 216.7 24.2 10.1 3.15 0.980 0.000 0.179 0.999 174.6 701.1 2002 417.5 227.5 169.3 42.5 16.9 5.78 0.755 0.031 0.036 0.568 6.17 1,093 2003 514.5 144.1 255.9 660.2 215.5 13.4 4.96 0.963 1.01 1.43 1.08 746.8 2004 458.8 1,189 169.5 40.1 14.6 5.27 1.68 0.899 1.38 5.57 6.57 356.0 2005 427.7 161.0 460.9 261.4 242.8 56.0 10.6 2.24 0.864 1.91 34.8 1,531 2006 824.3 423.7 833.4 736.0 53.8 16.7 5.99 1.68 0.469 2.56 15.1 297.8 2007 65.6 586.0 134.3 46.1 19.1 4.82 1.34 0.431 0.545 3.88 7.90 157.9 2008 845.0 564.9 77.5 26.4 12.8 3.27 0.412 0.094 0.152 0.892 8.54 89.3 2009 37.0 369.5 260.5 26.6 77.5 6.41 0.711 0.011 0.000 0.810 3.16 29.6 2010 770.7 321.0 345.1 601.2 103.3 35.1 7.44 0.937 0.556 124.1 148.7 736.2 2011 219.8 327.1 997.1 114.5 33.3 34.3 6.81 2.24 0.789 6.82 17.2 9.10 2012 244.8 66.3 521.3 278.8 30.3 7.66 2.11 0.084 0.000 1.24 99.7 821.2 2013 102.7 30.7 43.7 40.7 8.49 4.79 0.774 0.000 0.000 0.421 2.22 1.85 2014 0.808 159.3 346.3 137.4 10.0 1.95 Mean of monthly Discharge 526 480 357 169 47 12 2.6 0.66 0.59 9.0 97 368 A-6

Table A-3. Mean daily discharge for USGS stream flow gage 11461000 on Russian River near Ukiah, West Fork Russian River. Day of month Mean of daily mean values for each day for 63-64 years of record, in cfs (Calculation Period 1911-10-01 -> 2014-09-30) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1 535 396 377 346 115 26 5.2 0.98 0.64 0.79 6.6 277 2 360 427 374 297 85 23 5.0 0.94 0.55 0.79 7.9 359 3 300 407 369 263 71 20 4.7 0.90 0.53 0.69 8.7 289 4 505 356 414 253 62 19 4.5 0.95 0.49 0.77 11 208 5 451 346 446 238 69 19 4.2 0.84 0.46 0.99 37 253 6 357 380 351 229 57 20 3.8 0.84 0.42 0.93 105 319 7 383 480 318 180 56 17 3.6 0.77 0.43 0.94 49 250 8 450 492 350 174 50 17 3.5 0.70 0.45 1.0 35 256 9 514 508 381 168 47 18 3.4 0.70 0.50 8.6 44 254 10 367 382 326 173 43 15 3.1 0.62 0.56 6.0 90 315 11 476 359 290 188 41 14 2.9 0.63 0.54 10 95 210 12 620 506 389 256 37 13 2.8 0.63 0.50 35 78 208 13 652 548 404 204 38 12 2.6 0.62 0.51 47 106 200 14 766 533 367 164 33 11 2.5 0.60 0.51 14 86 318 15 706 565 394 146 37 11 2.4 0.57 0.67 7.3 85 262 16 926 652 389 140 32 10 2.3 0.57 0.86 5.1 148 345 17 606 697 343 138 30 9.5 2.2 0.55 0.71 3.9 129 293 18 545 584 369 127 83 9.3 2.1 0.56 0.65 3.2 92 305 19 519 660 292 115 54 8.9 2.0 0.60 0.62 3.0 97 457 20 733 551 317 110 39 8.4 1.9 0.73 0.60 2.9 94 345 21 600 550 323 104 39 7.8 1.7 0.69 0.55 2.8 107 609 22 460 431 322 97 35 7.5 1.7 0.64 0.51 3.0 123 775 23 539 413 338 106 31 7.2 1.6 0.60 0.53 5.4 207 598 24 479 510 406 124 27 6.7 1.5 0.55 0.55 27 184 458 25 562 473 396 111 26 6.6 1.5 0.57 0.54 14 132 326 26 692 404 340 104 28 6.3 1.4 0.53 0.57 6.6 106 340 27 494 380 340 133 51 5.9 1.2 0.48 0.75 4.6 110 403 28 445 454 270 121 37 5.8 1.2 0.50 0.70 19 171 463 29 423 447 350 151 40 5.8 1.1 0.51 0.82 20 145 494 30 429 372 109 30 5.6 1.1 0.51 1.1 16 213 540 31 421 349 34 1.1 0.59 8.6 684 A-7

Table A-4. Peak flows recorded at USGS gage 11460940, Russian River near Redwood Valley, West Fork Russian River. Date Streamflow (cfs) Jan. 20, 1964 1,500 Dec. 22, 1964 4,400 Jan. 04, 1966 2,390 Jan. 20, 1967 1,520 Jan. 09, 1968 1,060 Jan. 13, 1969 1,580 Jan. 23, 1970 2,350 Dec. 03, 1970 1,880 Jan. 22, 1972 1,160 Jan. 11, 1973 1,390 Jan. 16, 1974 2,660 Mar. 21, 1975 1,540 A-8

Table A-5. Mean of monthly discharge at USGS gage 11460940 Russian River near Redwood Valley, West Fork Russian River. YEAR Monthly mean in cfs (Calculation Period: 1963-09-01 -> 1968-09-30) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1963 0.097 1.70 50.0 8.70 1964 81.8 9.74 14.1 4.81 2.04 0.583 0.100 0.026 0.000 0.000 27.1 257.3 1965 131.5 14.7 7.15 38.8 4.25 0.917 0.019 0.000 0.000 0.232 18.7 14.4 1966 112.7 42.0 32.6 12.3 2.34 0.450 0.035 0.000 0.000 0.000 17.9 55.7 1967 123.6 25.4 73.1 61.5 8.47 3.23 0.173 0.000 0.000 0.001 1.58 13.0 1968 73.4 64.9 32.0 5.08 1.46 0.199 0.000 0.000 0.000 Mean of monthly Discharge 105 31 32 24 3.7 1.1 0.07 0.01 0.02 0.39 23 70 A-9

Table A-6. Mean daily discharge for USGS stream flow gage 11460940 Russian River near Redwood Valley, West Fork Russian River. Day of month Mean of daily mean values for each day for 5-6 years of record, in cfs (Calculation Period 1962-10-01 -> 1968-09-30) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1 40 64 15 25 7.9 1.5 0.25 0.02 0.02 0.00 0.20 42 2 42 68 13 24 7.0 3.8 0.23 0.02 0.02 0.00 0.72 101 3 94 51 12 28 7.2 2.6 0.20 0.02 0.02 0.00 2.4 61 4 365 74 11 18 6.2 1.9 0.20 0.02 0.02 0.00 9.5 72 5 371 47 12 25 5.7 1.9 0.20 0.02 0.02 0.00 2.4 67 6 164 38 11 32 5.7 1.8 0.18 0.02 0.02 0.02 7.0 22 7 71 29 11 25 5.2 1.7 0.13 0.02 0.02 0.02 2.5 27 8 40 24 13 19 4.9 1.6 0.08 0.02 0.02 0.02 23 17 9 41 22 29 23 4.8 1.4 0.04 0.00 0.02 0.04 21 14 10 76 19 49 30 5.3 1.4 0.06 0.00 0.02 0.06 25 18 11 41 17 51 28 4.4 1.2 0.05 0.00 0.02 0.10 22 14 12 31 15 56 25 4.0 1.1 0.03 0.00 0.02 0.06 15 11 13 31 14 54 20 3.9 1.0 0.02 0.00 0.02 0.04 15 11 14 106 13 47 17 3.6 0.93 0.02 0.00 0.02 0.04 40 9.6 15 70 13 50 34 3.3 0.83 0.02 0.00 0.02 5.0 29 8.4 A-10 Interactions and Stream Ecology for the Russian River Watershed.

Table A-6. Mean daily discharge for USGS stream flow gage 11460940 Russian River near Redwood Valley, West Fork Russian River (cont.). Day of month Mean of daily mean values for each day for 5-6 years of record, in cfs (Calculation Period 1962-10-01 ->1968-09-30) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 16 41 13 105 35 3.2 0.79 0.02 0.00 0.02 0.92 14 6.9 17 40 14 57 36 3.1 0.70 0.02 0.00 0.02 0.60 13 6.6 18 42 12 39 45 2.8 0.66 0.02 0.00 0.02 0.50 20 16 19 61 64 31 36 2.8 0.66 0.02 0.00 0.02 0.44 29 27 20 276 50 50 34 2.8 0.64 0.02 0.00 0.02 0.38 46 54 21 197 51 34 31 2.6 0.62 0.02 0.00 0.02 0.32 39 288 22 65 33 31 26 2.5 0.57 0.02 0.00 0.02 0.58 19 517 23 58 32 30 25 2.2 0.51 0.02 0.00 0.02 0.86 96 204 24 88 28 26 20 2.1 0.47 0.02 0.00 0.02 0.44 39 110 25 66 24 21 17 2.0 0.43 0.02 0.00 0.02 0.34 26 60 26 142 21 18 15 1.8 0.41 0.02 0.00 0.02 0.28 16 75 27 92 20 19 13 1.8 0.34 0.02 0.00 0.02 0.22 14 61 28 116 16 15 11 1.6 0.32 0.02 0.00 0.02 0.20 58 72 29 169 15 13 9.8 1.7 0.32 0.02 0.00 0.02 0.20 26 60 30 105 23 8.5 1.6 0.28 0.02 0.00 0.00 0.16 20 56 31 99 35 1.5 0.02 0.00 0.17 54 A-11 Interactions and Stream Ecology for the Russian River Watershed.

UKIAH VALLEY SUBAREA Table A-7. Peak flows recorded at the East Fork Russian River (11462000) stream flow gage. Date Peak flow (cfs) Prior to Coyote Dam Mar. 15, 1912 6,500 Jan. 18, 1913 6,140 Dec. 01, 1951 7,980 Dec. 07, 1952 9,540 Jan. 17, 1954 10,300 Dec. 21, 1955 13,300 After Coyote Dam Dec. 19, 1962 4,200 Nov. 24, 1963 4,380 Dec. 30, 1964 6,780 Jan. 31, 1967 4,140 Jan. 22, 1969 4,060 Jan. 24, 1970 7,350 Dec. 04, 1970 4,390 Jan. 13, 1973 4,520 Jan. 17, 1974 6,320 Mar. 27, 1975 4,340 Jan. 20, 1978 5,260 Jan. 15, 1980 4,740 Feb. 16, 1982 4,530 Mar. 03, 1983 4,470 Feb. 18, 1986 6,700 Jan. 02, 1993 4,080 Jan. 19, 1995 5,880 Feb. 13, 1998 4,830 Feb. 10, 1999 4,020 Feb. 16, 2000 4,290 Jan. 02, 2004 4,880 Jan. 04, 2006 5,490 Mar. 28, 2011 4,290 A-12

Table A-8. Mean monthly discharge for the East Fork Russian River (11462000) stream flow gage. YEAR Monthly mean in cfs (Calculation Period: 1959-10-01-2011-09-30) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1959 309.3 281.8 184.0 1960 92.9 215.1 663.1 511.4 246.4 176.8 232.5 220.7 273.0 251.4 283.7 73.1 1961 351.7 734.8 654.7 353.9 252.6 258.7 336.3 387.8 373.8 295.0 163.3 64.6 1962 301.4 863.0 640.6 249.4 115.5 149.5 210.3 219.7 213.5 167.9 402.0 560.3 1963 249.7 818.6 446.1 774.4 352.4 191.5 179.7 195.7 254.6 251.2 612.4 217.0 1964 631.7 222.6 218.6 121.4 96.4 171.3 243.4 242.4 223.3 220.0 103.9 1,175 1965 1,197 327.1 176.2 389.7 246.3 174.1 242.2 276.3 263.7 277.2 430.2 250.7 1966 678.4 437.3 451.2 209.9 227.4 189.1 238.3 244.1 246.0 270.4 519.4 471.6 1967 664.6 653.6 447.1 595.6 230.5 256.4 221.9 285.6 316.5 314.6 219.4 227.8 1968 585.2 608.2 455.0 90.5 76.3 208.1 280.6 244.2 186.0 186.4 188.3 847.6 1969 1,283 884.0 498.2 177.3 265.8 238.0 264.4 270.4 216.0 227.3 247.2 618.7 1970 1,905 453.0 415.7 81.1 81.2 223.8 281.0 288.7 232.9 171.5 90.7 1,047 1971 1,052 199.1 260.1 393.9 288.1 272.3 267.7 296.8 257.9 220.9 149.3 103.2 1972 359.2 407.9 277.3 210.3 221.8 221.4 281.6 299.5 280.8 276.7 282.7 369.0 1973 1,161 948.1 376.1 181.2 208.4 237.8 324.7 307.3 231.3 316.8 51.9 964.5 1974 989.5 307.6 558.1 895.0 332.4 257.3 254.9 335.7 416.2 379.1 214.7 132.0 1975 226.6 1,177 1,089 248.6 325.4 272.1 255.6 309.9 327.6 319.6 189.7 273.1 1976 151.0 147.2 262.4 57.7 169.0 264.6 299.4 251.5 223.9 174.4 167.3 88.7 1977 20.7 17.9 13.3 52.6 86.0 165.6 183.0 169.2 92.7 42.3 13.4 6.97 1978 869.3 1,035 609.8 453.8 281.3 280.5 263.7 295.7 206.6 196.7 251.0 172.3 1979 374.1 952.9 460.8 194.7 322.4 196.1 265.7 289.7 256.9 193.9 473.6 542.9 A-13 Interactions and Stream Ecology for the Russian River Watershed.

Table A-8. Mean monthly discharge for the East Fork Russian River (11462000) stream flow gage (cont.). YEAR Monthly mean in cfs (Calculation Period: 1959-10-01-2011-09-30) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1980 1,111 996.7 458.5 260.8 272.4 227.2 263.4 287.4 236.8 229.4 190.6 252.2 1981 418.5 605.4 418.8 148.7 140.4 228.8 334.0 275.3 229.9 155.0 374.3 1,026 1982 852.4 941.6 530.3 1,026 298.4 283.0 221.4 310.6 236.0 164.6 369.6 944.4 1983 763.3 1,138 1,780 642.7 418.9 258.7 231.3 240.1 249.0 209.8 634.8 995.2 1984 576.9 597.9 233.4 319.0 119.2 195.8 273.7 205.5 207.8 163.7 568.1 409.7 1985 349.8 584.8 132.0 238.9 144.5 259.6 266.8 225.0 208.0 170.8 157.2 344.1 1986 534.1 1,934 718.4 168.2 165.3 208.1 263.6 262.6 249.9 173.8 150.8 149.4 1987 131.9 27.5 432.8 138.8 181.2 196.3 242.2 230.4 228.0 219.7 151.2 51.7 1988 794.6 303.5 145.3 167.1 175.9 104.1 179.4 162.5 166.8 151.8 84.0 134.5 1989 417.2 180.4 688.4 383.5 213.1 225.0 271.6 290.3 219.3 167.9 154.7 159.0 1990 318.2 455.1 179.0 59.7 117.6 183.4 222.2 240.7 193.8 283.6 240.1 81.8 1991 78.9 30.0 348.3 310.9 232.4 144.6 213.5 218.2 215.1 201.6 117.4 90.8 1992 179.3 562.1 222.1 257.5 216.2 240.2 263.4 279.9 234.6 198.6 146.4 161.3 1993 1,266 688.6 230.7 353.5 333.3 338.8 235.0 236.9 217.9 419.2 185.5 153.3 1994 173.5 421.1 160.0 72.1 80.2 147.6 185.3 190.9 236.8 127.9 82.8 62.5 1995 903.3 299.8 822.5 295.1 258.0 162.7 214.1 250.3 230.7 214.0 182.0 120.1 1996 709.5 767.6 421.9 361.7 357.2 218.0 251.7 277.3 270.7 289.2 220.3 521.6 1997 1,184 316.1 158.8 188.2 196.6 190.8 245.1 244.5 243.2 196.0 150.1 84.3 1998 1,299 1,922 429.4 614.6 447.5 360.9 193.9 223.8 323.9 266.6 325.4 394.6 1999 349.0 941.9 437.4 422.7 217.1 198.5 276.9 303.2 277.8 236.8 189.6 211.1 2000 126.9 709.9 374.7 192.5 214.8 253.2 269.0 278.7 256.1 227.8 162.1 162.4 A-14 Interactions and Stream Ecology for the Russian River Watershed.

Table A-8. Mean monthly discharge for the East Fork Russian River (11462000) stream flow gage (cont.). YEAR Monthly mean in cfs (Calculation Period: 1959-10-01-2011-09-30) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 119.5 22.1 22.8 68.4 123.0 172.7 182.4 181.4 216.3 187.0 82.2 557.8 2002 589.2 384.2 106.7 199.4 181.0 219.5 267.7 253.8 244.4 229.0 114.3 37.1 2003 517.0 358.7 160.3 634.2 577.1 243.7 267.8 276.5 248.4 234.8 208.8 468.8 2004 701.8 960.3 198.1 182.2 192.1 244.0 253.9 220.9 231.7 211.9 196.4 157.5 2005 403.7 401.7 290.0 384.9 377.8 181.6 224.5 256.1 229.5 223.8 172.5 337.8 2006 1,382 545.0 728.7 860.4 286.8 187.8 240.2 251.8 223.6 201.4 204.4 160.5 2007 161.7 309.1 212.7 159.7 108.0 118.4 229.6 187.5 215.9 185.7 173.2 84.0 2008 59.9 340.9 115.3 165.9 196.2 153.2 209.1 214.7 232.0 138.2 89.2 99.4 2009 122.2 36.7 25.1 81.4 48.5 104.5 121.5 121.2 147.6 150.8 155.3 131.3 2010 68.9 219.3 161.2 83.0 166.1 163.6 166.3 171.3 177.2 403.8 289.4 580.0 2011 472.7 255.6 747.5 168.1 177.0 129.6 147.8 165.7 191.2 Mean of monthly Discharge 582 571 405 305 224 211 241 249 238 225 228 337 A-15 Interactions and Stream Ecology for the Russian River Watershed.

Table A-9. Mean daily discharge for 1959-2011 for the East Fork Russian River (11462000) stream flow gage. Day of month Mean of daily mean values for 1959-2011, in cfs (Calculation Period 1959-10-01 -> 2012-09-30) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1 460 662 426 307 288 210 224 253 250 223 211 189 2 500 630 535 293 303 203 229 252 249 224 212 206 3 549 582 584 314 289 201 232 251 251 227 216 275 4 528 560 537 369 283 198 233 250 252 234 216 341 5 477 559 493 368 258 193 233 250 253 228 203 368 6 497 532 569 384 244 199 234 250 248 228 198 337 7 561 411 475 350 253 204 234 249 243 227 201 304 8 526 362 409 287 276 204 232 252 241 228 203 285 9 378 405 407 285 279 206 233 252 237 227 196 258 10 444 502 345 295 263 213 235 251 236 228 191 242 11 446 596 364 315 235 215 236 252 234 230 206 291 12 396 523 364 310 225 201 239 251 233 233 199 290 13 399 499 341 339 214 200 240 251 233 233 217 251 14 429 501 357 341 208 202 242 250 233 227 230 250 15 498 543 346 323 198 203 244 250 235 224 238 235 16 590 572 396 310 196 203 244 249 239 223 239 258 17 771 753 407 296 193 208 244 248 238 224 246 351 18 867 797 392 294 183 208 245 248 241 230 283 364 19 858 796 374 289 191 207 245 247 239 231 247 310 20 832 719 331 281 192 210 245 247 240 227 206 292 21 696 684 343 272 187 216 245 247 239 223 225 310 A-16 Interactions and Stream Ecology for the Russian River Watershed.

Table A-9. Mean daily discharge for 1959-2011 for the East Fork Russian River (11462000) stream flow gage (cont.). Day of month Mean of daily mean values for 1959-2011, in cfs (Calculation Period 1959-10-01 -> 2012-09-30) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 22 665 754 313 259 194 220 245 246 236 222 270 363 23 718 671 307 252 199 221 247 246 233 221 257 386 24 746 629 299 270 193 222 249 246 230 221 280 357 25 774 507 369 290 187 225 249 246 232 221 329 408 26 550 415 438 294 189 227 250 247 232 219 258 437 27 536 388 420 286 193 227 251 247 233 222 230 483 28 654 411 420 300 197 223 251 250 231 221 235 465 29 611 570 419 295 204 224 251 251 228 216 221 478 30 528 390 277 218 223 252 251 226 214 178 529 31 568 390 219 252 251 213 530 A-17 Interactions and Stream Ecology for the Russian River Watershed.

HOPLAND VALLEY SUBAREA Table A-10. Peak flows recorded at the USGS Hopland (11462500) stream flow gage (in cubic feet per second or cfs). DATE PEAK FLOW (in cfs) COMMENTS Feb. 28, 1940 34,100 Pre-Coyote Dam Jan. 21, 1943 34,000 Pre-Coyote Dam Jan. 21, 1951 33,900 Pre-Coyote Dam Dec. 22, 1955 45,000 Pre-Coyote Dam Dec. 22, 1964 41,500 Post-Coyote Dam Jan. 16, 1974 39,700 Post-Coyote Dam Feb. 17, 1986 32,900 Post-Coyote Dam Dec. 31, 2005 35,600 Post-Coyote Dam Table A-11. Monthly mean, maximum and minimum data for the Hopland (11462500) stream flow gage for water years 1940-2012 (in cfs). Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Mean 1,759 1,733 1,248 720 332 212 195 202 204 229 391 1,152 Max 5,856 6,799 5,361 2,657 1,013 490 326 369 383 569 1,656 4,849 (WY) (1970) (1958) (1983) (2006) (2003) (1998) (1961) (1961) (1974) (2011) (1984) (1965) Min 37.2 28.8 57.1 44.1 77.0 59.6 79.7 98.7 78.9 35.1 96.5 87.6 (WY) (1977) (1977) (1977) (1977) (1977) (1949) (1948) (2009) (1977) (1978) (1978) (1991) A-18

Table A-12 Mean daily discharge for 1958-1966 at Feliz Creek USGS gage (11462700) (in cfs). Day of Mean of daily mean values for each day for 8-9 years of record in, cfs (Calculation Period 1957-10-01 -> 1966-09-30) month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1 39 265 54 48 17 5.2 0.59 0.13 0.01 0.00 3.8 268 2 84 112 63 37 15 4.7 0.64 0.13 0.00 0.00 6.1 115 3 150 138 49 33 15 4.2 0.74 0.13 0.00 0.00 2.4 64 4 496 184 64 29 14 4.1 0.68 0.17 0.00 0.00 5.5 29 5 552 112 173 39 18 4.1 0.55 0.14 0.00 0.00 5.2 19 6 191 72 123 86 14 4.4 0.41 0.08 0.00 0.00 7.8 14 7 157 145 123 66 13 3.8 0.54 0.04 0.00 0.06 2.9 12 8 196 226 80 72 12 3.6 0.49 0.03 0.00 0.11 24 9.7 9 114 295 64 111 12 3.6 0.50 0.03 0.00 0.11 57 9.0 10 62 193 50 126 15 3.0 0.45 0.02 0.00 0.23 79 8.6 11 56 191 53 85 14 3.0 0.49 0.07 0.00 14 34 13 12 131 173 51 112 11 3.1 0.40 0.10 0.00 110 37 11 13 42 261 44 89 10 2.7 0.34 0.04 0.00 30 46 24 14 29 255 55 129 9.4 2.4 0.33 0.02 0.00 20 55 16 15 23 285 75 205 8.9 2.0 0.29 0.00 0.00 7.4 22 107 16 18 268 66 116 8.0 2.0 0.21 0.00 0.00 4.1 11 110 17 18 151 81 73 7.7 1.8 0.19 0.01 0.00 2.7 11 82 18 23 157 58 64 7.1 1.9 0.14 0.07 0.00 2.0 47 37 19 65 118 49 56 6.4 1.8 0.20 0.09 0.00 1.6 36 74 20 158 94 40 50 6.3 1.3 0.19 0.06 0.00 1.3 19 132 21 89 66 34 46 6.2 1.2 0.18 0.03 0.00 1.2 9.6 436 A-19 Interactions and Stream Ecology for the Russian River Watershed.

Table A-12 Mean daily discharge for 1958-1966 at Feliz Creek USGS gage 11462700 (in cfs) (cont.). Day of Mean of daily mean values for each day for 8-9 years of record in, cfs (Calculation Period 1957-10-01 -> 1966-09-30) month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 22 65 53 51 40 6.2 1.4 0.17 0.02 0.00 1.1 8.4 532 23 94 45 61 36 7.1 1.3 0.17 0.04 0.00 1.2 76 199 24 121 42 42 31 9.7 1.1 0.12 0.06 0.00 1.1 72 154 25 103 40 41 28 8.4 1.2 0.11 0.04 0.00 1.0 116 80 26 63 36 38 26 8.0 1.1 0.24 0.04 0.00 0.92 55 72 27 49 33 145 25 7.4 0.90 0.18 0.04 0.00 0.88 24 93 28 42 31 86 22 7.3 0.61 0.16 0.02 0.00 0.84 53 279 29 121 10 81 20 6.4 0.62 0.11 0.02 0.00 1.1 47 110 30 261 86 17 6.3 0.59 0.04 0.01 0.00 0.80 82 78 31 356 66 5.8 0.01 0.01 0.74 68 A-20 Interactions and Stream Ecology for the Russian River Watershed.

NARROWS SUBAREA Table A-13. Largest peak flows recorded at the Russian River near Cloverdale (11463000) USGS stream flow gage Date Peak Flows (in cfs) Comments Jan 17, 1954 33,300 pre-coyote Dam Dec 22, 1955 53,000 pre-coyote Dam Feb 24, 1958 36,100 pre-coyote Dam Dec 22, 1964 55,200 post Coyote Dam Jan 5, 1966 32,600 post Coyote Dam Jan 23, 1970 36,000 post Coyote Dam Jan 16, 1974 51,900 post Coyote Dam Jan 26, 1983 33,200 post Coyote Dam Feb 17, 1986 40,700 post Coyote Dam Jan 9, 1995 39,400 post Coyote Dam Dec 31, 2005 50,700 post Coyote Dam Table A-14. Monthly mean data for water years 1951-2013 for Russian River near Cloverdale (11463000) stream flow gage (in cfs). Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Mean 2,515 2,426 1,762 938 399 235 205 209 207 241 513 1,602 Max 8,324 9,790 7,015 4,034 1,306 840 336 359 385 659 2,636 6,398 (WY) 1,995 1,998 1,983 2,006 2,003 1,998 1,998 1,961 1,974 1,963 1,984 1,965 Min 53.7 44.5 97.2 47.3 80.7 90.1 89.9 93.9 72.5 34.5 114 97.8 (WY) 1,977 1,977 1,977 1,977 1,977 2,007 2,009 2,009 1,977 1,978 1,992 1,991 A-21

ALEXANDER VALLEY SUBAREA Table A-15. Peak flows recorded at the Russian River at Healdsburg (11464000) stream flow gage. Date Peak flow in cfs February 28, 1940 67,000 February 6, 1942 43,200 January 21, 1943 53,300 December 28, 1945 41,800 December 4, 1950 42,800 January 9, 1953 42,900 January 17, 1954 53,700 December 22, 1955 65,400 February 25, 1958 50,900 February 1, 1963 41,800 December 23, 1964 71,300 January 5, 1966 49,400 January 16, 1970 53,500 December 4, 1970 40,200 January 16, 1974 64,700 January 16, 1978 41,800 December 20, 1981 42,000 January 26, 1983 62,700 February 17, 1986 71,000 January 20, 1993 43,600 January 9, 1995 73,000 January 1, 1997 65,700 February 3, 1998 43,500 December 16, 2002 44,700 February 18, 2004 48,500 December 31, 2005 58,900 A-22

Table A-16. Monthly mean, maximum, and minimum data for water years 1940-2013 in cfs, Healdsburg gage (11464000). Jan Feb March April May June July August Sept Oct Nov Dec Mean 3887 3884 2777 1480 574 266 183 179 183 261 705 2498 Max 14490 16450 11810 6697 2080 972 300 331 360 1605 5293 8945 WY 1995 1998 1983 2006 2003 1998 1961 1974 1974 1958 1974 1956 Min 90.9 58.7 146 55.7 85.1 81.3 70.5 66.5 67.4 33.7 122 111 WY 1977 1977 1977 1977 1977 1977 1947 2009 1977 1978 1992 1991 Table A-17a. Peak flows recorded at Big Sulphur Creek USGS gages. Big Sulphur Creek near Cloverdale USGS Gage 11463200 Date Peak flow in cfs December 22, 1955 20,000 December 22, 1964 15,700 January 4, 1966 11,100 January 21, 1967 10,100 January 13, 1969 12,200 January 23, 1970 15,000 *Peak flow data available for 1955 to 1972. Table A-17b. Big Sulphur Creek at Geysers Resort near Cloverdale USGS Gage 11463170 Date Peak flow in cfs February 17, 1986 5,700 March 4, 1991 4,090 January 8, 1995 7,550 December 12, 1995 4,070 January 1, 1997 8,010 December 16, 2002 6,880 February 17, 2004 6,380 December 31, 2005 5,130 January 4, 2008 5,740 December 2, 2012 4,210 A-23

Table A-18. Discharge at Big Sulphur Creek at Geysers resort near Cloverdale station 11463170, in cfs. Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1980 0.861 1.22 73.8 1981 126.3 54.3 58.5 15.2 7.13 2.87 1.19 0.911 0.83 7.27 104.4 110.2 1982 88.2 81.2 107.9 161.9 13.4 6.64 2.35 1.2 1.07 8.58 47.1 152.2 1983 142.2 282 297.3 79.6 33.1 6.3 3.84 0.827 0.799 1.14 146.5 243.1 1984 37 35.6 59.9 13.1 7.3 3.01 0.861 0.763 0.922 0.894 69 18.6 1985 10.8 49.7 34.6 14.6 6.1 2.75 1.13 1.15 2.9 2.62 16.1 30.6 1986 82.1 571.4 141.3 14.5 4.79 2.86 1.97 1.47 2.3 2.24 1.73 7.03 1987 20.5 70.6 95.8 9.68 5.14 2.62 1.4 0.714 0.679 1.01 5.72 153.2 1988 109.9 15.6 8.57 8.72 10.4 4.58 1.67 0.703 0.655 0.738 22.9 18.1 1989 13.1 7.34 195 19.8 7.85 4.51 2.25 1.18 2.04 20.9 8 3.65 1990 52.2 32.2 14.7 8.44 81.6 17.1 4.39 2.13 1.43 1.22 1.5 1.81 1991 2.52 8.63 269.8 16.4 6.62 4.35 2.36 1.85 0.948 1.4 2.18 7.57 1992 12.7 145.1 61.7 16.4 7.83 4.44 2.75 1.21 0.987 3.94 3.57 151.2 1993 336 158.9 40.1 33.5 16.5 15.4 5.75 2.64 1.81 1.67 2.89 61.9 1994 20.9 62.4 15.1 9.84 7.1 3.72 1.78 0.986 0.842 1.14 10.1 25.7 1995 639.1 25.3 358 65.7 47.9 6.81 5.15 2.26 1.55 1.4 1.53 70.4 1996 102.2 224.3 75.8 26.4 40.5 7.36 4.68 2.25 1.68 2.14 22.5 340.9 1997 254.1 22.5 20.1 12.6 5.91 3.81 2.04 1.24 0.992 1.5 28.2 26.1 1998 190.9 340.7 44.7 40.3 58.8 18 7.34 2.99 1.75 1.79 10.1 13.2 1999 62.7 184 96 55.8 10.9 5.48 2.33 1.54 1.18 1.4 15.6 9.44 2000 77 285.6 61.5 17.4 10.3 5.83 3 1.62 1.09 3 3.19 5.15 2001 22.6 134.9 40.6 10.9 5.56 2.54 1.7 0.983 0.777 0.958 34.3 140.4 2002 109.9 15.9 23.9 10.6 8 2.85 1.09 0.8 0.733 0.739 9.86 343.1 2003 80 22.6 60.1 85.1 40 8.51 3.38 1.75 1.02 0.871 6.29 226.1 2004 76.1 254.9 29.3 12.7 5.34 2.33 1.16 0.689 0.536 5.98 8.07 127.2 2005 110.2 47.9 95.9 30.8 71.1 15.5 5.87 2.29 1.52 1.64 12.9 286.4 2006 129.3 71.6 169.9 178.1 15.6 5.63 2.46 1.14 1.87 1.04 3.19 34.7 2007 9.87 206 26.5 11.3 5.12 1.99 1 0.467 0.392 2.33 1.39 23.4 2008 217.8 144.2 21.9 7.52 3.56 1.76 0.794 0.419 0.377 1.01 15.9 15.9 2009 6.24 244.2 123.4 15.5 36.9 5.82 2.16 1.15 1.1 9.18 5.5 20.2 2010 268.5 70.9 75.9 128.7 29.5 14.1 3.8 1.53 1.06 9.05 14.3 177.6 2011 36.4 101.3 261.6 34.5 14.8 19.2 4.66 1.82 0.883 2.38 6.36 2.22 2012 35.5 13.3 201.5 84.4 11.8 4.71 1.93 0.706 0.43 0.661 99.5 297 2013 18 7.72 12.4 10.4 3.98 2.19 1 0.511 0.448 0.431 0.692 0.83 2014 0.674 76.5 62.5 25.8 4.52 Mean of monthly Discharge 103 120 96 38 19 6.5 2.7 1.3 1.1 3 22 95 A-24

Table A-19. Discharge at Big Sulphur Creek near Cloverdale station 11463200, in cfs. Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1957 18.6 8.22 51.4 185.6 49.8 291.6 1958 517.9 1,962 746.9 726.1 79.4 45.8 19.9 8.84 5.58 5.35 7.53 11.6 1959 446.8 697.0 98.5 45.8 21.9 11.0 4.23 3.13 11.2 4.94 4.15 6.82 1960 144.6 658.0 398.4 105.0 58.6 23.9 8.64 3.99 3.78 5.95 54.1 383.2 1961 204.7 396.6 299.0 125.6 58.7 25.2 7.67 5.04 4.16 4.43 123.2 188.8 1962 94.0 940.1 392.0 83.1 35.7 16.9 6.72 5.13 4.16 290.3 44.6 338.9 1963 391.1 585.8 329.6 685.5 174.8 54.0 22.0 11.0 8.78 17.5 279.0 60.1 1964 323.2 81.7 66.4 37.9 22.9 13.2 5.94 3.22 2.96 5.69 157.6 1,228 1965 994.5 154.5 75.2 437.1 84.5 28.3 14.3 8.18 5.96 6.11 166.3 274.4 1966 793.5 409.9 173.7 87.3 32.5 15.6 8.22 4.66 3.79 4.08 283.0 689.5 1967 768.8 267.6 433.4 448.8 121.2 67.0 16.4 11.9 8.20 11.4 18.0 141.7 1968 543.6 476.8 268.7 87.2 39.1 16.9 7.09 7.10 5.52 10.7 22.1 366.2 1969 1,395 1,176 347.9 187.4 62.5 29.2 11.7 7.17 5.15 8.46 11.9 833.7 1970 1,972 443.5 276.1 61.6 29.5 14.2 5.89 3.55 2.79 7.59 263.9 906.4 1971 471.9 86.2 288.4 125.2 47.1 22.0 8.85 5.92 4.36 4.90 12.2 87.9 1972 104.6 159.0 101.9 116.0 30.9 11.9 5.23 3.14 3.54 Mean of monthly Discharge 611 566 286 224 60 26 11 6.3 8.2 38 100 387 A-25

KNIGHTS VALLEY SUBAREA Table A-20 Peak flows recorded at the Maacama Creek USGS gage (11463900) Date Peak flows in cfs January 31, 1961 3,700 February 13, 1962 6,370 January 31, 1963 7,700 January 20, 1964 3,180 December 22, 1964 8,920 January 4, 1966 5,650 November 19, 1966 5,620 January 10, 1968 4,670 January 23, 1970 4,250 January 16, 1973 7,460 March 28, 1974 5,630 March 21, 1974 4,770 January 16, 1978 7,360 February 13, 1979 3,110 February 17, 1980 4,760 December 3, 1980 4,290 Table A-21 Monthly mean, maximum and minimum data for the Maacama Creek stream flow gage (11463900) for water years 1961-1980 and 2012-2014 (in cfs). Maacama Creek Statistics of Monthly Mean Data for Water Years 1961-1981, By Water Year (WY) Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Mean 10.4 65.5 157 293 203 143 70.8 18.4 6.52 2.20.82.74 Max 154 476 599 933 505 502 315 65.9 24.8 7.13 3.15 1.95 (WY) (1963) (1974) (1965) (1970) (1969) (1974) (1963) (1963) (1967) (1963) (1963) (1963) Min.31 1.12 1.31 5.29 4.87 8.36 2.82 2.55.32.001.000.040 (WY) (1977) (1981) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1977) (1964) A-26

Table A-22. Mean monthly discharge at the Maacama Creek gage (11463900) for the 1961-1981 period and the 2012-2014 period of record. YEAR Monthly mean in cfs (Calculation Period: 1961-01-01-1981-09-30) Jan Feb Mar Apr Ma y Jun Jul Aug Sep Oct Nov Dec 1961 106.4 181.6 128.7 39.5 18.0 6.55 1.43 0.584 0.730 0.794 15.5 60.9 1962 35.0 445.9 224.2 25.8 10.8 2.89 0.858 0.342 0.400 153.9 19.9 146.5 1963 205.6 184.4 122.5 314.6 65.9 18.5 7.13 3.15 1.95 3.75 140.6 25.6 1964 135.0 37.0 24.7 12.1 7.36 3.29 0.519 0.103 0.040 0.681 65.9 598.6 1965 458.5 64.4 24.8 140.9 26.5 10.3 4.24 1.37 0.967 0.997 69.8 105.0 1966 352.0 184.2 69.1 39.8 12.8 5.01 1.90 0.629 0.937 0.794 132.2 297.6 1967 454.3 115.3 211.0 215.5 44.5 24.8 6.24 1.78 1.07 3.16 5.20 48.0 1968 231.3 222.5 141.2 26.9 11.4 3.26 0.703 0.821 0.395 2.44 5.48 200.3 1969 664.2 505.4 136.7 64.9 20.6 8.61 2.84 1.07 0.829 1.88 2.71 346.7 1970 932.9 194.0 100.2 20.8 9.52 4.47 1.76 0.635 0.558 1.83 138.0 406.1 1971 196.7 34.8 134.4 48.2 17.2 6.83 3.14 0.881 0.688 1.01 2.66 43.4 1972 62.1 83.1 52.2 40.6 11.3 3.88 1.36 0.485 0.549 2.99 85.2 98.2 1973 530.0 325.2 133.1 32.8 11.2 3.42 1.01 0.440 1.23 7.03 475.5 277.0 1974 391.8 153.1 502.2 165.7 22.2 7.83 4.56 1.29 1.13 1.47 2.62 25.2 1975 30.8 387.0 323.2 60.2 19.5 5.70 2.21 1.31 0.915 8.97 12.8 17.7 1976 6.60 25.0 31.2 31.7 6.35 1.50 0.189 0.232 0.110 0.310 1.42 1.31 1977 5.29 4.87 8.36 2.82 2.55 0.323 0.001 0.000 0.113 0.655 81.1 162.3 1978 613.6 340.5 259.5 95.9 23.1 6.27 2.17 0.757 1.57 0.738 1.88 2.65 1979 177.5 294.5 109.3 38.3 21.9 4.58 0.985 0.133 0.230 14.1 50.2 183.6 1980 355.5 380.1 139.3 37.0 12.8 6.15 2.10 0.894 0.904 0.769 1.12 93.4 1981 205.2 101.3 131.2 30.5 10.1 2.85 0.850 0.218 0.188 Mean of monthly Discharg e 293 203 143 71 18 6.5 2.2 0.82 0.74 10 65 157 YEAR Monthly mean in cfs (Calculation Period: 2012-10-01-2014-06-30) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2012 1.01 8.83 156.9 2013 44.7 15.5 12.3 15.2 3.95 2.28 0.365 0.000 0.000 0.000 0.368 1.26 2014 1.19 29.2 45.8 35.1 6.03 1.86 Mean of monthly Discharge 23 22 29 25 5.0 2.1 0.36 0.00 0.00 0.51 4.6 79 A-27

Table A-23. Mean daily discharge at the Maacama Creek gage (11463900) for the 1961-1981 period. Day of month Mean of daily mean values for each day for 20-21 years of record, in cfs (Calculation Period 1960-10-01-1981-09-30) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1 78 202 214 118 30 9.7 3.2 1.3 0.58 0.87 3.0 165 2 100 162 185 88 28 14 3.1 1.1 0.52 0.98 5.1 156 3 110 137 154 73 27 11 3.0 1.1 0.59 1.2 8.4 291 4 239 150 165 69 26 9.6 2.9 1.1 0.57 1.0 12 266 5 429 172 197 81 29 9.1 2.8 1.0 0.50 1.0 19 152 6 181 182 160 152 26 8.7 2.7 0.95 0.57 0.98 24 81 7 112 208 140 93 25 8.3 2.6 0.85 0.58 1.1 35 76 8 104 218 164 82 23 8.1 3.5 0.81 0.56 1.1 22 52 9 209 310 124 83 23 8.0 3.3 0.80 0.78 1.2 62 47 10 176 200 112 86 23 7.6 2.7 0.82 0.90 5.1 90 89 11 287 201 116 73 23 7.4 2.5 0.81 0.72 20 126 47 12 407 260 145 72 20 6.8 2.4 0.78 0.71 116 87 78 13 456 424 111 66 20 6.6 2.3 0.76 0.68 52 122 65 14 505 272 108 94 19 6.4 2.2 0.78 0.72 23 114 163 15 344 230 119 90 18 6.0 2.2 0.97 0.75 10 83 181 16 747 212 184 78 17 5.8 2.1 0.85 0.70 7.1 139 100 17 296 228 124 69 16 5.5 2.0 0.70 0.71 5.0 82 107 18 264 211 119 67 15 5.5 1.9 0.69 0.72 3.9 57 96 19 266 258 109 63 15 5.3 1.9 0.79 0.76 3.5 131 146 20 408 198 98 59 15 5.1 1.8 0.77 0.74 3.3 85 172 21 610 202 151 62 14 4.9 1.7 0.73 0.80 3.0 139 351 22 334 160 117 52 14 4.7 1.6 0.73 0.77 5.9 57 382 23 341 133 95 56 13 4.5 1.6 0.79 0.78 7.2 53 295 24 235 142 88 57 13 4.4 1.7 0.80 0.73 3.7 47 324 25 174 119 116 50 13 4.2 1.7 0.80 0.78 20 41 178 26 181 128 158 44 12 4.1 1.6 0.77 0.89 6.2 38 148 27 222 124 167 42 12 4.0 1.7 0.66 0.99 3.5 70 135 28 200 238 271 37 11 3.6 1.5 0.62 0.98 3.2 90 165 29 333 178 147 34 11 3.5 1.4 0.58 1.1 3.3 57 130 30 332 122 31 10 3.4 1.3 0.54 1.0 5.4 68 114 31 400 159 9.8 1.3 0.51 3.3 117 A-28

Table A-24 Peak flows recorded at the Franz Creek USGS gage (11463940). Date Peak Flow in cfs December 22, 1955 4,130 February 24, 1958 2,400 February 8, 1960 3,400 February 13, 1962 3,030 January 5, 1965 5,780 January 21, 1967 2,280 January 23, 1970 2,320 January 16, 1973 3,490 Table A-25 Mean monthly discharge at the Franz Creek gage (11463940) for the 1963-1968 period Monthly mean in ft3/s YEAR (Calculation Period: 1963-10-01-1968-09-30) Jan Feb Ma Apr Ma Jun Jul Aug Sep Oct Nov Dec r y 1963 0.613 33.0 5.46 1964 44.1 6.47 4.50 2.01 1.32 0.520 0.023 0.000 0.000 0.071 10.2 150.3 1965 154.6 14.9 4.40 26.8 4.87 1.26 0.197 0.068 0.093 0.161 26.2 35.3 1966 119.3 55.1 16.1 7.69 2.48 0.650 0.123 0.010 0.027 0.112 31.4 85.7 1967 147.5 28.7 69.3 68.1 10.4 5.28 1.25 0.735 0.389 0.495 0.727 17.4 1968 79.5 73.7 44.4 7.09 2.24 0.484 0.312 0.073 0.021 Mean of monthly Discharge 109 36 28 22 4.3 1.6 0.38 0.18 0.11 0.29 20 59 A-29

Table A-26 Mean daily discharge at the Franz Creek gage (11463940) for the 1963-1968 period. Mean of daily mean values for each day for 5-5 years of record, in cfs. (Calculation Period 1963-10-01-1968-09-30) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1 20 88 15 24 9.3 1.9 0.66 0.29 0.09 0.13 0.49 17 2 54 63 13 18 8.5 6.2 0.66 0.27 0.08 0.19 1.9 80 3 82 65 12 15 8.2 4.7 0.66 0.25 0.08 0.28 0.86 62 4 291 73 11 14 7.4 2.8 0.60 0.27 0.08 0.22 3.3 149 5 508 60 10 14 6.9 2.4 0.58 0.29 0.08 0.25 8.3 118 6 187 42 9.4 40 6.4 2.3 0.60 0.27 0.08 0.25 5.5 52 7 99 33 9.5 26 6.0 2.3 0.62 0.22 0.08 0.22 2.1 46 8 65 27 8.8 20 5.6 2.3 0.56 0.21 0.09 0.18 3.8 24 9 48 24 9.9 28 5.4 2.0 0.52 0.24 0.08 0.16 9.7 18 10 108 21 14 32 5.5 1.8 0.41 0.24 0.09 0.22 21 23 11 41 19 25 24 5.0 1.7 0.38 0.22 0.09 0.54 11 15 12 28 17 48 20 4.5 1.5 0.34 0.26 0.09 0.33 6.5 12 13 23 15 49 17 4.2 1.3 0.32 0.22 0.09 0.23 15 11 14 49 14 36 15 4.3 1.2 0.28 0.17 0.09 0.20 47 8.8 15 59 13 45 32 4.0 1.2 0.26 0.15 0.09 0.34 21 8.5 16 31 13 145 22 3.6 1.0 0.35 0.13 0.11 0.47 15 7.1 17 21 22 60 28 3.5 1.0 0.38 0.12 0.12 0.27 14 6.6 18 18 17 38 34 3.3 1.0 0.28 0.12 0.12 0.23 13 11 19 20 77 28 29 3.2 0.98 0.26 0.15 0.12 0.24 92 12 20 180 68 31 26 2.9 1.0 0.28 0.14 0.14 0.27 72 18 21 345 63 29 34 2.7 0.99 0.30 0.15 0.13 0.30 34 152 22 120 39 24 24 2.6 1.0 0.31 0.14 0.15 0.28 21 345 23 83 31 27 27 2.6 0.96 0.27 0.12 0.13 0.36 45 119 24 113 27 20 23 2.4 0.92 0.27 0.11 0.13 0.31 50 73 25 61 24 17 18 2.3 0.86 0.26 0.11 0.13 0.30 23 34 26 50 23 15 15 2.3 0.83 0.29 0.12 0.13 0.35 16 77 27 44 20 15 15 2.3 0.83 0.24 0.11 0.13 0.36 13 68 28 58 17 14 12 2.0 0.81 0.23 0.11 0.12 0.37 15 99 29 231 16 13 11 2.0 0.69 0.25 0.10 0.10 0.45 15 70 30 220 34 10 1.8 0.65 0.23 0.09 0.10 0.37 13 51 31 121 34 1.8 0.23 0.08 0.32 37 Day of month A-30

MARK WEST CREEK WATESHED SUBAREA Table A-27. Peak flows recorded at Mark West Creek near Windsor USGS stream flow gage (11465500). Water Year Date Stream Flow (cfs) 2007 Dec. 26, 2006 1,950 2008 Jan. 04, 2008 3,970 Table A-28. Mean monthly discharge for Mark West Creek near Windsor USGS stream flow gage (11465500). Monthly Mean in cfs YEAR (Calculation period: 2006-10-01 -> 2008-04-30) JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 2006 1.80 4.98 47.3 2007 7.43 165.4 31.3 10.5 2.44 2.61 19.9 2008 240.5 113.1 13.6 4.63 Mean of monthly Discharge 124 139 22 7.6 2.1 3.8 34 A-31

TableA-29. Mean daily discharge for 2006-2008 Mark West Creek near Windsor USGS stream flow gage (11465500). Day of Month Mean of Daily Mean Values for Each Day for 2 Years of Record, in cfs. Calculation period: 2006-10-01 -> 2008-09-30 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 1 10 221 102 7.2 1.3 2.0 3.1 2 8.8 205 74 6.9 1.3 8.5 3.2 3 60 266 58 6.6 1.5 4.5 3.8 4 881 131 47 6.3 1.9 3.1 8.6 5 222 83 40 6.4 2.0 2.5 5.3 6 143 51 34 6.3 1.6 2.3 7.1 7 94 41 29 6.1 1.5 2.2 17 8 157 74 26 6.1 1.4 2.2 9.6 9 122 288 23 6.0 1.8 2.2 13 10 82 436 21 5.9 3.9 3.4 31 11 57 215 19 7.0 1.7 5.0 22 12 40 150 18 6.2 5.3 3.4 69 13 30 118 17 5.5 2.5 7.5 20 14 24 69 15 5.9 2.0 5.4 13 15 21 49 14 5.9 1.7 4.0 22 16 18 39 13 5.3 2.4 3.4 16 17 15 32 12 4.9 2.0 3.1 10 18 13 27 11 4.8 2.0 3.0 52 19 12 23 11 5.5 2.6 2.9 31 20 12 22 10 6.9 3.6 2.8 113 21 12 22 9.8 10 3.1 2.8 44 22 12 143 9.2 34 2.1 2.7 61 23 11 75 9.2 14 1.9 2.8 23 24 11 272 8.8 9.8 1.7 2.8 14 25 304 321 8.8 7.8 1.6 2.8 10 26 528 185 10 6.8 1.7 8.8 183 27 234 206 11 6.2 1.7 6.8 147 28 173 167 9.1 5.7 1.7 4.7 40 29 134 46 8.8 5.3 1.8 3.5 21 30 116 8.1 5.1 1.9 3.3 15 31 286 7.7 2.0 12 A-32

Table A-30. Peak flows recorded at the Mark West Creek near Mirabel Heights U.S. Geologic Survey stream flow gage (11466800). Date Stream Flow (cfs) Dec. 31, 2005 11,300 Feb. 11, 2007 3,720 Jan. 05, 2008 6,960 Jan. 23, 2012 3,480 Dec. 24, 2012 8,200 Table A-31. Mean monthly discharge at Mark West Creek near Mirabel USGS stream flow gage (11466800). YEAR Monthly mean in cfs Calculation Period: 2005-10-01 -> 2014-04-30 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2005 14.1 37.1 1,516 2006 1,317 486.6 1,585 1,282 82.6 28.7 11.8 7.02 4.33 9.65 51.7 315.4 2007 71.8 814.6 194.0 88.3 34.9 9.44 3.13 2.12 1.76 25.8 16.3 159.0 2008 1,369 719.0 100.9 35.2 13.5 4.98 1.60 0.444 0.160 1.89 35.9 2009 29.0 38.5 10.5 2.97 0.819 0.262 13.1 56.2 2010 41.1 10.6 4.39 1.82 2011 21.2 25.7 15.2 2012 360.2 73.0 840.4 353.0 40.8 11.2 2.76 0.865 0.692 5.53 163.4 1,497 2013 156.9 56.9 48.0 73.3 14.8 14.8 6.93 1.71 1.86 0.701 5.45 10.1 2014 5.40 807.4 342.8 307.8 Mean of monthly Discharge 473 493 519 311 37 17 5.7 2.5 1.6 11 44 510 A-33

Table A-32. Mean daily discharge for the Mark West Creek near Mirabel Heights USGS stream flow gage (11466800) in cfs. Day of Month Mean of Daily Man Values for Each Day for 6-9 Years of Record, in cfs. Calculation period: 2005-10-01-> 2014-09-30 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 1 428 489 920 642 76 34 11 3.2 1.7 1.8 40 541 2 583 469 707 659 71 32 10 3.1 1.6 1.9 32 706 3 1,010 553 587 633 67 29 9.6 2.9 1.6 1.9 28 643 4 993 481 520 568 66 26 9.1 3.1 1.5 6.2 27 306 5 1,150 353 513 531 61 25 8.4 3.0 1.5 17 24 258 6 724 278 1,200 460 57 23 8.0 3.0 1.5 11 28 231 7 516 231 972 361 53 21 7.4 2.9 1.5 7.8 28 191 8 402 353 629 308 50 20 7.1 2.9 1.5 7.2 35 137 9 389 1,070 439 233 65 19 6.7 2.8 1.4 6.9 20 116 10 308 1,380 326 201 61 18 6.4 2.8 1.4 12 18 107 11 243 1,050 245 245 56 17 6.2 2.6 1.5 8.6 24 87 12 218 634 195 643 52 17 5.8 2.5 1.4 14 19 139 13 176 539 239 771 47 16 5.7 2.5 1.4 15 24 120 14 193 372 671 506 43 15 5.6 2.5 1.5 31 24 99 15 195 266 651 362 41 14 5.5 2.5 1.4 20 20 86 16 162 196 547 338 38 13 5.1 2.5 1.5 20 20 87 17 144 158 708 324 36 13 4.9 2.4 1.5 20 43 89 18 225 131 543 252 40 12 4.9 2.3 1.4 18 37 247 19 260 118 335 187 37 12 4.7 2.3 1.3 17 30 377 20 235 111 250 152 37 11 4.5 2.3 1.4 17 52 392 21 304 109 207 124 35 11 4.3 2.3 1.4 16 57 520 22 278 173 170 141 34 11 4.1 2.3 3.5 18 44 841 23 540 199 142 122 36 11 3.9 2.2 2.7 18 39 1,010 24 467 278 163 117 33 9.8 3.8 2.1 1.8 15 45 1,240 25 378 466 321 103 33 17 3.6 2.1 1.5 13 53 654 26 815 436 355 97 36 22 3.4 2.1 1.3 12 37 654 27 760 783 351 92 23 14 3.4 2.1 1.2 10 37 722 28 503 1,110 552 86 22 12 3.4 2.0 1.2 21 59 1,160 29 405 251 513 82 45 11 3.4 1.9 1.2 12 73 1,040 30 370 403 75 40 11 3.5 1.9 1.2 9.0 292 663 31 390 396 38 3.3 1.8 8.8 687 A-34

A-35

APPENDIX B Analysis of the Discharge at the Russian River near Ukiah, CA Stream Flow Gage (USGS 11461000) B-1

Analysis of the Discharge at the Russian River near Ukiah, CA Stream Gage (USGS 11461000) A statistical analysis of the annual and monthly discharge measured at the Russian River near Ukiah stream gage was done to shed light on the following hypothesis. Hypothesis: For the West Fork Russian River gage (Russian River near Ukiah 11461000) to review the 1911-1913 and then the 1952-present records for dry season water flows and determine if Coyote Dam and channel incision has led to lower water levels during the dry season. The above hypothesis has two parts: 1) Is the dry season stream flow changing over time at the Russian River near Ukiah stream gage (West Fork of the Russian River)? 2) If the dry season streamflow is changing over time, a) How is the stream flow changing? b) What is driving the change? c) Has there been a change in the annual rainfall? d) Does the existing data support a causal link between the change in flow and dam induced channel incision? Difficulty in Establishing a Causal Link Channel incision induced by the construction of Coyote Dam, which was completed in 1958, is hypothesized to cause lower water levels during the dry season. There are only 8 water years of predam discharge data available at the Russian River near Ukiah stream gage station. The small sample size may hamper the ability of statistical tests to show a clear change in discharge between pre-dam and post-dam during the dry season. Also, statistical tests cannot, by themselves, establish causality. Statistical tests can provided supporting evidence for proposed causal mechanisms. Another problem is that the construction of Coyote Dam is not the only factor linked to channel incision. In 1992, Dianne Chocholak, working for the Mendocino County Water Agency, interviewed long-term residents of the Ukiah Valley to document historical processes that may have altered the Russian River from its pre-settlement condition. The findings from her interviews are presented in, Early Conditions and History of The Upper Russian River. Chocholak s findings reveal that there was a significant level of gravel extraction from the Russian River and its tributaries in the late 1940 s and early 1950 s. For example on page 6 we find; B-2

Then in 1948 to 1950 Masonite built its hardboard plant in Ukiah and a paved logging road westward out to its 55,000 acres of newly purchased forestlands. Masonite used gravel from Ackerman Creek north of Ukiah to pave its highway. As a result, the State Highway Division in 1950 had to reinforce the Ackerman Bridge, because its foundations were weakened "as gravel from beneath the bridge was carried downstream. GRAVEL EXTRACTION The production of sand and gravel was the principal mining industry in Mendocino County in the early 1950s. In 1950, 254,413 short tons of sand and gravel were produced. Gravel from the Russian River streambeds was used for concrete construction and for building and repairing roads. It supplied the entire Bay Area, and the river was greatly overextracted. Chocholak also notes the US Army Corps of Engineers began channel stabilization projects on the Russian River in October of 1956. Channel stabilization has been linked to channel incision by various researchers. The extensive gravel extraction in the late 1940 s and early 1950 s may have started channel incision on the upper Russian River prior to the construction of Coyote Dam. If this is in fact the case, then only the discharge from the 1912 and 1913 water years at the Russian River near Ukiah stream gage could be considered pre-incision. Reliable statistical tests based on only two years of discharge data would be virtually impossible. Lower dry season flows could be the result of other factors such as increased water diversions, decreased rainfall, or increasing evapotranspiration from native vegetation. Lower dry season discharge could also be the result of increased wet season discharge from increased rainfall intensity, or from a decrease in permeability of the surface of the watershed from road construction and land use. The above factors are complex and require additional research to determine their role in any change in discharge at the Russian River near Ukiah stream gage. Such research is beyond the scope of this present study. Summary of the Statistical Analysis of Discharge The discharge record at the Russian River near Ukiah stream gage has daily records for 65 water years or 23,754 days. There are many ways of establishing if the discharge is changing over time. This analysis looks at only a few possible ways of measuring change over time. This analysis is not intended to be an exhaustive study of the change in discharge at the Russian River near Ukiah gaging station. We looked at two levels of change. First we examined if change could be detected in annual data. We also looked for change in monthly data. Change in Annual Data We use two approaches to determine if there has been a statistically significant change over time in the stream flow at the Russian River near Ukiah stream gage. The first method is to test is the rank-correlation between the water year and an annual discharge parameter such as the annual minimum discharge. A rank-correlation is performed by assigning each value in a series of observations a rank from smallest to largest. Then the correlation is performed B-3

between the two sequences of ranked values. Rank-correlation is less sensitive to extremes in the data sets. We use Kendall s tau to test if the rank correlation is statistically significant. Annual discharge data tends to have a large variance because both wet and dry years are sampled when the record length is long. The large variance of annual flow data, measured in acre-feet per year, can hide changes in discharge. One way to reduce the variance of streamflow data is to convert annual discharge data from acre-feet to inches by dividing the annual discharge in acre-feet by the number of acres in the watershed. Another way to reduce the variance of stream flow data is to account for the variability in rainfall data. We did this by performing a simple linear regression to predict annual runoff, in inches, from annual rainfall. The predicted value for each rainfall observation is then subtracted from the observed runoff. The resulting set of runoff residuals will be free of the influence of rainfall. If the runoff residuals change over time, it indicates that there is some time-dependent process that is acting on the annual discharge. Changes in land use, changes in diversion amounts, or increasing channel incision are examples of timedependent mechanisms that may influence the runoff residuals. The second method to detect change in annual discharge parameters is to divide the period of record into two or more time periods, and to test if there is a statistical difference between the various groups. The difference may be in the magnitude (location of the center of the data) or in the distribution of the values of the groups (dispersion or shape). We use both methods to explore if the dry season flows have decreased over time. Russian River near Ukiah Watershed The watershed above the Russian River near Ukiah (USGS 11461000) stream gage (West Fork) covers about 100 square miles. Redwood Valley lies a short distance upstream of the gage. According to the USGS StreamStats website the West Fork watershed s average annual precipitation is about 46.6 inches. The basin has a mean slope of about 27.4% and a mean elevation of about 1,468 feet with a maximum elevation is about 3,338. Stream flow data is available for the 1912 and 1913 water years and from the 1953 water year to the present. A total of 65 years of streamflow data is available. Rainfall Data Rainfall data is available from the California Department of Water Resources CDEC (California Data Exchange Center) website and from NOAA s National Climatic Data Center. The Ukiah, CA station (GHCND:USC00049122) has monthly and daily rainfall data from 1893-2013. The station essentially closed in 2013. However, monthly data after 2013 was available on the CDEC website. The Ukiah, CA rainfall data is missing more than 5 days of rainfall data in 16 of the last 60 years. Since 1999, several years had from one to nine months of daily data missing. The significant number of missing days of record after 1998 raises the question of whether the Ukiah rainfall data can be used to detect change in streamflow. B-4

The problem of extensive missing data was dealt with by comparing the monthly data from NOAA s NCDC website and DWR s CDEC website and using the larger of the two values for each month. The resulting annual rainfall series has a correlation of 0.952 with the Russian River near Ukiah annual discharge series. The high correlation between rainfall and stream flow suggests that the Ukiah rainfall record constructed from the NCDC and CDEC data is a reasonable approximation of the actual rainfall, despite the significant number of days of missing record. The rainfall data for the Potter Valley Power House was also examined. The Potter Valley Power House is close to the northeastern edge of the West Fork watershed. It too had many days of missing record. The Potter Valley Power House rainfall data had a correlation of 0.946 with the annual stream flow of the Russian River near Ukiah gage, which is slightly lower than the Ukiah rainfall data correlation. Combining the Ukiah and Potter Valley Power House rainfall data only increased the correlation with stream flow to 0.962. Therefore, we only used the Ukiah rainfall data in this study. Figure 1 shows the annual Ukiah rainfall and the annual runoff of the Russian River near Ukiah (USGS 11461000) stream gage. Both the annual rainfall and the annual runoff are shown in inches. The annual discharge in acre-feet can be obtained by multiplying the runoff in inches by the watershed area in acres. Potential Error in the Data On Figure 1, note that the 1956 water year runoff almost equals the 1956 water year rainfall. The near equality of rainfall and runoff in the 1956 water year signals a potential problem with either the rainfall data or the runoff data. We define runoff efficiency as the ratio of annual runoff to annual rainfall. A runoff efficiency of 1.0 means that all the annual rainfall was converted to annual runoff. A runoff efficiency of 0 means that none of the annual rainfall was converted to annual runoff. During the 1956 water year, the Ukiah rainfall total was 50.67" and the runoff from the Russian River near Ukiah gage was 49.79". These values give a runoff efficiency of 98%. A runoff efficiency of 98% is suggestive of an impervious surface. Therefore we re-examined the Ukiah rainfall data for errors. We also compared the 1956 Ukiah rainfall to the 1956 Potter Valley and Fort Bragg rainfall records. The 1956 water year rainfall was 63.15 inches at the Potter Valley Power House and was 47.40 inches at Fort Bragg on the coast. The Willits rainfall record started in 1960 and so it had no data for the 1956 water year. It is possible that a data entry error was made for the Ukiah rainfall for the 1956 water year. It is also possible that the 1956 Ukiah rainfall is correct but simply underestimates the true annual average rainfall over the watershed by roughly 12". The 1956 water year rainfall for the Potter Valley Power House was 63.15 which is 12.48 greater than the Ukiah rainfall for that year. Comparing the Potter Valley Power House rainfall (63.15 ) for the 1956 water year to the runoff at the Russian River near Ukiah steam gauge (49.79 ) gives a runoff efficiency of 78.8%, which is similar to other wet year runoff efficiencies. Another possibility is that there is a problem with the discharge data. The 1956 water year includes the flood of December 1955. In addition, the 1956 water year was before Coyote Dam was finished, so the storm runoff from the East Fork of the Russian River would not have been captured by the dam. Thus, B-5

there may have been a backwater effect from the confluence of the flood waters on the Russian River near Ukiah gage, which was about 0.6 miles further upstream from its present location. To assess this possibility we looked at the annual maximum peak flow record and graphed the peak against the stage. But the 1956 WY data looked consistent with the other data collected at that site, suggesting that backwater from the confluence does not explain the high runoff to rainfall ratio. B-6

Figure 1. The annual Ukiah rainfall and the annual runoff of the Russian River near Ukiah (USGS 11461000) stream gage are shown in inches. The annual discharge in inches is obtained from the annual discharge in acre-feet by dividing the acre-feet of discharge by the watershed area in acres. Note that there was almost zero runoff in 1977. Also note that the 1956 water year runoff almost equaled the 1956 water year rainfall. The near equality of rainfall and runoff in the 1956 water year signals a potential problem with either the rainfall data or the runoff data. We decided to accept the 1956 water year Ukiah rainfall and runoff values at face value and proceed with the analysis. Some of the statistical methods used, for example rank correlation, are not sensitive to this type of possible error. The anomalously high runoff efficiency may affect some statistical tests, but since the tests of greatest concern are for the dry season the impact of the suspicious data may be minimal. Ukiah Rainfall Characteristics The Ukiah water year rainfall for the 65 year period corresponding to the available discharge data (1912-1913 and 1953-2015) ranged from a minimum of 16.12 to a maximum of 71.15. The average water year rainfall is 38.0 and the median is 35.32. B-7