SOME COMMENTS ON CP-VIOLATION AND LEPTOGENESIS

Similar documents
Marco Drewes, Université catholique de Louvain. The Other Neutrinos IAP Meeting. Université libre de Bruxelles

Testing the low scale seesaw and leptogenesis

Minimal Extension of the Standard Model of Particle Physics. Dmitry Gorbunov

Neutrino theory of everything? dark matter, baryogenesis and neutrino masses

Creating Matter-Antimatter Asymmetry from Dark Matter Annihilations in Scotogenic Scenarios

Leptogenesis via varying Weinberg operator

Recent progress in leptogenesis

Flavor Models with Sterile Neutrinos. NuFact 11 Geneva, Aug, He Zhang

Effects of Reheating on Leptogenesis

What We Know, and What We Would Like To Find Out. Boris Kayser Minnesota October 23,

Lepton Number Violation and the Baryon Asymmetry of the Universe

Baryogenesis and Particle Antiparticle Oscillations

GeV neutrino mass models: Experimental reach vs. theoretical predictions RWR, Walter Winter Arxiv PRD 94, (2016)

The Standard Model of particle physics and beyond

Cosmological constraints on the Sessaw Scale

Testing leptogenesis at the LHC

Sterile Neutrinos in Cosmology and Astrophysics

University College London. Frank Deppisch. University College London

The first one second of the early universe and physics beyond the Standard Model

Neutrino masses, dark matter and baryon asymmetry of the universe

Baryogenesis. David Morrissey. SLAC Summer Institute, July 26, 2011

Cosmological Family Asymmetry and CP violation

Leptogenesis with Composite Neutrinos

On Minimal Models with Light Sterile Neutrinos

Falsifying highscale Baryogenesis

Sterile Neutrino Dark Matter & Low Scale Leptogenesis from a Charged Scalar

The Matter-Antimatter Asymmetry and New Interactions

University College London. Frank Deppisch. University College London

Neutrino Physics II. Neutrino Phenomenology. Arcadi Santamaria. TAE 2014, Benasque, September 19, IFIC/Univ. València

Is the Neutrino its Own Antiparticle?

Baryo- and leptogenesis. Purpose : explain the current excess of matter/antimatter. Is there an excess of matter?

University College London. Frank Deppisch. University College London

Type I Seesaw Mechanism, Lepton Flavour Violation and Higgs Decays

Mirror fermions, electroweak scale right-handed neutrinos and experimental implications

Is the Neutrino its Own Antiparticle?

Leptogenesis via the Relaxation of Higgs and other Scalar Fields

Entropy, Baryon Asymmetry and Dark Matter from Heavy Neutrino Decays.

Neutrino masses. Universe

Neutrino Oscillations And Sterile Neutrinos

Dark matter and entropy dilution

Leptogenesis with Majorana neutrinos

Heavy Sterile Neutrinos at CEPC

Lepton number symmetry as a way to testable leptogenesis

Lecture 18 - Beyond the Standard Model

Overview of mass hierarchy, CP violation and leptogenesis.

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC

Falsifying High-Scale Leptogenesis at the LHC

Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation

Neutrinos and Fundamental Symmetries: L, CP, and CP T

Neutrino Masses SU(3) C U(1) EM, (1.2) φ(1, 2) +1/2. (1.3)

Leptogenesis and the Flavour Structure of the Seesaw

Neutrinos as a Unique Probe: cm

Neutrino Mass Models

Yang-Hwan, Ahn (KIAS)

A biased review of Leptogenesis. Lotfi Boubekeur ICTP

kev sterile Neutrino Dark Matter in Extensions of the Standard Model

Beyond Standard Model Effects in Flavour Physics: p.1

Search for Heavy Majorana Neutrinos

Production mechanisms for kev sterile neutrino dark matter in the Early Universe

Neutrinos and CP Violation. Silvia Pascoli

Astroparticle Physics and the LC

Lepton Number Violation

Leptogenesis. Neutrino 08 Christchurch, New Zealand 30/5/2008

Bounds on sterile neutrino using full kinematic reconstruction of radioactive decays

Baryogenesis via mesino oscillations

Neutrino Physics: Lecture 12

RG evolution of neutrino parameters

Physics after the discovery of the Higgs boson

generation Outline Outline Motivation Electroweak constraints Selected flavor constraints in B and D sector Conclusion Nejc Košnik

Debasish Borah. (Based on with A. Dasgupta)

A Novel and Simple Discrete Symmetry for Non-zero θ 13

Theoretical Particle Physics Yonsei Univ.

Neutrinos. Riazuddin National Centre for Physics Quaid-i-Azam University Campus. Islamabad.

Leptogenesis from a First-Order Lepton- Number Breaking Phase Transition

Higgs field as the main character in the early Universe. Dmitry Gorbunov

Elementary Particles, Flavour Physics and all that...

Interplay of flavour and CP symmetries

Big Bang Nucleosynthesis

Non-zero Ue3 and TeV-leptogenesis through A4 symmetry breaking

Neutrinos and Cosmos. Hitoshi Murayama (Berkeley) Texas Conference at Stanford Dec 17, 2004

Probing the Majorana nature in radiative seesaw models at collider experiments

SUSY models of neutrino masses and mixings: the left-right connection

F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King. arxiv:

Exotic Charges, Multicomponent Dark Matter and Light Sterile Neutrinos

Grand Unification. Strong, weak, electromagnetic unified at Q M X M Z Simple group SU(3) SU(2) U(1) Gravity not included

Baryogenesis via mesino oscillations

COLLIDER STUDIES OF HIGGS TRIPLET MODEL

POST-INFLATIONARY HIGGS RELAXATION AND THE ORIGIN OF MATTER- ANTIMATTER ASYMMETRY

COLLIDER STUDIES OF HIGGS TRIPLET MODEL

arxiv:hep-ph/ v1 26 Jul 2006

Yang-Hwan, Ahn (KIAS)

Neutrino masses, muon g-2, dark matter, lithium probelm, and leptogenesis at TeV-scale SI2009 AT FUJI-YOSHIDA

Dark Matter in the minimal Inverse Seesaw mechanism

Right-Handed Neutrinos as the Origin of the Electroweak Scale

Invisible Sterile Neutrinos

Matter vs Anti-matter

Leptogenesis. Alejandro Ibarra Technische Universität München. Warsaw February 2010

arxiv: v2 [hep-ph] 2 Mar 2018

Lepton-flavor violation in tau-lepton decay and the related topics

Sterile Neutrinos from the Top Down

Transcription:

Marco Drewes TU München 23. 8. 2016, NuFact, Quy Nhon, Vietnam 1 / 7

The Standard Model and General Relativity together explain almost all phenomena observed in nature, but... gravity is not quantised a handful of observations remain unexplained neutrino oscillations - the only signal found in the lab! baryon asymmetry of the universe - leptogenesis? dark matter - sterile neutrinos? accelerated cosmic expansion (Dark Energy, inflation) planck.cf.ac.uk 2 / 7

125 GeV figure by M. Shaposhnikov 3 / 7

Introduction MaD/Garbrecht 1502.00477 S OME COMMENTS ON CP- VIOLATION AND LEPTOGENESIS 4/7

High scale leptogenesis Lepton asymmetries are characterised by CP violating parameter ɛ α = 3 M 1 16π (F F) 11 v 2 Im [ ] F α1 (m ν ) αβ F β1 Φ lβ Φ Φ Φ NI NI NI NJ NJ lα Yukawa matrix F = 1 v U ν complex rotation matrix R m diag ν Φ lα R M M,Casas/Ibarra Vanilla leptogenesis Asymmetry only depends on ɛ = α ɛ α Dependency on U ν drops out baryon asymmetry only depends on complex "Euler angles" in R Flavoured leptogenesis No sum over α baryon asymmetry depends on both, complex angles in R and the phases in U ν lβ lα 5 / 7

Low scale leptogenesis I is experimentally accessible plot from MaD/Garbrecht/Gueter/Klaric 1606.06690 see also Canetti/MaD/Frossard/Shaposhnikov 1208.4607 Hernandez/Kekic/Lopez-Pavon/Salvado 1606.06719 Abada/Arcadi/Domcke/Lucente 1507.06215 can explain baryon asymmetry with PMNS phases alone 10 6 10 4 M ev 100 1 0.01 1 GeV 10 MeV 100 MeV 10 4 10 GeV 10 6 0.01 0.1 1 10 100 1000 e Im Ω Canetti/MaD/Frossard/Shaposhnikov 1208.4607 6 / 7

Low scale leptogenesis II δ affects active-sterile flavour mixing pattern 0.5 0.4 Uμ 2 /U 2 0.3 sin 2 θ23 = 0.576 sin 2 θ23 = 0.45 0.2 δ = 256 0.1 0.0 0.0 0.2 0.4 0.6 0.8 Ue 2 /U 2 CP-violation in sterile sector may be measued at SHiP (?) Cvetic/Zamora-Saa 7 / 7

some slides that may be useful for the discussion 8 / 7

Neutrinos have masses. There is (almost) no antimatter in the observable universe. There are 10 10 times more photons in the observable universe than nuclei. 9 / 7

Neutrinos have masses. There is (almost) no antimatter in the observable universe. There are 10 10 times more photons in the observable universe than nuclei. We need New Physics! Could the same New Physics solve these puzzles? Can we probe it in the lab? 9 / 7

125 GeV figure by M. Shaposhnikov 10 / 7

Neutrino masses: Seesaw mechanism L = L SM + i ν R / ν R L L Fν R H νr F L H 1 2 ( ν c RM M ν R + ν R M M νc R ) Minkowski 1979, Gell-Mann/Ramond/Slansky 1979, Mohapatra/Senjanovic 1979, Yanagida 1980, Schechter/Valle 1980 1 ( 0 2 (ν L νr c ) md md T M M ) ( ν c L ν R two sets of Majorana mass states with mixing θ = m D M 1 M ) = vfm 1 M 11 / 7

Neutrino masses: Seesaw mechanism L = L SM + i ν R / ν R L L Fν R H νr F L H 1 2 ( ν c RM M ν R + ν R M M νc R ) Minkowski 1979, Gell-Mann/Ramond/Slansky 1979, Mohapatra/Senjanovic 1979, Yanagida 1980, Schechter/Valle 1980 1 ( 0 2 (ν L νr c ) md md T M M ) ( ν c L ν R two sets of Majorana mass states with mixing θ = m D M 1 M three light neutrinos ν U ν (ν L + θνr c ) mostly "active" SU(2) doublet light masses m ν θm M θ T = v 2 FM 1 F T three heavy neutrinos N ν R + θ T νl c mostly "sterile" singlets heavy masses M N M M M ) = vfm 1 M Majorana masses M M introduce new mass scale(s) M I new heavy states only interact via small mixing U 2 ai = θ ai 2 1 11 / 7

Introduction MaD/Garbrecht 1502.00477 S OME COMMENTS ON CP- VIOLATION AND LEPTOGENESIS 12 / 7

Leptogenesis: Sakharov conditions baryon number violation C and CP violation nonequilibrium 13 / 7

Leptogenesis: Sakharov conditions baryon number violation SM: sphalerons violate B, but conserve B L at T > 140 GeV C and CP violation SM: weak interaction violates P and CP, but CP-violation insufficient nonequilibrium SM: Hubble expansion unsufficient, no EW phase transition 13 / 7

Leptogenesis: Sakharov conditions baryon number violation SM: sphalerons violate B, but conserve B L at T > 140 GeV Yukawa couplings F violate individual lepton flavour numbers in addition M M violates total lepton number C and CP violation SM: weak interaction violates P and CP, but CP-violation insufficient nonequilibrium SM: Hubble expansion unsufficient, no EW phase transition 13 / 7

Leptogenesis: Sakharov conditions baryon number violation SM: sphalerons violate B, but conserve B L at T > 140 GeV Yukawa couplings F violate individual lepton flavour numbers in addition M M violates total lepton number C and CP violation SM: weak interaction violates P and CP, but CP-violation insufficient additional complex phases in F violate CP nonequilibrium SM: Hubble expansion unsufficient, no EW phase transition 13 / 7

Leptogenesis: Sakharov conditions baryon number violation SM: sphalerons violate B, but conserve B L at T > 140 GeV Yukawa couplings F violate individual lepton flavour numbers in addition M M violates total lepton number C and CP violation SM: weak interaction violates P and CP, but CP-violation insufficient additional complex phases in F violate CP nonequilibrium SM: Hubble expansion unsufficient, no EW phase transition N I production ("freeze in leptogenesis") Akhmedov/Rubakov/Smirnov N I freezeout and decay ("freeze out leptogenesis") Yeq Y Fukugita/Yanagida M/T 13 / 7

Vanilla Leptogenesis (freeze out)fukugita/yanagida N I are produced thermally very early at T > M freeze out and decay at T M CP-violating decay produces L 0 NI Φ NI lβ Φ NI Φ NJ Φ NJ lα Φ lα lβ lα L 0 is partly transferred into B 0 by sphalerons Boltzmann equations (x = M/T ) see e.g. Buchmüller/Plümacher xh dy N dx xh dy B L dx = Γ N (Y N Y eq N ) = ɛγ N (Y N Y eq N ) c W Γ N Y B L 14 / 7

first principles derivation of kinetic equations Anisimov/Buchmuller/MaD/Mendizabal, Beneke/Garbrecht/Herranen/Schwaller, Garny/Hohenegger/Kartavtsev, Dev/Millington/Pilaftsis/Teresi quasiparticle dispersion relations Giudice/Notari/Raidal/Riotto 04, Plumacher/Kiessig 12 momentum dependency Hahn-Woernle/Plumacher/Wong 09, Asaks/Eijima/Ishida 12, Bodeker/Wormann 14 production rate Γ N Salvio/Lodone/Strumia 11, Laine 12, Besak/Bodeker 12, Biondini/Brambilla/Escobedo/Vairo 13, Garbrecht/Glowna/Herranen 13, Garbrecht/Glowna/Schwaller 13, Ghisoiu/Laine 14, Ghiglieri/Laine 15, Ghiglieri/Laine 16 washout rates c W Γ N Bodeker/Laine 14, Ghisoiu/Laine 14, Ghiglieri/Laine 16 CP violating parameter ɛ Biondini/Brambilla/Escobedo/Vairo 15 behaviour near resonance Garny/Hohenegger/Kartavtsev 11, Garbrecht/Herranen 11, Dev/Millington/Pilaftsis/Teresi 11 flavour effects Abada/Davidson/Ibarra/Josse-Michaux/Losada/Riotto 06, Nardi/Nir/Roulet/Racker 06, Jose-Michaux/Abada 07, Aristazabal Sierra/Munoz/Nardi 09, Racker/Pena/Rius 12, Beneke/Fidler/Garbrecht/Herranen/Schwaller 11,... low scale leptogenesis parameter space this talk 15 / 7

Low scale leptogenesis Y Y eq M/T 16 / 7

Leptogenesis from N-oscillations (freeze-in) Oscillating regime 17 / 7

Leptogenesis from N-oscillations (freeze-in) Oscillating regime Overdamped regime 17 / 7

Leptogenesis with two heavy neutrinos plot from MaD/Garbrecht/Gueter/Klaric 1606.06690 see also Canetti/MaD/Frossard/Shaposhnikov 1208.4607, Hernandez/Kekic/Lopez-Pavon/Salvado 1606.06719 and Abada/Arcadi/Domcke/Lucente 1507.06215 Requires mass degeneracy and small mixing......but CP-violation may also be measurable Cvetic/Kim/Zamora-Saa 1403.2555 18 / 7

0.5 Flavour mixing predictions 0.4 U 2 2.25 10-6 Uμ 2 /U 2 0.3 0.2 0.1 2.00 10-6 1.75 10-6 1.50 10-6 1.25 10-6 1.00 10-6 7.50 10-7 5.00 10-7 2.50 10-7 0.0 0.0 0.2 0.4 0.6 0.8 1.0 Ue 2 /U 2 allowed relative mixings U 2 a /U 2 for given U 2 and M = 1 GeV and IH measuring Dirac phase δ would considerably reduce allowed regions 19 / 7

How to find the N I? see e.g. MaD arxiv:1303.6912 [hep-ph] Indirect searches see e.g. MaD/Garbrecht 1502.00477 Direct searches see e.g. Antusch/Fischer 1502.05915, Deppisch/Dev 1502.06541 Cosmology: BBN and N eff see e.g. Hernandez/Kekic/Lopez-Pavon 1406.2961 Astrophysics: X-ray, SN, pulsars, structure formation review 1602.04816 20 / 7

How to find the N I? see e.g. MaD arxiv:1303.6912 [hep-ph] Indirect searches see e.g. MaD/Garbrecht 1502.00477 neutrino oscillation data LFV in rare lepton decays violation of lepton universality, (apparent) violation of CKM unitarity neutrinoless double β-decay EW precision data Direct searches see e.g. Antusch/Fischer 1502.05915, Deppisch/Dev 1502.06541 Cosmology: BBN and N eff see e.g. Hernandez/Kekic/Lopez-Pavon 1406.2961 Astrophysics: X-ray, SN, pulsars, structure formation review 1602.04816 20 / 7

How to find the N I? see e.g. MaD arxiv:1303.6912 [hep-ph] Indirect searches see e.g. MaD/Garbrecht 1502.00477 neutrino oscillation data LFV in rare lepton decays violation of lepton universality, (apparent) violation of CKM unitarity neutrinoless double β-decay EW precision data Direct searches see e.g. Antusch/Fischer 1502.05915, Deppisch/Dev 1502.06541 LNV and LFV in gauge boson or meson decays D, B N meson or lepton antilepton displaced vertices, SHiP peak searches, missing 4-momentum l l Cosmology: BBN and N eff see e.g. Hernandez/Kekic/Lopez-Pavon 1406.2961 Astrophysics: X-ray, SN, pulsars, structure formation review 1602.04816 20 / 7

Direct searches plot by Bhupal Dev see talks by Bhupal Dev, Un-ki Yang, Eric van Herwijnen 21 / 7

Introduction Indirect searches Example: leptogenesis and neutrinoless double β-decay 10-9 range of KamLAND-Zen upper limit mββ [GeV] 10-10 10-11 10-12 10-13 0 1 2 3 4 5 M [GeV] plot from MaD/Eijima 1606.06221 see also Hernandez/Kekic/Lopez-Pavon/Racker/Salvado 1606.06719, Asaka/Eijima/Hiroyuki 1606.06686 S OME COMMENTS ON CP- VIOLATION AND LEPTOGENESIS 22 / 7

Summary Heavy right handed neutrinos can be the common origin of neutrino masses and baryons in the universe. Much progress has been made in the quantitative understanding of leptogenesis If the heavy neutrino masses are below the TeV scale, they can be found in experiments. The requirement to explain the neutrino masses and the baryon asymmetry impose strong constraints on the properties of the heavy neutrinos. If any heavy neutral leptons are found in experiments in the future, these can be used to asses whether the new particles are indeed the common origin of neutrino masses and matter in the universe. 23 / 7