Precision calculations for

Similar documents
Four-fermion production near the W-pair production threshold. Giulia Zanderighi, Theory Division, CERN ILC Physics in Florence September

One-loop electroweak factorizable corrections for the Higgsstrahlung at a linear collider 1

Outline Motivations for ILC: e + e γ/z q qg LHC: pp l + l + jet (q q l + l g + qg l + l q + qg l + l q) Existing literature The complete EW one-loop c

Higgs studies. P. Nieżurawski, A. F. Żarnecki, M. Krawczyk. Faculty of Physics Warsaw University. Higgs at the Photon Collider. p.

arxiv:hep-ph/ v1 21 Jul 2000

ELW. AN D ALT ERN AT IVES WG SU MMARY REPORT

NLO corrections to h WW/ZZ 4 fermions in a Singlet Extension of the Standard Model

arxiv:hep-ph/ v1 24 Jul 1996

Four-fermion simulation at LEP2 in DELPHI

Theoretical Predictions For Top Quark Pair Production At NLO QCD

Electroweak Sudakov logarithms

arxiv:hep-ph/ v2 9 Jan 2002

The Effective-Vector-Boson Approximation at the LHC

Optimal Control of PDEs

NLO QCD corrections to pp W ± Z γ with leptonic decays

Framework for functional tree simulation applied to 'golden delicious' apple trees

Study of the Higgs-boson decays into W + W and ZZ at the Photon Collider

Higgs Boson Production in e + e µ + µ b b

The forward-backward asymmetry in electron-positron annihilation. Stefan Weinzierl

Measurements of the W Boson Mass and Trilinear Gauge Boson Couplings at the Tevatron

W Physics at LEP. 1. WW cross sections and W branching fractions. Corfu Summer Institute on Elementary Particle Physics, Monica Pepe Altarelli

Higgs Searches at CMS

New BaBar Results on Rare Leptonic B Decays

Physics at LHC. lecture one. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden

Study of the Higgs-boson decays into W + W and ZZ at the Photon Collider

Stefan Dittmaier, Electroweak Physics at the LHC Lecture 3

Higgs and Dark Photon Searches

Probing p p WWW production and anomalous quartic gauge couplings at CERN LHC and future collider

4.3 Laplace Transform in Linear System Analysis

Top quark pair production and decay at a polarized photon collider

Optimal-Observable Analysis of Top Production/Decay at Photon-Photon Colliders

QUESTIONS ON QUARKONIUM PRODUCTION IN NUCLEAR COLLISIONS

ELECTROWEAK CORRECTIONS TO GAUGE BOSON AND TOP QUARK PRODUCTION AT HADRON COLLIDERS

Higgs Dalitz Decay My Notes and Something More

Weak boson scattering at the LHC

NLO Event Generation for Chargino Production at the ILC

PoS(Photon 2013)071. Anomalous gauge couplings in W/Z exclusive pair production at the LHC. E. Chapon. C. Royon. O. Kepka

Symbols and dingbats. A 41 Α a 61 α À K cb ➋ à esc. Á g e7 á esc. Â e e5 â. Ã L cc ➌ ã esc ~ Ä esc : ä esc : Å esc * å esc *

Physics at e + e - Linear Colliders. 4. Supersymmetric particles. M. E. Peskin March, 2002

Introduction to Perturbative QCD

News from Top/QCD. André H. Hoang. Max-Planck-Institute Munich. ECFA Durham 2004 André Hoang p.1

A shower algorithm based on the dipole formalism. Stefan Weinzierl

NLO Electroweak Corrections in Di-Boson Production. Ansgar Denner, Würzburg


Dipole subtraction with random polarisations

The SM Higgs-boson production in γγ h bb at the Photon Collider at TESLA

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

An Example file... log.txt

Higgs phenomenology & new physics. Shinya KANEMURA (Univ. of Toyama)

Higgs Pseudo - Observables

Triple Gauge Couplings and Quartic Gauge Couplings

Forward physics with proton tagging at the LHC

arxiv:hep-ph/ v1 9 Jun 1997

Physics 217 Solution Set #5 Fall 2016

[I ] Inclusive W γ Production at the LHC [II ] A Study of Monte Carlo Event Generators of Interest

ATLAS and CMS Higgs Mass and Spin/CP Measurement

Search for MSSM Higgs at LEP. Haijun Yang. University of Michigan, Ann Arbor

6. QED. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 6. QED 1

LA PRISE DE CALAIS. çoys, çoys, har - dis. çoys, dis. tons, mantz, tons, Gas. c est. à ce. C est à ce. coup, c est à ce

Overview of the Higgs boson property studies at the LHC

Measurements of the Proton and Kaon Form Factors via ISR at BABAR

Standard Model of Particle Physics SS 2013

at the LHC OUTLINE Vector bosons self-couplings and the symmetry breaking connection

Top Quark Physics at the LHC (Theory) Werner Bernreuther RWTH Aachen

Top, electroweak and recent results from CDF and combinations from the Tevatron

Electroweak accuracy in V-pair production at the LHC

Higgs Production at LHC

Complex Analysis. PH 503 Course TM. Charudatt Kadolkar Indian Institute of Technology, Guwahati

Gauge-invariant YFS exponentiation of un stable W W production at and beyond CERN LEP 2 energies

arxiv:hep-ph/ v1 1 Oct 1998

Connection equations with stream variables are generated in a model when using the # $ % () operator or the & ' %

Precise predictions for Higgs-boson production in association with top quarks

Principal Secretary to Government Haryana, Town & Country Planning Department, Haryana, Chandigarh.

Homework 3: Group Theory and the Quark Model Due February 16

Study of Trilinear Gauge Boson Couplings ZZZ, ZZγ and Zγγ

Experimental Studies of Strong Electroweak Symmetry Breaking in Gauge Boson Scattering and Three Gauge Boson Production

Z+jet production at the LHC: Electroweak radiative corrections

W BOSON PROPERTIES Eric Torrence Physics Department 1274 University of Oregon Eugene, Oregon , USA

NLO QCD+EW predictions for 2l2ν production

7th International Workshop on Tau Lepton Physics (Tau02), Santa Cruz, CA, September, 2002

linear Colliders Sayipjamal Dulat, Kaoru Hagiwara and Yu Matsumoto Xinjiang University, China and KEK, Tsukuba, Japan

MSSM Radiative Corrections. to Neutrino-nucleon Deep-inelastic Scattering. Oliver Brein

Standard Model of Particle Physics SS 2013

Production of multiple electroweak bosons at CMS

Obtain from theory/experiment a value for the absorbtion cross-section. Calculate the number of atoms/ions/molecules giving rise to the line.

Nicolas Berger SLAC, Menlo Park, California, U.S.A.

ARTICLE IN PRESS. Nuclear Physics B ( ) 17 Received 5 October 2004; accepted 11 November Introduction

Constraining total width of Higgs boson at the LHC. Kajari Mazumdar Tata Institute of Fundamental Research Mumbai

QCD and Rescattering in Nuclear Targets Lecture 2


CEPC Simulation: next step & Wish list to the MC Tool

OC330C. Wiring Diagram. Recommended PKH- P35 / P50 GALH PKA- RP35 / RP50. Remarks (Drawing No.) No. Parts No. Parts Name Specifications

Effective Lagrangian Approach to Top-Quark Production at PLC

Lecture 3 (Part 1) Physics 4213/5213

Jet Photoproduction at THERA

DIBOSON PRODUCTION AT LHC AND TEVATRON

Searches for (non-susy) Exotics at HERA

MadGolem: Automated NLO predictions for SUSY and beyond

Vector Boson Fusion approaching the (yet) unknown

Effective Theory for Electroweak Doublet Dark Matter

Transcription:

Precision calculations for γγ 4 fermions (+γ) Stefan Dittmaier MPI Munich (in collaboration with A. Bredenstein and M. Roth) LCS05, Stanford, March 2005 Stefan Dittmaier (MPI Munich), Precision calculations for γγ 4 fermions (+γ) 1

Contents 1 Introduction 2 The Monte Carlo generator 3 Selected lowest-order results 4 Radiative corrections 5 Conclusions LCS05, Stanford, March 2005 Stefan Dittmaier (MPI Munich), Precision calculations for γγ 4 fermions (+γ) 2

1 Introduction Four-fermion production at a future γγ collider: large γγ 4f cross section: σ total 80 pb at high energies precision signal / background to new physics test of γ and γγ couplings s-channel Higgs production γγ H /ZZ 4f Requirements from theory: Predictions at %-level or better achieved by thorough description of decays of resonant gauge bosons inclusion of radiative corrections optional inclusion of non-standard gauge-boson couplings special improvements for Higgs production Requirements neither fulfilled by multi-purpose Monte Carlo generators nor by previous dedicated analyses! Motivation for constructing the dedicated event generator COFFERγγ to fill this gap LCS05, Stanford, March 2005 Stefan Dittmaier (MPI Munich), Precision calculations for γγ 4 fermions (+γ) 3

2 The Monte Carlo generator Features of the generator COFFERγγ (COrrections to Four-FERmion production in γγ collisions) Complete lowest-order matrix elements γγ 4f Bredenstein, S.D., Roth 04 05 compact results in terms of eyl van-der-aerden spinor products massless fermions (mass effects restored in corrections) loop-induced or effective γγh coupling anomalous triple and quartic gauge-boson couplings Radiative corrections to γγ 4f(+γ) in double-pole approximation (DPA) similar to e + e case Aeppli, v.oldenborgh, yler 93; Beenakker, Berends, Chapovsky 98 Jadach et al. 99; Denner, S.D., Roth, ackeroth 99 Multi-channel Monte Carlo integration with adaptive weight optimization Berends, Kleiss, Pittau 94 Kleiss, Pittau 94 Realistic γ beam spectrum, e.g., by COMPAZ Zarnecki 02 Note: all parts checked by a second independent Monte Carlo generator! LCS05, Stanford, March 2005 Stefan Dittmaier (MPI Munich), Precision calculations for γγ 4 fermions (+γ) 4

@ 4 & ) 1 + 21 ' 21 ' C & &. 3 Selected lowest-order results A semileptonic integrated cross section Bredenstein, S.D., Roth 04? <AB 69 +1 678 5. + + )0 /.,- *3 () )0 /.,- *+ () DC D CD! & DC D D DE D DF D GD D DH D % $ #? > <= : ; Good agreement with HIZARD / MADGRAPH for all final states! Kilian 01 Stelzer, Long 94 LCS05, Stanford, March 2005 Stefan Dittmaier (MPI Munich), Precision calculations for γγ 4 fermions (+γ) 5

T LK J I I b V ] ] _ ] ^ ] U U V U Predictions with anomalous TGCs α Bφ δl = ig 1 M 2 (D µ Φ) B µν (D ν Φ) α φ ig 2 (D µ Φ) σ µν (D ν Φ) g 2 M 2 α 6M 2 µ ν ( ν ρ ρ µ) κ γ = α φ + α Bφ anomalous γ coupling λ γ = α anomalous γ and γγ couplings (elmg. gauge invariance!) R U [ V V \V V \V V [ V V YV VX c b ` ^b` ^b` ] _S` a b a ` b b a ` ZV V VX OQPSR KNM Bredenstein, S.D., Roth 04 ±1σ contours see = 500 GeV L = 100 fb 1 ZV V VX Above result based on cross section only. More stringent constraints will result from distributions! (See also Tupper, Samuel 81; Choi, Schrempp 91; Yehudai 91; Božović-Jelisavčić, Mönig, Šekarić 02) LCS05, Stanford, March 2005 Stefan Dittmaier (MPI Munich), Precision calculations for γγ 4 fermions (+γ) 6

Ž ˆ Œ q ˆ ~ yx w v v ƒ ou ts nm j j j i h h e g h i d e g Ž ˆ Œ q ˆ ƒ Predictions with anomalous QGCs { Š xnz Bredenstein, S.D., Roth 04 δl = e2 16Λ 2 a 0 F µν F µν α α pnq o r e2 16Λ 2 a c F µα F µβ β α dfe g dfe g elk elk e2 16Λ 2 ã0 F µν Fµν α α a 0, a c, ã 0 anomalous γγ and γγzz couplings X ~ ~ {} ~ Š Above result based on cross section only ( s ee = 500 GeV, L = 100 fb 1 ). More stringent constraints will result from distributions! (See also Bélanger, Boudjema 92; Marfin, Mossolov, Shishkina 03) LCS05, Stanford, March 2005 Stefan Dittmaier (MPI Munich), Precision calculations for γγ 4 fermions (+γ) 7

ÖÌ Õ Ð µ ³ Ô ÐÑÒ Ó Ü ¹ Þ º» È Ç Ã ª ½ ¼ ¹» Þ Ý š» Ü» Ý Ü Û Ú Ù» º ¹ ÏÎ ¼ ÌÍ ² ± š Naive -pair signal versus DPA in lowest order ² œ Ÿ œ ž Ï Bredenstein, S.D., Roth 04 Ä ÅÆ ¾Â Á ¾ À É Ê Ë Ë «signal = sum of diagrams with two resonant bosons non-gauge-invariant result, approximation out of control DPA = signal with on-shell-projected residue gauge-invariant result with accuracy of O(Γ /M ) = 1 3% (See also M. Moretti 96; Boos, Ohl 97; Baillargeon, Bélanger, Boudjema 97) LCS05, Stanford, March 2005 Stefan Dittmaier (MPI Munich), Precision calculations for γγ 4 fermions (+γ) 8

4 Radiative corrections Strategy essentially follows approach of RACOON Denner, S.D., Roth, ackeroth 99 01 Lowest-order predictions full matrix elements for γγ 4f Radiative corrections to γγ 4f Real photonic corrections full matrix elements for γγ 4f + γ Virtual corrections in DPA factorizable contributions results for on-shell s as building blocks: γγ Denner, S.D., Schuster 94, 95; Jikia 96 f f Bardin, S. Riemann, T. Riemann 86 Jegerlehner 86; Denner, Sack 90 non-factorizable contributions adapt known results for e + e annihilation Beenakker, Berends, Chapovsky 97; Denner, S.D., Roth 97 Combination of real and virtual corrections two methods: slicing and dipole subtraction S.D. 99; Roth 00 γ γ γ γ γ LCS05, Stanford, March 2005 Stefan Dittmaier (MPI Munich), Precision calculations for γγ 4 fermions (+γ) 9

More details about the corrections: Higgs resonance: interference term 2 Re{M Higgs M 0} with Born matrix element M 0 insufficient γ H inclusion of M Higgs 2 (with gauge-invariant residue at s = M 2 H) γ threshold region: DPA becomes unreliable use improved Born approximation for s γγ < 170 GeV (based on Coulomb singularity, Higgs resonance, and effective couplings) Final-state mass singularities versus photon recombination: phase-space cuts on bare momenta p f of charged fermions f yield large corrections α ln m f generalized dipole subtraction applied photon recombination: min{ (f, γ)} < θ rec = 5 p f p f + k γ, k γ 0 inclusiveness ensures cancellation of mass singularities α ln m f (KLN theorem) LCS05, Stanford, March 2005 Stefan Dittmaier (MPI Munich), Precision calculations for γγ 4 fermions (+γ) 10

O(α)-corrected integrated cross section for γγ ν e e + dū: cuts: E l/q > 10 GeV, θ(l/q, beam) > 5, θ(l, q) > 5, m(q, q ) > 10 GeV σ [fb] 1000 100 best Born M H = 130GeV δ [%] 90 80 70 M H = 130GeV M H = 170GeV Bredenstein, S.D., Roth 04 05 10 60 50 1 40 30 0.1 20 10 0.01 180 200 220 240 260 see [GeV] 280 300 0 180 200 220 240 260 see [GeV] 280 300 photon spectrum from COMPAZ determines shape of Higgs resonance as function of e e CM energy s ee LCS05, Stanford, March 2005 Stefan Dittmaier (MPI Munich), Precision calculations for γγ 4 fermions (+γ) 11

O(α)-corrected integrated cross section for γγ ν e e + dū: σ [fb] 1000 M H = 130GeV δ [%] 4 3 M H = 130GeV best Bredenstein, S.D., Roth 04 05 2 1 0 best Born 1 2 3 100 300 400 500 600 700 800 see [GeV] 900 1000 4 300 400 500 600 700 800 see [GeV] 900 1000 O(α) corrections O(3%) off Higgs resonance LCS05, Stanford, March 2005 Stefan Dittmaier (MPI Munich), Precision calculations for γγ 4 fermions (+γ) 12

O(α)-corrected -production angle distribution for γγ ν e e + dū: s = 500 GeV dσ d cos θ + [fb] 10000 best, without γ spectrum Born, without γ spectrum best, with γ spectrum Born, with γ spectrum δ [%] 4 2 0 without γ spectrum with γ spectrum Bredenstein, S.D., Roth 04 05 1000 2 4 6 100 1 0.5 0 cos θ + 0.5 1 8 10 1 0.5 0 cos θ + 0.5 1 pronounced forward-backward peaking behaviour, but moderate corrections after convolution with photon spectrum only small distortion of distribution by corrections LCS05, Stanford, March 2005 Stefan Dittmaier (MPI Munich), Precision calculations for γγ 4 fermions (+γ) 13

O(α)-corrected invariant-mass distribution for γγ ν e e + dū: s = 500 GeV, photon recombination applied! dσ dm + 1000 800 600 400 200 [ ] fb GeV best, without γ spectrum Born, without γ spectrum best, with γ spectrum Born, with γ spectrum 0 75 76 77 78 79 80 81 82 83 84 85 M + [GeV] δ [%] 10 5 0 5 10 without γ spectrum with γ spectrum Bredenstein, S.D., Roth 04 05 75 76 77 78 79 80 81 82 83 84 85 M + [GeV] important corrections to -line shape with and without convolution over photon spectrum LCS05, Stanford, March 2005 Stefan Dittmaier (MPI Munich), Precision calculations for γγ 4 fermions (+γ) 14

5 Conclusions Four-fermion production among most interesting processes at γγ collider large γγ 4f cross section precision signal / background to new physics test of γ and γγ couplings s-channel Higgs production New event generator COFFERγγ γγ 4f Bredenstein, S.D., Roth 04 05 lowest-order predictions for all γγ 4f and 4f + γ processes with light f loop-induced or effective γγh coupling for Higgs production anomalous triple and quartic gauge-boson couplings radiative corrections to γγ 4f(+γ) in DPA Code well tested and ready to use! (available from authors upon request) LCS05, Stanford, March 2005 Stefan Dittmaier (MPI Munich), Precision calculations for γγ 4 fermions (+γ) 15