K. Zuber, Techn. Univ. Dresden Erlangen, 4. June Status and perspectives of the COBRA double beta decay experiment

Similar documents
Contents. General Introduction Low background activities Pixel activities Summary and Outlook. Kai Zuber

K. Zuber, Techn. Univ. Dresden Cocoyoc, Status of double beta decay searches

K. Zuber, TU Dresden DESY, 9/10 September In search of neutrinoless double beta decay

K. Zuber, Uni. Sussex NNR 05, Osaka Status of COBRA

K. Zuber, Techn. Univ. Dresden Dresden, 17. Feb Double beta decay searches

K. Zuber, University of Sussex TU Dresden, 15. Oct Double beta decay

K. Zuber, TU Dresden INT, Double beta decay experiments

Kinematic searches. Relativity. Uncertainty. Best candidate: Using molecular tritium, daughter will be Kai Zuber 25

Der doppelte Betazerfall: Experimente und Matrix- Elemente

PROJECT STATUS AND PERSPECTIVES

Double beta decay Newest results and perspectives (personal questions)

Status and Perspectives of the COBRA-Experiment

GERDA: The GERmanium Detector Array for the search for neutrinoless decays of 76 Ge. Allen Caldwell Max-Planck-Institut für Physik

Neutrinoless Double Beta Decay for Particle Physicists

Two Neutrino Double Beta (2νββ) Decays into Excited States

Double Beta Present Activities in Europe

GERDA experiment A search for neutrinoless double beta decay. Roberto Santorelli (Physik-Institut der Universität Zürich)

-> to worldwide experiments searching for neutrinoless double beta decay

DOUBLE BETA DECAY OF 106 Cd - EXPERIMENT TGV (Telescope Germanium Vertical) EXPERIMENT SPT (Silicon Pixel Telescope)

Various aspects and results on beta decay, DBD, COBRA and LFV

Neutrino Masses and Mixing

The GERmanium Detector Array

Excited State Transitions in Double Beta Decay: A brief Review

Neutrinoless Double Beta Decay. Phys 135c Spring 2007 Michael Mendenhall

The GERDA Experiment:

arxiv:nucl-ex/ v1 25 May 2001

Design, Construction, Operation, and Simulation of a Radioactivity Assay Chamber

Status of the CUORE experiment at Gran Sasso

Double Beta Decay Committee to Assess the Science Proposed for a Deep Underground Science and Engineering Laboratory (DUSEL) December 14-15, 2010

L esperimento GERDA. GERDA - gruppo INFN. L Aquila, Congresso SIF, 30/09/2011. OUTLINE: GERDA Motivations GERDA Status GERDA Future plans

a step forward exploring the inverted hierarchy region of the neutrino mass

NEMO-3 latest results

Status of the AMoRE experiment searching for neutrinoless double beta decay of 100 Mo

THE CRYOGENIC UNDERGROUND OBSERVATORY FOR RARE EVENTS: STATUS AND PROSPECTS

How can we search for double beta decay? Carter Hall University of Maryland

Status of Cuore experiment and last results from Cuoricino

New half-live results on very long-living nuclei

Pauli. Davis Fermi. Majorana. Dirac. Koshiba. Reines. Pontecorvo. Goeppert-Mayer. Steve Elliott

MINOS Result. The ND analysis predicts: events in the Far Detector 54 observed, 0.7σ excess. 49.1±7.0(stat.)±2.7(syst.

To Be or Not To Be: Majorana Neutrinos, Grand Unification, and the Existence of the Universe

The CUORE Detector: New Strategies

Welcome to neutrino nuclear physics

CANDLES Experiment Current Status and Future Plan. X. Li for the CANDLES Collaboration

Status of the CUORE and CUORE-0 experiments at Gran Sasso

Neutrinoless Double-Beta Decay

Esperimenti bolometrici al Gran Sasso: CUORE e CRESST

Matrix elements for processes that could compete in double beta decay

First results on neutrinoless double beta decay of 82 Se with CUPID-0

Status of CUORE and Results from CUORICINO. SERGIO DI DOMIZIO UNIVERSITÀ & INFN GENOVA On behalf of the CUORE Collaboration

New half-live results on very long-living nuclei

The NEMO experiment. Present and Future. Ruben Saakyan UCL 28 January 2004 IOP meeting on double beta decay Sussex

Institute for Nuclear Research, MSP Kyiv, Ukraine. Dipartimento di Fisica, Università di Roma Tor Vergata, I Rome, Italy

LUCIFER. Marco Vignati INFN Roma XCVIII congresso SIF, Napoli, 21 Settembre 2012

SuperNEMO collaboration

D. Frekers, Univ. Münster, TRIUMF-Vancouver ββ-decay matrix elements & charge-exchange reactions (some surprises in nuclear physics??

1 Neutrinos. 1.1 Introduction

The GERDA Neutrinoless double beta decay experiment

The Majorana Neutrinoless Double-Beta Decay Experiment

Search for Neutrinoless Double- Beta Decay with CUORE

Sensitivity and Discovery Prospects for 0νββ-decay

New results of CUORICINO on the way to CUORE

Background rejection techniques in Germanium 0νββ-decay experiments. ν=v

Outline What is ββ and why study it? Assumes you heard previous talks. General Experimental Issues The New Proposals

DOUBLE BETA DECAY TO THE EXCITED STATES: REVIEW A.S. BARABASH ITEP, MOSCOW

Double Beta Decay matrix elements, remarks and perspectives

arxiv: v1 [hep-ph] 29 Mar 2011

Results from Borexino 26th Rencontres de Blois

arxiv: v1 [physics.ins-det] 1 Feb 2016

PoS(EMC2006)007. Neutrino: Dirac or Majorana? Ettore Fiorini 1

arxiv: v1 [nucl-ex] 20 Dec 2008

Particle Physics: Neutrinos part II

Spatial resolved efficiency determination of CdZnTe semiconductor detectors with a collimated gamma-ray source for the C0BRA experiment

Background Free Search for 0 Decay of 76Ge with GERDA

The Gerda Experiment for the Search of Neutrinoless Double Beta Decay

Results on neutrinoless double beta decay of 76 Ge from the GERDA experiment

Status of neutrino mass-mixing parameters and implications for single and double beta decay searches

Neutrino Experiments with Reactors

MEDEX 2017 Prague, Czech Republic May 30 - June 2, 2017 Neutrino mass, double beta decay and nuclear structure Fedor Šimkovic

Description of 0νββ and 2νββ decay using interacting boson model with isospin restoration. Jenni Kotila

The energy calibration system of the CUORE double beta decay bolometric experiment

The importance of being Neutrino. The birth of the neutrino

Henry Primakoff Lecture: Neutrinoless Double-Beta Decay

Is the Neutrino its Own Antiparticle?

Electron Capture branching ratio measurements at TITAN-TRIUMF

Search for Majorana neutrinos and double beta decay experiments

Search for neutrinoless double beta decay: status of SuperNEMO project Yu. Shitov, Imperial

University College London. Frank Deppisch. University College London

FIRST RESULT FROM KamLAND-Zen Double Beta Decay with 136 Xe

Par$cle and Neutrino Physics. Liang Yang University of Illinois at Urbana- Champaign Physics 403 April 15, 2014

Björn Lehnert. Search for double beta decays of palladium isotopes into excited states

Search for 0νββ-decay with GERDA Phase II

cryogenic calorimeter with particle identification for double beta decay search

SuperNEMO Double Beta Decay Experiment. A.S. Barabash, ITEP, Moscow (on behalf of the SuperNEMO Collaboration)

Neutron Activation of 76Ge

Experimental Searches for Neutrinoless Double-Beta Decays in 76-Ge Alan Poon

Neutrino Physics with SNO+ Freija Descamps for the SNO+ collaboration

R. MacLellan on behalf of the EXO Collaboration Department of Physics & Astronomy, University of Alabama, Tuscaloosa AL USA

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University

Status of the CUORE and CUORE-0 experiments at Gran Sasso

Andrey Formozov The University of Milan INFN Milan

Transcription:

K. Zuber, Techn. Univ. Dresden Erlangen, 4. June 2009 Status and perspectives of the COBRA double beta decay experiment

Contents General Introduction Experimental considerations COBRA Summary and Outlook

Double beta decay (A,Z) (A,Z+2) +2 e - + 2ν e (A,Z) (A,Z+2) + 2 e - - 2νββ 0νββ Unique process to measure the mass of the neutrino Unque process to measure character of neutrino Requires half-life measurements well beyond 10 20 yrs!!!! The smaller the neutrino mass the longer the half-life

Example - Ge76 There are only 35 candidates

0νββ Any L=2 process can contribute to 0νββ R p violating SUSY V+A interactions Leptoquarks Double charged Higgs bosons Compositeness Heavy Majorana neutrino exchange Light Majorana neutrino exchange... 1 / T 1/2 = PS * NME 2 *ε 2

The standard lore Light Majorana neutrino exchange Measured quantity Quantity of interest Effective Majorana neutrino mass 1 / T 1/2 = PS * NME 2 * (<m ν > / m e ) 2 Phase space integral calculable Nuclear transition matrix element

3 Flavour mixing (PMNS) Weak eigenstates not identical to mass eigenstates, analogue to CKM mixing in quark sector cosθ 12 sinθ 12 0 U = sinθ 12 cosθ 12 0 0 0 1 Majorana: cosθ 13 0 sinθ 13 e iδ 1 0 0 1 0 0 0 1 0 0 cosθ 23 sinθ 23 0 e iα 1 0 sinθ 13 e iδ 0 cosθ 13 0 sinθ 23 cosθ 23 0 0 e iα 2 U= U PMNS diag(1,e iα 1,e iα 2 )

Oscillation evidences Neutrino oscillations: Periodic conversion of different flavours into each other Δm 2 =m 2 2 depends on i m j No absolute mass measurement Atmospheric sin 2 2θ 23 = 1.00, Δm 232 = 2.5 10-3 ev 2 Solar + reactors sin 2 2θ 12 = 0.81, Δm 122 = 8.2 10-5 ev 2 If all three are correct... we need more (sterile ones)

Neutrino mass schemes almost degenerate neutrinos m 1 m 2 m 3 hierarchical neutrino mass schemes normal inverted

Physical quantities Double beta decay: Effective Majorana neutrino mass Beta decay m ν = Σ U ek 2 m k m ν = U ei 2 m i = m 1 U e1 2 + m 2 U e2 2 e iα 1 + m 3U e3 2 e iα 2 m ν = U ei 2 m i = m 1 U e1 2 ± m 2 U e 2 2 ± m 3 U e 3 2 CP-invariance: Measurements are complementary ν ν ν ν ν ν = ν ν ν τ μ ν τ τ τ μ μ μ τ μ e 2 i 3 2 1 3 2 1 3 2 1 e3 e2 e1 e 2E m U U U U U U U U U

Neutrino mass schemes and 0νββ Best fit values M. Hirsch Neutrino 2006

Nuclear matrix elements The dark side of double beta decay

Nuclear matrix elements 2νββ: Only intermediate 1 + states contribute Several experimental activities ongoing to improve situation (see K. Zuber nucl-ex/0511009)

Latest shell model calculations 116 Cd comes of best... E. Caurier et al, arxiv:0709.2137, PRL 100, 052503 (2008)

Spectral shapes 0νββ: Peak at Q-value of nuclear transition Measured quantity: Half-life Dependencies (BG limited) T 1/2 a ε (M t/δe B) 1/2 Sum energy spectrum of both electrons link to neutrino mass 1 / T 1/2 = PS * ME 2 * (m ν / m e ) 2

The search for 0νββ or

Back of the envelope Τ 1/2 = ln2 a N A M t / N ββ (τ>>t) ( Background free) For half-life measurements of 10 26-27 yrs 1 event/yr you need 10 26-27 source atoms This is about 1000 moles of isotope, implying 100 kg Now you only can lose: nat. abundance, efficiency, background,...

Candidates 0νββ decay rate scales with Q 5 Isotope 2νββ decay rate scales with Q 11 Q-Value (kev) Nat. abund. (%) (PS 0v) 1 (yrs x ev 2 ) (PS 2v) 1 (yrs) Ca 48 4271 0.187 4.10E24 2.52E16 Ge 76 2039 7.8 4.09E25 7.66E18 Se 82 2995 9.2 9.27E24 2.30E17 Zr 96 3350 2.8 4.46E24 5.19E16 Mo 100 3034 9.6 5.70E24 1.06E17 Pd 110 2013 11.8 1.86E25 2.51E18 Cd 116 2809 7.5 5.28E24 1.25E17 Sn 124 2288 5.64 9.48E24 5.93E17 Te 130 2529 34.5 5.89E24 2.08E17 Xe 136 2479 8.9 5.52E24 2.07E17 Nd 150 3367 5.6 1.25E24 8.41E15

Future projects, ideas K. Zuber, Acta Polonica B 37, 1905 (2006) CUORICINO (stopped 08) running as NEMO-3 small scale ones will expand, very likely not a complete list...

Heidelberg -Moscow The detectors are decaying!! 5 isotopical enriched Ge-detectors Peak at 2039 kev

Heidelberg -Moscow Part of collaboration: T 1/2 = 2.23 ± 0.4 x 10 25 yr m = 0.32 ± 0.03 ev H.V. Klapdor-Kleingrothaus et al., Phys. Lett. B 586, 198 (2004), Mod.Phys.Lett.A21:1547-1566,2006

Current aims Check whether observed peak claimed in 76 Ge is true (GERDA) If yes, observe it with at least one other isotope to confirm that it is double beta decay If not, next milestone will be 50 mev suggested by oscillation results If still no observation, down to range 1-10 mev Remember: m ν ΔEB 4 Mt

COBRA Use large amount of CdZnTe Semiconductor Detectors Large array of CdZnTe detectors K. Zuber, Phys. Lett. B 519,1 (2001)

Gran Sasso (Italy) It s all about background reduction GERDA COBRA CUORE

COBRA collaboration TU Dresden TU Dortmund Material Research Centre Freiburg Washington University at St. Louis Czech Technical University Prague University of Bratislava University of Jyvaskyla University of La Plata JINR Dubna Laboratori Nazionali del Gran Sasso More welcome Erlangen???? Supporting institutes: University of Hamburg (Germany), Jagellonian University (Poland), Los Alamos Nat. Lab. (USA)

Advantages Source = detector Semiconductor (Good energy resolution, clean) Room temperature Modular design (Coincidences) Two isotopes at once Industrial development of CdTe detectors 116 Cd above 2.614 MeV Tracking ( Solid state TPC )

Background COBRA S. Pirro, Milano Beyond 2.614 MeV background a priori much lower

Isotopes nat. ab. (%) Q (kev) Decay mode Zn70 0.62 1001 ß-ß- Cd114 28.7 534 ß-ß- Cd116 7.5 2809 ß-ß- Te128 31.7 868 ß-ß- Te130 33.8 2529 ß-ß- Zn64 48.6 1096 ß+/EC Cd106 1.21 2771 ß+ß+ Cd108 0.9 231 EC/EC Te120 0.1 1722 ß+/EC

Needed Sensitivity T 1/2 aε M t /ΔE B claim of evidence 10 25 yrs 10 26 yrs 50 mev 10 27 yrs 10 28 yrs

It s all about background Background from: natural radioactivity, cosmogenic produced radioisotopes, cosmic rays, neutrons Two options Energy measurement only Energy measurement and tracking 1024 pixel, pixel size: 625 μm

COBRA Set-up at LNGS

64 array

Background model Assumption: Major background is paint + radon

Cd-113 4-fold non-unique beta decay (1/2 + 9/2 + ) First half-life result published as C. Goessling et al., PRC 72:064328,2005 First time theoretical model based on nuclear structure calculation (thanks to J. Suhonen) We have more than 10 independent measurements now...

Cd-113

Cd-113 First time histogram of 10 16 yrs half-life measurements Half-life: Q-value: Spectral shape fits better with unique 3-fold forbidden than non-unique transition J. V. Dawson et al., Nucl. Phys. A 818,264 (2009)

New Results Six half-life limits above 10 20 years, one world best, six limits within factor 3 of world best, coincidence analysis and analysis on colourless data ongoing based on 18 kg days of data, J.V. Dawson et al., arxiv:0902.3582, acc. by Phys. Rev. C

Next things done Remove passivation paint Install nitrogen flushing

Measured spectrum Data taking with red crystals finished, now running 4 (8) clear painted dets. Background at 2.8 MeV around 5 counts/kev/kg/yr!!

To show the progress...(i) 113 Cd spectrum

To show the progress... (II) Approaching 2nu double beta of 116 Cd (T 1/2 =2.9 x10 19 yrs) more than 2 orders of magn. away real one H. Kiel, Ph.D. thesis 2005 now (2009)

Region of interest Region of 116 Cd peak

Removing the paint... If stable will be done for all remaining detectors

Needed Sensitivity T 1/2 M t /ΔE B 50 mev

KING COBRA - Below 50 mev Current idea: 40x40x40 CdZnTe detectors = 420 kg, enriched in 116Cd Down to 10 mev you might be... A real time low-energy solar neutrino and Supernova experiment? e Threshold energy: 464 kev ν e 116In e 7Be contribution g.s. alone: 227 SNU 116Cd τ = 14s 116Sn K. Zuber, Phys. Lett. B 571,148 (2003) K Balasi, T.Kosmas, P. Divari,KZ, subm.

The solid state TPC Semiconductor Tracker Energy resolution Tracking Massive background reduction Positive signal identification Pixelated CdZnTe detectors

Pixelisation Idea: Massive background reduction by particle identification α= 1 pixel, β and ββ= several connected pixel, γ= some disconnected p. 0νββ 3 MeV β α ~15μm 1-1.5mm1.5mm Beta with endpoint 3.3MeV 7.7MeV α life-time = 164.3μs

Pixel size Reasonable range ( 130 Te) For 200 μm 130 Te and 116 Cd would hit about 7-10 pixel

Pixel detectors Two options: Timepix, CZT ASICs 1024 pixel, pixel size: 625 μm Pixel detector with 200 μm pixels (10000 pixel) produced!

Option1: ASICs for CZT 64 pixel detectors Detectors: 2x2x0.5 cm 3 One 32x32 pixels sent for bonding to 1024 channel ASIC Second one 55x55 pixels sent fo bonding to 2048 channel ASIC Installation at LNGS autumn 2009

Option2: Timepix 55, 110, 220 μm option, 65000 channels (256x256) Simulation: 116Cd neutrinoless decay

Option 2: Timepix Timepix Si, 300μm thick (data shown) TimePix CdTe detector 1mm thick, 256x256 Pixel, 55μm pitch, 1.4x1.4 cm 2 1mm Myon candidate

snapshot... 214 Bi alpha-beta coincidence candidate Unfortunately I can t show you a double beta event...

Event pool It reacts on environment, ie. not completely dominated by internal background

Particles... Alphas Betas Muons

A nice muon...

Nobody said it was going to be easy, and nobody was right George W. Bush

Future activities Upgrading LNGS setup ( 64 detectors with clear paint, active vetosignal enhancer in form of scintillator, cooling, pulse shape Installing pixel detector underground (St. Louis) Run CZT in Liquid scintillator (in collab with Hamburg) Get CdTe Timepix running above ground/underground Tune pixel detectors towards low background (material screening) Work toward a Technical Design Report, to be finished in 2012

Summary Double beta decay is the gold plated channel to probe the fundamental character of neutrinos Near term experimental goals are driven by the Klapdor claim of a peak in Ge-76 COBRA is a rather new approach making use of CZT room temperature semiconductors First background sources have been identified and removed, working towards larger array (64), lower background The solid state TPC (semiconductor tracker) can be the major and unique step beyond existing double beta experiments

Neutrino mass schemes and 0νββ Adding errors

Effect of Θ 13 in normal hierarchy

0νββ-Inverted mass scheme

0νββ - Inverted hierarchy

Normal + inverted scheme

Schechter-Valle theorem

Pixellated detectors

Oscillations and 0νββ General: Rough estimate:

0νββ -Normal hierarchy

β + β + -modes In general: Double charged higgs bosons, R-parity violating SUSY couplings, leptoquarks... (A,Z) (A,Z-2) + 2 e + (+2ν e ) n n p e p e β+β+ Q-4m e c 2 e - + (A,Z) (A,Z-2) + e + (+2ν e ) β+/ec 2 e - + (A,Z) (A,Z-2) (+2ν e ) EC/EC Q-2m e c 2 Q Important to reveal mechanism if 0νββ is discovered β+/ec Enhanced sensitivity to right handed weak currents (V+A)

Latest development on CZT preliminary 36 gram detector, 6 times larger than current COBRA detectors

Neutrino mass vs. right handed currents H int j L J + L + κj L J + R + ηj R J + L + λj R J + R EC/ß + <λ> λ,η <<1 Possible evidence <m ν >(ev) M. Hirsch et al., Z. Phys. A 347,151 (1994)

Nuclear matrix elements The dark side of double beta decay

Uncertainties in nuclear matrix elements, example 116 Cd Check with a different isotope <m ν >=0.4eV V. Rodin et al., nucl-th/0503063, Nucl. Phys. A 2006

Current ideas Detectors (CdZnTe) Energy Pixel Shielding Passive Passive and active LSci

Nuclear matrix elements Most important: Short range correlations Atomic traps: Ft-values, Q-values F. Simkovic et al., arxiv:0902.0331 Theory Experiment Nuclear deformation D. Frekers, ECT Trento 2008