Quartz Crystal Resonator Parameter Calculation Based on Impedance Analyser Measurement Using GRG Nonlinear Solver

Similar documents
unperturbed QCR (b) Fig. 1.- (a) Equivalent circuit of a loaded quartz-crystal-resonator. (b) Circuit for simulating a quartz resonator sensor

sensors ISSN by MDPI

Research Article Analyzing Spur-Distorted Impedance Spectra for the QCM

Design and Modeling of Membrane Supported FBAR Filter

Contents. Associated Editors and Contributors...XXIII

Characterization of Epoxy Resin (SU-8) Film Using Thickness-Shear Mode (TSM) Resonator under Various Conditions

19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007

Diethelm Johannsmann a) Max-Planck-Institute for Polymer Research, Ackermannweg 10, Mainz, Germany

mywbut.com Lesson 16 Solution of Current in AC Parallel and Seriesparallel

AC Circuits Homework Set

Piezoelectric Resonators ME 2082

EE221 Circuits II. Chapter 14 Frequency Response

Annexure-I. network acts as a buffer in matching the impedance of the plasma reactor to that of the RF

Lecture 12 Date:

Finite Element Modeling of Ultrasonic Transducers for Polymer Characterization

Open Access Response of Quartz Crystal Microbalance Loaded with Single-drop Liquid in Gas Phase

Two-Port Networks Admittance Parameters CHAPTER16 THE LEARNING GOALS FOR THIS CHAPTER ARE THAT STUDENTS SHOULD BE ABLE TO:

Lecture 14 Date:

Electromechanical Sensors and Actuators Fall Term

CHAPTER 5 ANALYSIS OF EXTRAPOLATION VOLTAGES

DC and AC Impedance of Reactive Elements

Shear mode AlN thin film electro-acoustic resonant sensor operation in viscous media

RLC Series Circuit. We can define effective resistances for capacitors and inductors: 1 = Capacitive reactance:

Analytical Optimization of High Performance and High Quality Factor MEMS Spiral Inductor

Module 4. Single-phase AC circuits. Version 2 EE IIT, Kharagpur

EE221 Circuits II. Chapter 14 Frequency Response

SENSING LIQUID PROPERTIES WITH SHEAR-MODE RESONATOR SENSORS

Frequency Dependent Aspects of Op-amps

Basics of a Quartz Crystal Microbalance

Dynamic circuits: Frequency domain analysis

Case Study: Parallel Coupled- Line Combline Filter

MODULE-4 RESONANCE CIRCUITS

An Equivalent Circuit Formulation of the Power Flow Problem with Current and Voltage State Variables

161 Electrochemical Impedance Spectroscopy Goals Experimental Apparatus Background Electrochemical impedance spectroscopy

Designing Information Devices and Systems II Fall 2018 Elad Alon and Miki Lustig Discussion 5A

Chapter 10: Air Breakdown

Flavien Heu+er Sales & Applica+ons Engineer EFCC 2015

Miniature Electronically Trimmable Capacitor V DD. Maxim Integrated Products 1

A Novel Tunable Dual-Band Bandstop Filter (DBBSF) Using BST Capacitors and Tuning Diode

Smith Chart Tuning, Part I

R-L-C Circuits and Resonant Circuits

ECE 202 Fall 2013 Final Exam

Consider a simple RC circuit. We might like to know how much power is being supplied by the source. We probably need to find the current.

ECE 391 supplemental notes - #11. Adding a Lumped Series Element

Transmission Lines. Plane wave propagating in air Y unguided wave propagation. Transmission lines / waveguides Y. guided wave propagation

Radio Frequency Electronics

Numerical and Experimental Analysis of the Parameters of an Electroacoustic Thin-Film Microwave Resonator

7.Piezoelectric, Accelerometer and Laser Sensors

Electromagnetics in COMSOL Multiphysics is extended by add-on Modules

Transducer Design and Modeling 42 nd Annual UIA Symposium Orlando Florida Jay Sheehan JFS Engineering. 4/23/2013 JFS Engineering

INTRODUCTION. Description

Rapid SAW Sensor Development Tools

Electromagnetic Oscillations and Alternating Current. 1. Electromagnetic oscillations and LC circuit 2. Alternating Current 3.

Conventional Paper-I-2011 PART-A

LCR Series Circuits. AC Theory. Introduction to LCR Series Circuits. Module. What you'll learn in Module 9. Module 9 Introduction

Non-Faradaic Impedance Characterization of an

(3), where V is the peak value of the tank voltage in the LC circuit. 2 The inductor energy is: E.l= LI 2

Chapter 2 Circuit Elements

Applicability of Self-Powered Synchronized Electric Charge Extraction (SECE) Circuit for Piezoelectric Energy Harvesting

Engineering Science. 1 Be able to determine the behavioural characteristics of elements of static engineering systems

Light, Electricity and Liquids. By Vitaliy Zamsha and Vladimir Shevtsov

Sophomore Physics Laboratory (PH005/105)

CHAPTER 45 COMPLEX NUMBERS

Capacitor. Capacitor (Cont d)

Microstrip Coupler with Complementary Split-Ring Resonator (CSRR)

Univariate Statistics (One Variable) : the Basics. Linear Regression Assisted by ANOVA Using Excel.

Lecture 4: R-L-C Circuits and Resonant Circuits

Proceedings of Meetings on Acoustics

ECE 255, Frequency Response

Electrical Circuits Lab Series RC Circuit Phasor Diagram

EE313 Fall 2013 Exam #1 (100 pts) Thursday, September 26, 2013 Name. 1) [6 pts] Convert the following time-domain circuit to the RMS Phasor Domain.

Electronics for Analog Signal Processing - II Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology Madras

Chapter 21: RLC Circuits. PHY2054: Chapter 21 1

APPLICATIONS OF VIBRATION TRANSDUCERS

Contents. 0. Introduction Loudspeaker s Impedance Why is this useful? How good is it? Bibliography...

Electronic Circuits EE359A

ELEC 2501 AB. Come to the PASS workshop with your mock exam complete. During the workshop you can work with other students to review your work.

IMPEDANCE and NETWORKS. Transformers. Networks. A method of analysing complex networks. Y-parameters and S-parameters

What s Your (real or imaginary) LCR IQ?

Ver 3537 E1.1 Analysis of Circuits (2014) E1.1 Circuit Analysis. Problem Sheet 1 (Lectures 1 & 2)

ON THE USE OF GEGENBAUER PROTOTYPES IN THE SYNTHESIS OF WAVEGUIDE FILTERS

Design of Narrow Band Filters Part 2

This section reviews the basic theory of accuracy enhancement for one-port networks.

Finite Element Analysis of Piezoelectric Cantilever

How to measure complex impedance at high frequencies where phase measurement is unreliable.

EE 242 EXPERIMENT 8: CHARACTERISTIC OF PARALLEL RLC CIRCUIT BY USING PULSE EXCITATION 1

Progress In Electromagnetics Research C, Vol. 33, , 2012

Quartz Crystal Nanobalance (QCN)

Sensors & Transducers 2016 by IFSA Publishing, S. L.

EE C245 / ME C218 INTRODUCTION TO MEMS DESIGN FALL 2011 C. Nguyen PROBLEM SET #7. Table 1: Gyroscope Modeling Parameters

Laboratory I: Impedance

COURSE OUTLINE. Introduction Signals and Noise Filtering Sensors: Piezoelectric Force Sensors. Sensors, Signals and Noise 1

Handout 11: AC circuit. AC generator

Single-Time-Constant (STC) Circuits This lecture is given as a background that will be needed to determine the frequency response of the amplifiers.

2B30 Formal Report Simon Hearn Dr Doel

6.1 Introduction

Filters and Tuned Amplifiers

CHAPTER 5 STEADY-STATE ANALYSIS OF THREE-PHASE SELF-EXCITED INDUCTION GENERATORS

Algebraic Derivation of the Oscillation Condition of High Q Quartz Crystal Oscillators

Using System Identification to Reverse Engineer RLC Circuits

Transcription:

16 Quartz Crystal Resonator Parameter Calculation Based on Impedance Analyser Measurement Quartz Crystal Resonator Parameter Calculation Based on Impedance Analyser Measurement Using GRG Nonlinear Solver Setyawan P. Sakti Department of Physics, Brawijaya University, Malang, Indonesia Abstract Quartz crystal resonator which is used as a basis for quartz crystal microbalance (QCM) sensor was modelled using many different approach. The well-known model was a four parameter model by modelling the resonator as a circuit composed from two capacitors, inductor and resistor. Those four parameters control the impedance and phase again frequency applied to the resonator. Electronically, one can measure the resonator complex impedance again frequency by using an impedance analyser. The resulting data were a set of frequency, real part, imaginary part, impedance value and phase of the resonator at a given frequency. Determination of the four parameters which represent the resonator model is trivial for QCM sensor analysis and application. Based on the model, the parameter value can be approximately calculated by knowing the series and parallel resonance. The values can be calculated by using a least mean square error of the impedance value between model and measured impedance. This work presents an approach to calculate the four parameters basic models. The results show that the parameter value can be calculated using an iterative procedure using a nonlinear optimization method. The iteration was done by keeping two independence parameters R0 and C0 as a constant value complementary. The nonlinear optimization was targeted to get a minimum difference between the calculated impedance and measured impedance. Keywords QCM Sensor, four parameter model, impedance measurement. 1 INTRODUCTION Quartz crystal microbalance sensor (QCM) was built using AT-cut quartz crystal resonator. To be used as sensing elements, especially for chemical sensor or biosensor, on top of the resonator was coated with an additional coating layer or sensitive layer. To understand and investigate the properties of the additional layers, the behaviour of the sensor before any additional coating was needed to be known. In its original condition, where there was no additional coating and the resonator surface in contact with air, the behaviour of the quartz crystal resonator described the behaviour of the QCM sensor. To understand the behaviour of the sensor, some mathematical and electrical model has been proposed to model the resonator. The physical equation describes the resonator behaviour governs by a piezoelectric, Newton s and Maxwell s equations. Thus modelling in three dimensional was very difficult. For a resonator for QCM sensor in a form of thin disc, a one dimensional model can be used as an approximation for the resonator behaviour. There were two well-known approaches to model the behaviour of a circular disc resonator. One is the distributed model or transmission line model [1], [2], [3] and the other was the lumped model. The lumped model was also known as Butterworth van Dyke (BVD) model [1], [4]. Based on the physical properties of the resonator, the BVD model used four parameters, i.e. two capacitor, one resistor and one inductor to model the resonator behaviour. Modified BVD model was also introduced to model the resonator [5]. Based on the model, a viscoelastic properties of the layer on top of the sensor can also be analysed using transfer matrix method [6]. The BVD model with additional parameters was also used as a basis for modelling the resonator contacting liquid medium [7], [8]. The advantages of the BVD model was its simple model to represent the resonator behaviour. This model gives a direct mathematical model which allows a straight forward calculation of the impedance and phase angle of the resonator. The approximated model parameters was usually done by measuring the NATURAL-A 2014 http://natural-a.ub.ac.id/

NATURAL-A Journal of Scientific Modeling & Computation, Volume 1 No.2 2014 17 impedance value using impedance analyser. Using impedance analyser the measurement data at least consists of given frequency, impedance value and phase angle. In this work we shows that the determination of four parameters value of the resonator using BVD model can be obtained by optimizing the parameters value using nonlinear optimization. 2 THEORY AND EXPERIMENTAL PROCEDURE 2.1 Butterworth Van Dyke Model A quartz crystal resonator was made from a disc of quartz crystal cut at AT-cut angle and giving a two cylindrical electrode made of a thin metal shown in Figure 1. This two adjacent electrode made the resonator to have a behaviour as a capacitor. When an alternating electrical signal applied to the resonator, the piezoelectric properties of the resonator can be represented as a resonator circuit composed by a resistor, capacitor, and inductor. The BVD model for a resonator was shown in Figure 2. Where the,, R 1 and L 1 were the four parameters of the resonator. Figure 2. BVD model of the quartz crystal resonator The impedance between A and B was a parallel impedance between the impedance of the and the impedance of the series impedance of the R 1, L 1 and. The impedance of the upper arm (static arm) and bottom arm (motional arm) can be written as: Z 0 = 1 jω Z 1 = R 1 + jωl 1 + 1 jω The total impedance (Z) of the resonator at given frequency between point A and B is: Z = Z 0 Z 1 Z 0 +Z 1 For a given frequency we can calculate directly the value of the total impedance by using complex number calculation. Where the impedance can be written as: Z = R+ jx (4) with R is the real part and X is the imaginary part of the impedance. By substituting Z 0 and Z 1 using equation (1) and (2) we can rewrite equation (3) as: Z = 1 " R 1 + jωl 1 + 1 % $ ' jω # jω & 1 ω 2 L 1 + R 1 + jωl 1 + 1 = 1 + jωr 1 " % ω 2 R $ ' 1 + j ω +ω +ω 3 L 1 jω # jω & ( ) Special condition of Z occurs at a series resonance frequency (ω S ) and at a parallel resonance frequency (ω P ). At series resonance frequency if the resistance R 1 = 0, the resonance frequency occurs at X 1 =0. This condition leads to a relationship between resonance frequency and resonator parameter by: ω s = 1 L 1 (1) (2) (3) (5) (6) ISSN 2303-0135

18 Quartz Crystal Resonator Parameter Calculation Based on Impedance Analyser Measurement In a condition where R 1 =0, parallel resonance at the frequency where the admittance of the resonator is zero. This condition exists at a condition where X 0 +X 1 =0. The relationship of the parallel resonance and the resonator parameter was written as: ω p L 1 1 ω p 1 ω p = 0 (7) ω P 2 L 1 1= Using equation (6), equation (7) can be written as: ω P =ω S 1+ (8) 2.2 Impedance Analyser Measurement A vector network impedance analyser mainly consists of gain and phase detector measurement. The resulted data was usually in a set data consist of frequency, real and imaginary part of the impedance at given frequency, absolute impedance value and its corresponding phase. One can calculated the magnitude and phase using the real and imaginary part and vice versa. In this experiment we used the Bode-100 Vector Impedance Network Analyser from Micorn-Lab. Quartz crystal resonator used in this experiment was the ATcut quartz crystal in HC49/U standard package purchased from Great Microtama Surabaya. According to the manufacturer, the resonator has been tuned at 10 MHz series resonance frequency and the maximum series resistance was 30 Ω. The resonator disc was 8.7 mm with silver electrode diameter closes to 5mm. 2.3 Steps to calculate four parameters of the BVD Model Based on the BVD model, one can calculate directly the absolute value and the phase of the impedance if the four parameters were known. Unfortunately, thus parameters cannot be measured directly. The only parameters which can be measured was the electrode diameter, which relates to, by a condition of zero shunt capacitance of the resonator package. However, direct electrode diameter measurement gives us a big uncertainty compare to the accuracy and precision of electrical value measurement. The shunt capacitance of the resonator caused by resonator leads and package cannot be measured. It means that the calculated based on the electrode diameter is only an approximate value. Using network impedance analyser, one can measure the impedance and phase of the resonator (Z) at a given frequency. By changing the frequency from below the series resonance and above parallel resonance gives an impedance curve, which gives us an approximate impedance value near series resonance and near parallel resonance. he resonance frequency at series and parallel resonance can be found by interpolating the measured data at null phase, one at the transition from a negative phase to positive phase for the series resonance and from positive phase to negative phase for the parallel resonance. Both of the resonance frequency can be interpolated using one, two or three order polynomial. As the phase transition close to S curve, approximation using polynomial order three was chosen. Figure 3 shows a typical phase and frequency relationship curve and cubic polynomial interpolation. One can calculate the resonant frequency at zero phase direct from the best fit polynomial coefficient. Based on this interpolation the value of ω S and ω P has been found from measured data. At this point we already have a three approximate value of the parameters, and L 1. NATURAL-A 2014 http://natural-a.ub.ac.id/

NATURAL-A Journal of Scientific Modeling & Computation, Volume 1 No.2 2014 19 ω ω -90-75 -60-45 -30-15 0 15 30 45 60 75 90 Phase ( O ) (a) -90-75 -60-45 -30-15 0 15 30 45 60 75 90 Phase ( O ) (b) Figure 3. Polynomial interpolation for frequency to phase; (a) series resonance (b parallel resonance Z (Ω) -90-75 -60-45 -30-15 0 15 30 45 60 75 90 Phase Figure 4. Impedance curve at series resonance for initial R 1 value calculation At series resonance, the impedance of the resonator is close to the value of R 1. Therefore the resistive parameter value, R 1, can be approximately calculated using the impedance data close to the series resonance. The first guess value of the R 1 in this work was the minimum value from the interpolated quadratic equation formed by impedance value again phase close to the zero phase at series resonance. Figure (4) shows a typical second order polynomial curve as a result of interpolated data. Model values optimization can be done using nonlinear programming. In this condition, we have determined that there is four unknown variables whilst the objective of the function is to minimize the absolute difference between measured impedance and calculated impedance using model parameters R 1, L 1, and. The nonlinear optimization was chosen as the best resonator behaviour described in equation (5) is non linear. To solve this problem, optimization using Generalized Reduced Gradient (GRG) Nonlinear method which is available in Microsoft Excel was used. This method used GRG2 code developed by Lasdon and Waren [9]. The objective of the optimization was finding the best value for R 1, L 1, and which best model the measured data. The scenario was constructed as follows: 1. Find the minimum (Z S ) and maximum impedance value (Z P ) from measured data 2. Find a series and parallel resonance frequency by polynomial order three again 8 data taken from the closest data to the Z S and Z P ISSN 2303-0135

20 Quartz Crystal Resonator Parameter Calculation Based on Impedance Analyser Measurement 3. Calculate the initial value of R 1 using second orde polynomial interpolation of 8 data closest to the series resonance 4. Calculated initial guess value for series resonance frequency 5. Calculate sum of relative different from series resonance to parallel resonance (Z M : measured impedance, Z C : Calculated impedance using BVD model) 6. Do using GRG Nonlinear Solver until minimum SE found: a. Minimize SE by changing and keeping R 1 constant b. Minimize SE by changing R 1 and keeping constant The other possibility can be done by canging the sequence of GRG Nonlinear optimization on step 6 becomes: 6. Do using GRG Nonlinear Solver until minimum SE found: a. Minimize SE by changing R 1 and keeping constant b. Minimize SE by changing and keeping R 1 constant 3 RESULTS AND DISCUSSION We used the above described scenario to calculate the BVD parameter s value of the resonator. From our sample case, the initial BVD parameters value taken from measurement data followed by calculation scenario step 1 to 4 was R 1 = 6.1301416 Ω, = 4.6939777 pf, = 0.0229395 pf, and L 1 = 11.0236714 mh. Using this initial guess value, GRG nonlinear optimization by minimizing relative different between measured impedance and calculated impedance at given frequency from minimum impedance to maximum impedance points. Tabel 1 shows the change in BVD parameters according to the scenario described above. We can see that the sum of relative different between calculated and measured impedance was constant at step 5. Based on this condition we got the final best value of the BVD paremeters. The parameters value was R 1 = 7.4162625 Ω, = 4.6115222 pf, = 0.0225365 pf, and L 1 = 11.2207780 mh. Slight difference results were found by implementing alternative scenario of the GRG Nonlinear optimization. The result of the alternative scenario was listed in Table 2. The difference between the scenario is not significant. There was only 0.02 ppm different in R 1 and 2 ppm different in, and L 1. For this work the first scenario was used for rest of the work. Figure 5 shows the impedance spectrum of measured data using Bode 100 Impedance analyser and BVD model calculated using the described scenario. The measurement was done from 9.925 MHz to 10.05 MHz with receiver bandwidth at 30 Hz. Total measurement was 4096 points. This corresponding to a frequency spacing between data was 30.25 Hz. NATURAL-A 2014 http://natural-a.ub.ac.id/

NATURAL-A Journal of Scientific Modeling & Computation, Volume 1 No.2 2014 21 TABLE 1. BVD PARAMATER CHANGES RESULTED BY GRG NONLINEAR OPTIMIZATION USING FIRST SCENARIO Step Condition (W) R1 C0 (pf) C1 (pf) L1 (mh) S (D) 0 Initial guess (R1, C0, C1, L1) 6.1301416 4.6939777 0.0229395 11.0236714 17.6600412 1 Constant 6.1301416 R1 2 Constant C0, C1, 7.4162709 L1 3 Constant 7.4162709 R1 4 Constant C0, C1, 7.4162625 L1 4.6119541 0.0225386 11.2197273 6.6611161 4.6119541 0.0225386 11.2197273 6.3922058 4.6115222 0.0225365 11.2207780 6.3918131 4.6115222 0.0225365 11.2207780 6.3918127 5 Constant R1 7.4162625 4.6115222 0.0225365 11.2207780 6.3918127 Final Value 7.4162625 4.6115222 0.0225365 11.2207780 TABLE 2. BVD PARAMATER CHANGES RESULTED BY GRG NONLINEAR OPTIMIZATION USING SECOND SCENARIO Step Condition R1 (W) C0 (pf) C1 (pf) L1 (mh) S (D) 0 Initial guess (R1, C0, C1, L1) 6.1301416 4.6939777 0.0229395 11.0236714 17.6600412 1 Constant C0, C1, 7.4177934 L1 2 Constant 7.4177934 R1 3 Constant C0, C1, 7.4162623 L1 4.6939777 0.0229395 11.0236714 17.4302883 4.6115133 0.0225365 11.2207998 6.3918898 4.6115133 0.0225365 11.2207998 6.3918147 4 Content R1 7.4162623 4.6115133 0.0225365 11.2207998 6.3918147 5 Constant C0, C1, L1 7.4162623 4.6115133 0.0225365 11.2207998 6.3918147 Final Value 7.4162623 4.6115133 0.0225365 11.2207998 10 6 Measured Z Calculated Z 10 5 10 4 Z (Ω) 10 3 10 2 10 1 10 0 9.925 9.950 9.975 10.000 10.025 10.050 Frequency (MHz) Figure 5. Impedance curve at series resonance From Figure 5 we can see that the resulted model parameter best fitted to the measured data in a whole spectrum. The calculated impedance spectrum was well overlaid on top of the measured impedance spectrum. It is difficult to see the difference between both graphs. We can see that the resulted BVD parameters can model the measured data very well. ISSN 2303-0135

22 Quartz Crystal Resonator Parameter Calculation Based on Impedance Analyser Measurement The difference between measured impedance and calculated one can be seen in Figure 6. It can be seen that in term of absolute difference, the biggest difference exists in an impedance value close to the parallel resonance. This magnitude can be understood well, as the absolute value of the impedance at parallel resonance is very big. In addition, it can be seen in Figure 5 that big impedance gradient exists at parallel resonance. Those a slight error in the frequency measurement by the impedance analyser will result in a significant difference in the measured impedance compared to the calculated one. The relative difference between measured impedance and calculated impedance in Figure 6 shows that there are three peaks in the difference curve. We will focus to the first and second peaks difference. The first one was at series resonance and the second one was at the parallel resonance. The peaks after parallel resonance was caused by a non ideal fabrication the resonator. 9.925 9.950 9.975 10.000 10.025 10.050 50 Relative difference 40 ΔZ/Z (%) 30 20 10 ΔZ 0 10 6 Absolute difference 10 5 10 4 10 3 10 2 10 1 10 0 10-1 10-2 9.925 9.950 9.975 10.000 10.025 10.050 Frequency (MHz) Figure 6. Absolute and relative difference of the impedance value between measured data and calculated data At impedance close to the series resonance, the relative difference of the impedance value was high for a few data although the absolute difference is small. This is caused by a small absolute value of the resonator impedance. High difference at series resonance impedance was only occurring for one or two points. This can be caused by the measurement error. Closer look at the series and resonance frequency spectrum as shown in Figure 7 shows that the agreement between the calculated impedance to the measured impedance existed. It can be seen from Figure 7 that the calculated impedance spectrum well overlaid with the measured impedance. Visually there was no significant difference between the calculated impedance and measured impedance. NATURAL-A 2014 http://natural-a.ub.ac.id/

NATURAL-A Journal of Scientific Modeling & Computation, Volume 1 No.2 2014 23 Series Resonance Parallel Resonance 100 Z measured Z calculated 1000000 Z measured Z calculated Z (Ω) 10 Z (Ω) 100000 1 10.0070 10.0075 10.0080 10.0085 10.0090 10.0095 Frequency (MHz) 10000 10.0300 10.0310 10.0320 10.0330 10.0340 10.0350 Frequency (Mhz) (a) Figure 7. Impedance spectrum; (a) at series resonance, (b) at parallel resonance (b) 4 CONCLUSIONS The scenario to calculate BVD parameters of a quartz crystal resonator using GRG nonlinear optimization has been successfully developed. Optimization criteria by minimizing the sum of the different between measured impedance and calculated impedance by varying the value of the four parameters, R 1, L 1, and has been shown. The initial guess value for parameters was calculated using the geometry value of the electrode, an interpolated value of the series resonance frequency and parallel resonance frequency at zero phase. Initial guess value for the R 1 was taken from the minimum impedance close to the series resonance. The resulting four parameter s value of the BVD shows a best fit to the measured data. 5 REFERENCES [1] J. Rosenbaum, Bulk Acoustic Wave Theory and Devices, Norwood: Artech House Inc., 1988. [2] C. Filiâtre, G. Bardèche, and M. Valentin, Transmission-Line Model for Immersed Quartz-Crystal Sensors, Sensors Actuators A, vol. 44, no. 2, pp. 137 144, 1994. [3] R. W. Cernosek, S. J. Martin, A. R. Hillman, and H. L. Bandey, Comparison of Lumped-Element and Transmission-Line Models for Thickness-Shear-Mode Quartz Resonator Sensors, in 1997 {IEEE} International Frequency Control Symposium, pp. 96 104, 1997. [4] S. J. Martin, V. E. Granstaff, and G. C. Frye, Characterization of a Quartz Crystal Microbalance with Simultaneous Mass and Liquid Loading, Anal. Chem., vol. 63, pp. 2272 2281, 1991. [5] J. D. Larson, P. D. Bradley, S. Wartenberg, and R. C. Ruby, Modified Butterworth-Van Dyke Circuit for FBAR Resonators and Automated Measurement System, in 2000 IEEE Ultrasonics Symposium, pp. 863 868, 2000. [6] F. Li, J. H.C. Wang, and Q.M. Wang, Thickness shear mode acoustic wave sensors for characterizing the viscoelastic properties of cell monolayer, Sensors Actuators B Chem., vol. 128, no. 2, pp. 399 406, Jan. 2008. [7] G. Kim, A. G. Rand, and S. V Letcher, Impedance characterization of a piezoelectric immunosensor Part I!: Antibody coating and buffer solution, vol. 18, pp. 83 89, 2003. [8] L. Rodriguez-Pardo, J. Fariña, C. Gabrielli, H. Perrot, and R. Brendel, Simulation of QCM sensors based on high stability classical oscillator configurations in damping media, Sensors Actuators B Chem., vol. 123, no. 1, pp. 560 567, Apr. 2007. [9] D. Fylstra, L. Lasdon, J. Watson, and A. Waren, Design and Use of the Microsoft Excel Solver, Interfaces (Providence), vol. 28, no. 5, pp. 29 55, 1998. ISSN 2303-0135