Applications of Radical Reactions in Asymmetric Synthesis. Brandon Meyers Michigan State University Department of Chemistry November 19, 2008

Similar documents
Asymmetric Radical Reactions. Zhen Liu 08/30/2018

"-Amino Acids: Function and Synthesis

Chiral Proton Catalysis in Organic Synthesis. Samantha M. Frawley Organic Seminar September 14 th, 2005

CEM 852 Final Exam. May 6, 2010

Homogeneous Catalysis - B. List

Stereoselective reactions of enolates: auxiliaries

Chiral Diol Promoted Boronates Addi3on Reac3ons. Lu Yan Morken Group Boston College

Asymmetric Nucleophilic Catalysis

Asymmetric Catalysis by Lewis Acids and Amines

Chapter 4 Electrophilic Addition to Carbon Carbon Multiple Bonds 1. Addition of H X 2. Addition of H OH and addition of Y X 3. Addition to allene and

Asymmetric Alklylation of Enolates

Stereoselective reactions of enolates

Radical Reactions. Radical Stability!!! bond dissociation energies X Y X + Y. bond BDE (kcal/mol) bond BDE (kcal/mol) CH 3 CH 3 CH 2 95 O H R 2 C H

CHT402 Recent Advances in Homogeneous Catalysis Organocatalysis Workshop

Conjugate (1,4-) addition

Electrophilic Carbenes

Chiral Brønsted Acid Catalysis

Catalytic Asymmetric [4+1] Annulation of Sulfur Ylides with Copper Allenylidene Intermediates. Reporter: Jie Wang Checker: Shubo Hu Date: 2016/08/02

Zr-Catalyzed Carbometallation

Direct, Catalytic Hydroaminoalkylation of Unactivated Olefins with N-Alkyl Arylamines

Denmark Group Meeting. & Electrophilic rearrangement of amides

Highlights of Schmidt Reaction in the Last Ten Years

Direct Organocatalytic Enantioselective Mannich Reactions of Ketimines: An Approach to Optically Active Quaternary α-amino Acid Derivatives

When something goes wrong. Goya: Mother showing her derformed child to two women Louvre, Paris

Stereoselective Organic Synthesis

Use of Cp 2 TiCl in Synthesis

A Tandem Semipinacol Rearrangement/Alkylation of a-epoxy Alcohols: An Efficient and Stereoselective Approach to Multifunctional 1,3-Diols

Suggested solutions for Chapter 40

Nine-Step Enantioselective Total Synthesis of (+)-Minfiensine

Chiral Bronsted Acids as Catalysts

Organic Tutorials 3 rd Year Michaelmas Transition Metals in Organic Synthesis: (General paper level) ! 1! Reading

CEM 852 Final Exam. May 5, 2011

CHO. OMe. endo. xylene, 140 o C, 2 h 70% 1. CH 2 (OMe) 2, MeOH TsOH, rt 2. Bu 2 O, 1,2-dichloroethane 140 o C, 2 h 3. 6 M HCl, THF, rt 44%

Three Type Of Carbene Complexes

Catalytic Asymmetric Acyl Halide-Aldehyde Cyclocondensation Reactions of Substituted Ketenes

Suggested solutions for Chapter 41

Organocopper Reagents

Intramolecular Ene Reactions Utilizing Oxazolones and Enol Ethers Fisk, J.S. and Tepe, J..J J. Am. Chem. Soc., 2007, 129,

Short Literature Presentation 10/4/2010 Erika A. Crane

A Highly Efficient Organocatalyst for Direct Aldol Reactions of Ketones and Aldehydes

Recent Development in. Tandem Radical Reactions (TRR)

Chap 11. Carbonyl Alpha-Substitution Reactions and Condensation Reactions

OC 2 (FS 2013) Lecture 3 Prof. Bode. Redox Neutral Reactions and Rearrangements

Strategies for Catalytic Asymmetric Electrophilic a Halogenation of Carbonyl Compounds

Stable gold(iii) catalysts by oxidative addition of a carboncarbon

Tips for taking exams in 852

TMSCl imidazole DMF. Ph Ph OTMS. Michael reaction. Michael reaction Ph R 3. epoxidation O R

Additions to Metal-Alkene and -Alkyne Complexes

The aldol reaction with metal enolates proceeds by a chair-like, pericyclic process: favored. disfavored. favored. disfavored

Denmark s Base Catalyzed Aldol/Allylation

Strategies for Stereocontrolled Synthesis

Synthetic Methodology. Using Tertiary Phosphines. as Nucleophilic Catalysts

Domino Reactions in Total Synthesis! Reporter: Tianhe Yang! Supervisors: Prof. Yang! Prof. Chen! Prof. Tang!

Asymmetric Lewis Base Strategies for Heterocycle Synthesis

CHEM 330. Final Exam December 5, 2014 ANSWERS. This a closed-notes, closed-book exam. The use of molecular models is allowed

Functionalization of C(sp 3 ) H Bonds Using a Transient Directing Group

Stereodivergent Catalysis. Aragorn Laverny SED Group Meeting July

R 2 R 4 Ln catalyst. This manuscript describes the methods for the synthesis and application of group 4 metallocene bis(trimethylsilyl)acetylene

Metal Catalyzed Outer Sphere Alkylations of Unactivated Olefins and Alkynes

EWG EWG EWG EDG EDG EDG

Bifunctional Asymmetric Catalysts: Design and Applications. Junqi Li CHEM Sep 2010

Stereoselective Organic Synthesis

Carbonyl Ylide Cycloadditions

Stereoselective reactions of the carbonyl group

A 1,3 Strain and the Anomeric Effect. Michael Shaghafi Chem. Topics Feb. 6, 2012

Shi Asymmetric Epoxidation

Copper-Catalyzed Synthesis of Esters from Ketones. Alkyl Group as a Leaving Group.

Catalytic Reactions in Organic Synthesis

Chiral Catalyst II. Palladium Catalysed Allylic Displacement ( -allyl complexes) 1. L n Pd(0) 2. Nuc

Total Synthesis of Oxazolomycin A

Spiro Monophosphite and Monophosphoramidite Ligand Kit

Chem 251 Fall Learning Objectives

Lecture 6: Transition-Metal Catalysed C-C Bond Formation

Palladium-Catalyzed Electrophilic Aromatic C H Fluorination

Catalytic alkylation of remote C H bonds enabled by proton-coupled electron transfer

Answers To Chapter 7 Problems.

David W.C. MacMillan: Career-in-Review. Yan Xu Dong Group Meeting Jan. 2, 2014

Total Synthesis of (+/-)-Goniomitine via a Formal Nitrile/Donor-Acceptor Cyclopropane [3 + 2] Cyclization

C h a p t e r 1. Enantioselective LUMO-Lowering Organocatalysis. The presentation of the Nobel Prize in 2001 to William S. Knowles, Ryoji Noyori,

Answers To Chapter 1 In-Chapter Problems.

Answers To Chapter 1 Problems.

Advanced Organic Chemistry

Topic 18: Nucleophilic Sigma Bonds

C-O C-O C-N A A. (KHMDS) C-N (scheme 1) C-O C-N (1)

[3,3]-Sigmatropic rearrangements

VI. Metal alkyls from oxidative addition / insertion

Organic Electron Donors

Mechanistic Studies of Allylsilane Rearrangement

Keisuke Suzuki. Baran lab Group Meeting 6/11/16. Shigenobu Umemiya. Akira Suzuki. Takanori Suzuki (Hokkaido University)

Recent Total Syntheses! Published in Nature!

Catalytic Asymmetric Pauson-Khand Reaction. Won-jin Chung 02/25/2003

eatles Oasis - 199

Memory of Chirality: A Strategy for Asymmetric Synthesis

Enantioselective Protonations

Organocatalysis Enabled by N-Heterocyclic Carbenes

π-alkyne metal complex and vinylidene metal complex in organic synthesis

Literature Report. Atroposelective Synthesis of Axially Chiral Arylpyrroles and Styrenes. : Zhong Yan : Ji Zhou :

Olefin Metathesis ROMP. L n Ru= ROMP n RCM. dilute

Requirements for an Effective Chiral Auxiliary Enolate Alkylation

Enantioselective 1,1-Arylborylation of. Transfer with Pd Catalysis

Transcription:

Applications of adical eactions in Asymmetric Synthesis Brandon Meyers Michigan State University Department of Chemistry ovember 19, 2008

utline Introduction Importance of radical reactions Challenges of stereochemistry Methods employed to achieve asymmetric control Chiral Auxiliary Chiral Acid rganocatalysis

General Bond Forming Conditions Acidic (Cationic) - F 3 B! F 3 B! n Basic (Anionic) a I!! I I a eutral (adical) 3 C Br 3 C Br Clayden, J.; Greeves,.; Warren, S.; Wothers, P. rganic Chemistry. xford: University Press. 2001

eversal of eactivity eterolytic Cleavage I electrophilic carbocation I omolytic Cleavage I nucleophilic radical LDA LDA! nucleophilic carbanion Bu 3 Sn AIB Bu 3 Sn!Br electrophilic radical Br Giese, B.; Tetrahedron, 1985, 41, 4025

adicals Stabilized by Electron Donating Groups ucleophilic adical adical SM Energy nonbonding lone pairs Parsons, A.F. An Introduction to Free adical Chemistry, xford: Blackwell Science, 2000, p. 40

adicals Stabilized by Electron Withdrawing Groups adical SM!" Energy Electrophilic adical nonbonding lone pairs!! Parsons, A.F. An Introduction to Free adical Chemistry, xford: Blackwell Science, 2000, p. 40

Early Problems of Stereochemistry Synthesis of Sativene & Capocamphene Br Bu 3 Sn C 3 tbu, h! benzene X X = (37%) X = C 2 - Sativene X X = (25%) X = C 2 - Capocamphene Bakuzis, P.; Campos,..S.; Bakuzis, M.L.F. J. rg. Chem., 1976, 41, 3261

Methods for Asymmetric Control Chiral Auxiliary, X C X C 1 X C * 1 Chiral Acid, A C A C 1 A C 1 * rganocatalysis 1!LG * 1

Sultam & xazolidinone Auxiliaries S ' M * * ' Dipole-dipole control Lewis acid chelation

Dipole-Dipole Chiral Auxiliary Me glyoxylic oxime ether Bn S 1.0 eq. Me 3 Al Cl(C 2 ) 2 Cl reflux 0.67 eq. (1)-(+)-2,10-camphorsultam Bn S 2 90% yield S 2 Bn 5.0 eq. -I, C 2 Cl 2 2.5 eq. Bu 3 Sn 2.0 eq. BF 3 Et 2 5.0 eq. Et 3 B, -78 C S 2 Bn aito, T; Miyabe,.; Ushiro, C.; Ueda, M.; Yamakawa, K. J. rg. Chem., 2000, 65, 176-185

Mechanism Bu 3 Sn I! Bu 3 Sn!I S Bn S Bn S Bn SnBu 3 S Bn

Substrate Scope S 2 Bn 5.0 eq. -I, C 2 Cl 2 2.5 eq. Bu 3 Sn 2.0 eq. BF 3 Et 2 5.0 eq. Et 3 B, -78 C S 2 1 Bn Entry I Product Isolated Yield (%) dr of 1 1 i-pr-i 1a 80 096 : 4 2 Et-I 1b 80 095 : 5 3 t-bu-i 1c 83 >98 : 2 4 i-bu-i 1d 83 097 : 3 5 c-ex-i 1e 86 096 : 4 aito, T; Miyabe,.; Ushiro, C.; Ueda, M.; Yamakawa, K. J. rg. Chem., 2000, 65, 176-185

Preferred Site of Addition ote: = S Bn anti, s-cis S Bn S Bn anti, s-trans syn, s-cis syn, s-trans Bn S aito, T; Miyabe,.; Ushiro, C.; Ueda, M.; Yamakawa, K. J. rg. Chem., 2000, 65, 176-185

eduction of xime Ether and emoval of Chiral Auxiliary Bn 0.7 eq. Mo(C) 6 S 2 2, MeC, reflux S 2 2 = i-pr, 88% yield S 2 2 1 Li-TF (1:4) 2 = i-pr, 88% yield Synthesis of D-Valine 55% overall yield, 4 steps aito, T; Miyabe,.; Ushiro, C.; Ueda, M.; Yamakawa, K. J. rg. Chem., 2000, 65, 176-185

Lewis Acid Chelation to Chiral Auxiliary C 2 Et 1. (CCl) 2, TF 2. C 2 Et n-buli, -78 C 87% yield, two steps C 2 Et i-pr!i (10 eq) Sm(Tf) 3 (1.0 eq) Bu 3 Sn (6.0 eq) C 2 Et Et 3 B (3.0 eq), 2 C 2 Cl 2 /TF (4:1), -78 C 95% yield dr = 29:1 Sibi, M.P.; Liu, P.; Ji, J.; ajra, S.; Chen, J.-X. J. rg. Chem., 2002, 67, 1738-1745

Stereoselective Model Activates!"carbon to imide carbonyl Tf Tf Sm Tf i-pr C 2 Et Blocks Si-face i-pr Sibi, M.P.; Liu, P.; Ji, J.; ajra, S.; Chen, J.-X. J. rg. Chem., 2002, 67, 1738-1745

Synthetic Application: ( )-Enterolactone Previous Synthesis: Chenevert,.; et al. 7 steps, 35% yield Key Step: Enzyme-catalyzed esterification Chenevert,.; Mohammadi-Ziarani, G.; Caron, D.; Dasser, M.; Can. J. Chem., 1999, 77, 223

Lewis Acid Chelation to Chiral Auxiliary Me C 2 Et Br C 3 (10 eq) Sm(Tf) 3 (1.0 eq) Bu 3 Sn (6.0 eq) Et 3 B (3.0 eq), 2 C 2 Cl 2 /TF (4:1), -78 C C 2 Et 71% yield BEt 3 2 Et 2 B Et Et C 2 Et 17% yield Sibi, M.P.; Liu, P.; Ji, J.; ajra, S.; Chen, J.-X. J. rg. Chem., 2002, 67, 1738-1745

Total Synthesis of ( )-Enterolactone Me Me Me C 2 Et 3-MeC6 4 -C 2 I amds, TF -78 C to -54 C C 2 Et Li 2 2 C2 Et 1 Me 50% yield 88% yield Me 1.1.5 eq. B 3 /TF -15 C 2. PPTS, reflux Me 4.0 eq. BBr 3 0 C to -18 C Me 78% yield, two steps 88% yield Sibi, M.P.; Liu, P.; Ji, J.; ajra, S.; Chen, J.-X. J. rg. Chem., 2002, 67, 1738-1745

Methods for Asymmetric Control Chiral Auxiliary, X C X C 1 X C * 1 Chiral Acid, A C A C 1 A C 1 * rganocatalysis 1!LG * 1

Types of Chiral Acids Lewis Acids MgI 2 MgBr 2 Brønsted Acid C 3 2 P 2 Quinine, QP

Chiral Lewis Acid Chelation S 2 Bn 5.0 eq. -I, C 2 Cl 2 2.5 eq. Bu 3 Sn 2.0 eq. BF 3 Et 2 5.0 eq. Et 3 B, -78 C S 2 Bn = i-pr 80% yield, dr = 96:4 Me Bn MgBr 2 i-pr-i, Bu 3 Sn BEt 3, -78 C Me Bn 97% yield, 52% ee aito, T; Miyabe,.; Ushiro, C.; Ueda, M.; Yamakawa, K. J. rg. Chem., 2000, 65, 176-185

Model for Selectivity Mg Bn Me e-face open aito, T; Miyabe,.; Ushiro, C.; Ueda, M.; Yamakawa, K. J. rg. Chem., 2000, 65, 176-185

Chiral Brønsted Acids Quaternary Ammonium Salts of ypophosphorous Acid C 3 C 3 2 P 2 2 P 2 Quinine, QP Quinidine, QDP Cho, D.K.; Jang, D.. Chem. Commun., 2006, 5045-5047

Quinine esults Bn 2 eq. QP, 5 eq. -I 0.5 eq. BEt 3, 2 C 2 Cl 2 / 2 (1:1) 4 h, rt Bn Et Bn 1 2 2a Entry I Product Isolated Yield (%) 2a Yield (%) er of 2 : S C 3 1 i-pr-i 2b 83 7 21 : 79 2 c-ex-i 2c 80 10 21 : 79 3 t-bu-i 2d 60 30 01 : >99 4 1-Ad-I 2e 45 35 01 : >99 5 n-ct-i 2f 50 25 40 : 60 2 P 2 Quinine, QP Cho, D.K.; Jang, D.. Chem. Commun., 2006, 5045-5047

Quinidine esults Bn 2 eq. QDP, 5 eq. -I 0.5 eq. BEt 3, 2 C 2 Cl 2 / 2 (1:1) 4 h, rt Bn Et Bn 1 2 2a Entry I Product Isolated Yield (%) 2a Yield (%) er of 2 : S 1 i-pr-i 2b 82 10 >62 : 38 2 c-ex-i 2c 82 9 >72 : 28 3 t-bu-i 2d 62 27 >99 : 1 4 1-Ad-I 2e 47 37 >99 : 1 5 n-ct-i 2f 48 30 >58 : 42 C 3 Quinidine, QDP 2 P 2 Cho, D.K.; Jang, D.. Chem. Commun., 2006, 5045-5047

Model for Enantioselectivity Quinine versus Quinidine C 3 C 3 2 P 2 2 P 2 Si-face open e-face open Cho, D.K.; Jang, D.. Chem. Commun., 2006, 5045-5047

Conjugate adical Addition Enantioselective addition to α'-hydroxy enone I 0.3 eq. Chiral L.A. 2.0 eq. Bu 3 Sn 3.0 eq. Et 3 B/ 2 C 2 Cl 2, -78 0 C, 24 h 66% yield, 75% ee Mg(Tf 2 ) 2 Chiral Lewis Acid Sibi, M.P.; Lee, S.; Lim, C.J.; Kim, S.; Subramaniam,.; Zimmerman, J. rg. Lett., 2006, 8, 4311-4313

Scope of α'-ydroxy Enone and Alkyl alide Substrates 1 5.0 eq. 2 -I 0.3 eq. Chiral L.A. 2.0 eq. Bu 3 Sn 3.0 eq. Et 3 B/ 2 C 2 Cl 2, -78 0 C, 24 h 2 1 1 = C 2 C 2 2 = 1a-d 2a-d Entry 1 2 Product Isolated Yield (%) ee (%) 1 C 2 C 2 t-bu 1a 66 75 2 C 2 C 2 i-pr 1b 85 68 3 C 2 C 2 n-pr 1c 63 72 4 C 2 C 2 Et 1d 87 72 5 t-bu 2a 90 78 6 i-pr 2b 78 78 7 n-pr 2c 68 86 8 Et 2d 82 80 Mg(Tf 2 ) 2 Chiral Lewis Acid Sibi, M.P.; Lee, S.; Lim, C.J.; Kim, S.; Subramaniam,.; Zimmerman, J. rg. Lett., 2006, 8, 4311-4313

Model for Enantioselectivity 2 Mg X X 1 e-face open X=Tf 2 Sibi, M.P.; Lee, S.; Lim, C.J.; Kim, S.; Subramaniam,.; Zimmerman, J. rg. Lett., 2006, 8, 4311-4313

Synthetic Application: (+)-icciocarpin A Previous Synthesis: Krishe, M.; Agapiou, K. 6 steps, 14% yield Key step: Michael cycloisomerization (+)-icciocarpin A Agapiou, K.; Krishe, M. rg. Lett., 2003, 5, 1737-1740

adical Conjugate Addition MgI 2 Cl Bn Bn 5.0 eq. Cl Br 5.0 eq. Bu 3 Sn 5.0 eq. Et 3 B / 2, -78 C 84% yield, 97% ee Mg Bn icciocarpin A Sibi, M.P.; e, L. rg. Lett., 2004, 6, 1749-1752

Preparation of Aldehyde Intermediate Cl Sm(Tf) 3 C 3 Cl Bn 95% Me Bn ai Acetone I Me LiMDS -78 C to rt Me 98% Bn 97% Bn 1. Pd() 2 / 2, ex/etac, -10 C 2. TEMP, KBr, acl, std. ac 3, 0 C 76% over two steps C Me icciocarpin A Sibi, M.P.; e, L. rg. Lett., 2004, 6, 1749-1752

Synthesis of icciocarpin A Me (i-pr) 3 Ti 2.0 eq. C Solvent, -78 C 2.0 eq. s-buli 85% icciocarpin A 41% overall yield 5.7 : 1 Sibi, M.P.; e, L. rg. Lett., 2004, 6, 1749-1752

Methods for Asymmetric Control Chiral Auxiliary, X C X C 1 X C * 1 Chiral Acid, A C A C 1 A C 1 * rganocatalysis 1!LG * 1

MacMillan Enamine Chemistry Me 1 2 Me 1 2 SET Me 1 2 Me 1 2 Me 1 2 TMS * Beeson, T.D.; Mastracchio, A.; ong, J.B.; Ashton, K.; MacMillan, D.W.C. Science, 2007, 316, 582-585

Previous rganocatalytic esearch Iminium & Enamine rganocatalysis Enamine Activation M catalysis Iminium Activation LUM catalysis - 2-2 e - aldehyde amine catalyst These two modes of catalyst activation have provided more than 60 asymmetric metric methodologies over the past 7 years. - Dr. David MacMillan Beeson, T.D.; Mastracchio, A.; ong, J.B.; Ashton, K.; MacMillan, D.W.C. Science, 2007, 316, 582-585

ypothesis - SM Activation Et SET Butanal IP = 9.8 ev Pyrrolidine IP = 8.8 ev Et Enamine IP = 7.2 ev Et SM-activated Me Me Beeson, T.D.; Mastracchio, A.; ong, J.B.; Ashton, K.; MacMillan, D.W.C. Science, 2007, 316, 582-585

ypothesis - Enantioselectivity Density Functional Theory Model of Imidazolidinone Catalyst Me Beeson, T.D.; Mastracchio, A.; ong, J.B.; Ashton, K.; MacMillan, D.W.C. Science, 2007, 316, 582-585

Applications of SM-rganocatalysis α-substitution of Aldehydes Allylation Enolation * 1 xyamination Alkylation Vinylation

α-allylation of Aldehydes General eaction aldehyde 1 SiMe 3 CA (2.5 equiv.) ac 3, 24 h DME, -20 C 2.5 equiv. CF 3 C allylsilane 20 mol% cat. 1 product 1 CA = Ceric Ammonium itrate ( 4 ) 2 Ce( 3 ) 6 Beeson, T.D.; Mastracchio, A.; ong, J.B.; Ashton, K.; MacMillan, D.W.C. Science, 2007, 316, 582-585

rganocatalytic Allylation: Scope of Aldehyde Substrate 20 mol% SiMe 3 TFA CA (2.5 eq.), -20 C ac 3, DME, 24 h 81% yield, 91% ee 75% yield, 92% ee 72% yield, 87% ee Bz Boc 75% yield, 94% ee 72% yield, 95% ee 70% yield, 93% ee Beeson, T.D.; Mastracchio, A.; ong, J.B.; Ashton, K.; MacMillan, D.W.C. Science, 2007, 316, 582-585

rganocatalytic Allylation: Scope of Allylsilane Substrate 1 TFA 20 mol% C 6 13 SiMe 3 CA (2.5 eq.), -20 C ac 3, DME, 24 h 1 C 6 13 C 6 13 C 6 13 C 6 13 C 2 Et 88% yield, 91% ee 77% yield, 88% ee 87% yield, 90% ee 81% yield, 90% ee Beeson, T.D.; Mastracchio, A.; ong, J.B.; Ashton, K.; MacMillan, D.W.C. Science, 2007, 316, 582-585

α-eteroarylation & lefin Cyclization of Aldehydes C 6 13 + Boc 20 mol% TFA CA (2.5 eq.), -20 C ac 3, DME, 24 h Boc 85% yield 84% ee TFA 20 mol% CA (2.5 eq.), -10 C LiCl, TF, 24 h Cl 85% yield dr >8:1 95% ee Beeson, T.D.; Mastracchio, A.; ong, J.B.; Ashton, K.; MacMillan, D.W.C. Science, 2007, 316, 582-585

Mechanistic Investigation Bn t-bu radical Bn t-bu C 6 13 C 6 13 Me Me 2.5 equiv. cation Bn t-bu C 6 13 Me Beeson, T.D.; Mastracchio, A.; ong, J.B.; Ashton, K.; MacMillan, D.W.C. Science, 2007, 316, 582-585

Mechanistic Investigation Bn t-bu radical Bn t-bu C 6 13 2 C 6 13 Me C 6 13 Me 65% yield Me Bn t-bu C 6 13 Me cation Bn t-bu C 6 13 Me C 6 13 2 Me not observed Beeson, T.D.; Mastracchio, A.; ong, J.B.; Ashton, K.; MacMillan, D.W.C. Science, 2007, 316, 582-585

Applications of SM-rganocatalysis α-substitution of Aldehydes Allylation Enolation * 1 xyamination Alkylation Vinylation

α-xyamination of Aldehydes 4.0 eq. 1. Catalyst, Cp 2 FeBF 4 2. ab 4, rt Zn(Ac) 2 enantioselective 1,2-diol synthesis Sibi, M.P.; asegawa, M. J. Am. Chem. Soc., 2007, 129, 4124-4125

Catalyst ptimization 4.0 eq. 1. Catalyst, TF (1.0 M), rt 1.0 eq. Cp 2 FeBF 4 2. 2.0 eq. ab 4, rt TEMP BF 4 1 2 3 4 Tf C 2 Entry Catalyst mol % time, h Isolated Yield (%) ee (%) 1 none 24 79 2 1 100 1 61 3 2 100 1 63 76 4 2 20 1 78 64 5 3 20 1 87 80 6 4 20 1 71-3 Sibi, M.P.; asegawa, M. J. Am. Chem. Soc., 2007, 129, 4124-4125

Scope of Aldehydes 4.0 eq. 1. 20 mol% 3, DMF (1.0 M) 0.1 eq. FeCl 3, 0.3 eq. a 2 temp., time 2. 2.0 eq. ab 4, rt TEMP Entry Temp, C time, h Isolated Yield (%) ee (%) 1 C 6 5 r.t. 2 74 32 2 C 6 5 C 2 r.t. 2 80 71 3-10 24 68 82 4 C 6 5 C 2 C 2 r.t. 2 78 60 5-10 24 64 84 6 4-Me-C 6 4 C 2 C 2 r.t. 2 77 81 7-10 24 64 86 8 4-2 -C 6 4 C 2 C 2 r.t. 2 74 75 9-10 24 75 82 10 (C 3 ) 2 C r.t. 24 74 0 BF 4 3 Sibi, M.P.; asegawa, M. J. Am. Chem. Soc., 2007, 129, 4124-4125

Model for Enantioselectivity Si-face open Sibi, M.P.; asegawa, M. J. Am. Chem. Soc., 2007, 129, 4124-4125

Applications of SM-rganocatalysis α-substitution of Aldehydes Allylation Vinylation * 1 xyamination Alkylation Enolation * 1

α-enolation of Aldehydes TMS 1 1!-substituted 1,4-dicarbonyl Importance of eaction: ne step reaction to form umpolung polarity without going through anionic mechanism Jang,.Y.; ong, J.B.; MacMillan, D.W.C. J. Am. Chem. Soc., 2007, 129, 7004-7005

rganocatalytic Enolation: Scope of Aldehyde Substrate TMS 20 mol% CA (2 eq.), DTBP (2 eq.) acetone, 2, 24 h, -20 C TFA hexyl 85% yield 90% ee 7 92% yield 92% ee 74% yield 93% ee 77% yield 91% ee 2 71% yield 90% ee 84% yield 95% ee Bn Boc Jang,.Y.; ong, J.B.; MacMillan, D.W.C. J. Am. Chem. Soc., 2007, 129, 7004-7005

rganocatalytic Enolation: Scope of Enolsilane Substrate TFA hexyl Si 3 1 20 mol% CA (2 eq.), DTBP (2 eq.) DME, 2, 24 h, -20 C hexyl 1 Enolsilane Product Enolsilane Product TMS hexyl 77% yield 92% ee TBS t-bu hexyl t-bu 74% yield 96% ee TMS hexyl 77% yield 92% ee TBS t-bu hexyl 55% yield 92% ee Jang,.Y.; ong, J.B.; MacMillan, D.W.C. J. Am. Chem. Soc., 2007, 129, 7004-7005

Applications of SM-rganocatalysis α-substitution of Aldehydes Allylation Vinylation * 1 xyamination Alkylation 1 Enolation * 1

rganocatalytic α-vinylation of Aldehydes KF 3 B 1 20 mol% TFA 1 aldehyde vinyl-bf 3 K enantioenriched!-vinyl aldehyde Importance of eaction: Form β,γ-unsaturated aldehydes without olefin transpostion Kim,.; MacMillan, D.W.C. J. Am. Chem. Soc., 2008, 130, 398-399

rganocatalytic Vinylation of Aldehydes KF 3 B 1 20 mol% TFA 1 aldehyde vinyl-bf 3 K enantioenriched!-vinyl aldehyde BF 3 K - 1 e - 1 KF 3 B 1 KF 3 B 1 Kim,.; MacMillan, D.W.C. J. Am. Chem. Soc., 2008, 130, 398-399

rganocatalytic Vinylation: Scope of Aldehyde Substrate KF 3 B 20 mol% CA (2.5 eq.), -50 C ac 3, DME, 2, 24 h TFA Me 72% yield 94% ee 4 78% yield 95% ee 82% yield 96% ee Et 79% yield 93% ee 2 78% yield 93% ee 76% yield 96% ee Bn Boc Kim,.; MacMillan, D.W.C. J. Am. Chem. Soc., 2008, 130, 398-399

rganocatalytic Vinylation: Scope of Vinyl Trifluoroborate Salt hexyl KF 3 B 1 1 =, Me 20 mol% CA (2.5 eq.), -50 C ac 3, DME, 2, 24 h TFA hexyl 1 hexyl 81% yield 94% ee hexyl Me 78% yield 95% ee hexyl 6 82% yield 89% ee Cl Me hexyl 77% yield 95% ee hexyl 61% yield 95% ee hexyl 84% yield 90% ee Kim,.; MacMillan, D.W.C. J. Am. Chem. Soc., 2008, 130, 398-399

Applications of SM-rganocatalysis α-substitution of Aldehydes Allylation Enolation * 1 xyamination Alkylation * * 1 1 * 2 Vinylation 1

α-alkylation of Aldehydes Br 1 2 rganocatalysis otoredox Catalysis 1 2 aldehyde racemic!-bromocarbonyl enantioenriched!-alkylated "-ketoaldehyde Me Tf Me Me Me Me u 2+ rganocatalyst otoredox Catalyst icewicz, D.A.; MacMillan, D.W.C. Science, 2008, 322, 77-80

Catalytic Cycles 1 ()C 1 5 4 Br! Br SET u(bpy) 3 + (3) reductant 1 10 1 t-bu 11 catalyst 6 t-bu aldehyde 7 u(bpy) 3 2+ photoredox catalyst 1 otoredox Catalytic Cycle SET rganocatalytic Cycle 8 t-bu photon source * u(bpy) 3 2+ (2) oxidant 1 9 t-bu 1 5 3 C Si-face open icewicz, D.A.; MacMillan, D.W.C. Science, 2008, 322, 77-80

2.0 eq. rganocatalytic Alkylation: Scope of Aldehyde Substrate hexyl Et C 2 Et C 2 Et Br 93% yield 90% ee Et 20 mol% Et C 2 Et 4 C 2 Et Me TFA Me 86% yield 90% ee Me Me Me 0.5 mol% u(bpy) 3 Cl 2 2.0 eq 2,6-lutidine, DMF fluorescent light, 23 C C 2 Et C 2 Et C 2 Et C 2 Et 83% yield 95% ee C 2 Et C 2 Et C 2 Et C 2 Et 92% yield 90% ee C 2 Et 63% yield 93% ee C 2 Et 66% yield 91% ee Boc icewicz, D.A.; MacMillan, D.W.C. Science, 2008, 322, 77-80

rganocatalytic Alkylation: Scope of α-bromocarbonyl Substrate ex 2.0 eq. Br 1 20 mol% Me TFA Me Me Me Me 0.5 mol% u(bpy) 3 Cl 2 2.0 eq 2,6-lutidine, DMF fluorescent light, 23 C ex 1 ex 84% yield 96% ee ex C 2 CF 3 80% yield 92% ee ex C 2 Et C 2 Et 80% yield 88% ee 2 Me t-bu 2 C ex 84% yield 95% ee ex 87% yield 96% ee ex 70% yield 5:1 dr, 99% ee icewicz, D.A.; MacMillan, D.W.C. Science, 2008, 322, 77-80

To Sum Up Asymmetric control is difficult in radical synthesis Fast reactivity Planar structure Methods that have been used to control asymmetry Chiral Auxiliary Chiral Acid Chelation rganocatalysis

Acknowledgements Dr. Jetze Tepe Dr. Babak Borhan Group Membes: Brandon, Chris, Daljinder, Jason, Mike, ahman, Samantha, Thu, Amanda Arvind, Camille, Carmin