Solution to Review Problems for Midterm II

Similar documents
Find the indicated derivative. 1) Find y(4) if y = 3 sin x. A) y(4) = 3 cos x B) y(4) = 3 sin x C) y(4) = - 3 cos x D) y(4) = - 3 sin x

Math 250 Skills Assessment Test

5, tan = 4. csc = Simplify: 3. Simplify: 4. Factor and simplify: cos x sin x cos x

a x a y = a x+y a x a = y ax y (a x ) r = a rx and log a (xy) = log a (x) + log a (y) log a ( x y ) = log a(x) log a (y) log a (x r ) = r log a (x).

Tangent Lines Sec. 2.1, 2.7, & 2.8 (continued)

Math 229 Mock Final Exam Solution

Calculating the Derivative Using Derivative Rules Implicit Functions Higher-Order Derivatives

Mth Review Problems for Test 2 Stewart 8e Chapter 3. For Test #2 study these problems, the examples in your notes, and the homework.

CK- 12 Algebra II with Trigonometry Concepts 1

UNIT-IV DIFFERENTIATION

Name Date Period. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MATH 408N PRACTICE FINAL

Solving Equations. Pure Math 30: Explained! 255

13 Implicit Differentiation

MATH 101: PRACTICE MIDTERM 2

Math 5 Trigonometry Chapter 4 Test Fall 08 Name Show work for credit. Write all responses on separate paper. Do not use a calculator.

Using this definition, it is possible to define an angle of any (positive or negative) measurement by recognizing how its terminal side is obtained.

INVERSE FUNCTIONS DERIVATIVES. terms on one side and everything else on the other. (3) Factor out dy. for the following functions: 1.

Grade: The remainder of this page has been left blank for your workings. VERSION E. Midterm E: Page 1 of 12

Solution. Solution. f (x) = (cos x)2 cos(2x) 2 sin(2x) 2 cos x ( sin x) (cos x) 4. f (π/4) = ( 2/2) ( 2/2) ( 2/2) ( 2/2) 4.

In general, if we start with a function f and want to reverse the differentiation process, then we are finding an antiderivative of f.

Review Problems for Test 1

MATH 1A Midterm Practice September 29, 2014

dx dx [x2 + y 2 ] = y d [tan x] + tan x = 2x + 2y = y sec 2 x + tan x dy dy = tan x dy dy = [tan x 2y] dy dx = 2x y sec2 x [1 + sin y] = sin(xy)

Calculus Midterm Exam October 31, 2018

Spring 2015, MA 252, Calculus II, Final Exam Preview Solutions

Trigonometric Functions () 1 / 28

Name: Answer Key No calculators. Show your work! 1. (21 points) All answers should either be,, a (finite) real number, or DNE ( does not exist ).

Department of Mathematics, K.T.H.M. College, Nashik F.Y.B.Sc. Calculus Practical (Academic Year )

Math 251, Spring 2005: Exam #2 Preview Problems

2. Which of the following is an equation of the line tangent to the graph of f(x) = x 4 + 2x 2 at the point where

(a) At what number x = a does f have a removable discontinuity? What value f(a) should be assigned to f at x = a in order to make f continuous at a?

Sec. 14.3: Partial Derivatives. All of the following are ways of representing the derivative. y dx

Algebra 2/Trig AIIT.17 Trig Identities Notes. Name: Date: Block:

(e) 2 (f) 2. (c) + (d). Limits at Infinity. 2.5) 9-14,25-34,41-43,46-47,56-57, (c) (d) 2

4 Partial Differentiation

Pre-Calculus II: Trigonometry Exam 1 Preparation Solutions. Math&142 November 8, 2016

Topics and Concepts. 1. Limits

UNIT 3: DERIVATIVES STUDY GUIDE

1. The graph of a function f is given above. Answer the question: a. Find the value(s) of x where f is not differentiable. Ans: x = 4, x = 3, x = 2,

Antiderivatives. Mathematics 11: Lecture 30. Dan Sloughter. Furman University. November 7, 2007

Math 147 Exam II Practice Problems

Math 1552: Integral Calculus Final Exam Study Guide, Spring 2018

1.3 Basic Trigonometric Functions

University Calculus I. Worksheet # 8 Mar b. sin tan e. sin 2 sin 1 5. b. tan. c. sec sin 1 ( x )) cos 1 ( x )) f. csc. c.

1 2 x Solution. The function f x is only defined when x 0, so we will assume that x 0 for the remainder of the solution. f x. f x h f x.

Final exam for MATH 1272: Calculus II, Spring 2015

Section 4.8 Anti Derivative and Indefinite Integrals 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I

True or False. Circle T if the statement is always true; otherwise circle F. for all angles θ. T F. 1 sin θ

f(x) f(a) Limit definition of the at a point in slope notation.

TO EARN ANY CREDIT, YOU MUST SHOW STEPS LEADING TO THE ANSWER

TRIGONOMETRY OUTCOMES

DIFFERENTIATION RULES

Differentiation Rules and Formulas

Fall 2016, MA 252, Calculus II, Final Exam Preview Solutions

Ma 221 Homework Solutions Due Date: January 24, 2012

Practice problems for Exam 1. a b = (2) 2 + (4) 2 + ( 3) 2 = 29

FAIRFIELD COUNTY MATH LEAGUE (FCML) Match 4 Round 1 Arithmetic: Basic Statistics

The goal of today is to determine what u-substitution to use for trigonometric integrals. The most common substitutions are the following:

Chapter 1. Functions 1.3. Trigonometric Functions

Core Mathematics 3 Differentiation

Questions from Larson Chapter 4 Topics. 5. Evaluate

and verify that it satisfies the differential equation:

Chapter 2: Differentiation

Unit 6 Trigonometric Identities

f(g(x)) g (x) dx = f(u) du.

Math 152 Take Home Test 1

Math 121. Exam II. November 28 th, 2018

Math 1310 Final Exam

MATH 151, SPRING 2018

2.3 More Differentiation Patterns

Final Exam. Math 3 December 7, 2010

Math 131 Exam 2 Spring 2016

Math 611b Assignment #6 Name. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Math 180, Final Exam, Fall 2012 Problem 1 Solution

The Chain Rule. Composition Review. Intuition. = 2(1.5) = 3 times faster than (X)avier.

Inverse Trig Functions

You are being asked to create your own AP CALCULUS Survival kit. For the survival kit you will need:

Multiple Choice Answers. MA 113 Calculus I Spring 2018 Exam 2 Tuesday, 6 March Question

c) xy 3 = cos(7x +5y), y 0 = y3 + 7 sin(7x +5y) 3xy sin(7x +5y) d) xe y = sin(xy), y 0 = ey + y cos(xy) x(e y cos(xy)) e) y = x ln(3x + 5), y 0

Solutions of Math 53 Midterm Exam I

Test 2 Review. 1. Find the determinant of the matrix below using (a) cofactor expansion and (b) row reduction. A = 3 2 =

Chapter 2: Differentiation

SANDERSON HIGH SCHOOL AP CALCULUS AB/BC SUMMER REVIEW PACKET

Your signature: (1) (Pre-calculus Review Set Problems 80 and 124.)

Math 112 (Calculus I) Midterm Exam 3 KEY

1 Solution to Homework 4

This file is /conf/snippets/setheader.pg you can use it as a model for creating files which introduce each problem set.

Blue Pelican Calculus First Semester

Math 222 Spring 2013 Exam 3 Review Problem Answers

1d C4 Integration cot4x 1 4 1e C4 Integration trig reverse chain 1

Calculus I Review Solutions

MAS113 CALCULUS II SPRING 2008, QUIZ 5 SOLUTIONS. x 2 dx = 3y + y 3 = x 3 + c. It can be easily verified that the differential equation is exact, as

Lecture XVII. Abstract We introduce the concept of directional derivative of a scalar function and discuss its relation with the gradient operator.

Review for Exam IV MATH 1113 sections 51 & 52 Fall 2018

MATH 1241 FINAL EXAM FALL 2012 Part I, No Calculators Allowed

Chapter 2 Differentiation. 2.1 Tangent Lines and Their Slopes. Calculus: A Complete Course, 8e Chapter 2: Differentiation

Solutions to Exam 2, Math 10560

MA Practice Exam #2 Solutions

June 9 Math 1113 sec 002 Summer 2014

Transcription:

Solution to Review Problems for Midterm II Midterm II: Monday, October 18 in class Topics: 31-3 (except 34) 1 Use te definition of derivative f f(x+) f(x) (x) lim 0 to find te derivative of te functions (a) f(x) 2x + 3 (b) f(x) 1 2x+3 Solution: (a) First, let us find te expression f(x + ) f(x) 2(x + ) + 3 2x + 3 2x + 2 + 3 2x + 3 Now f(x+) f(x) 2x+2+3 2x+3 2x+2+3 2x+3 2x+2+3+ 2x+3 2x+2+3+ 2x+3 ( 2x+2+3) 2 ( 2x+3) 2 ( 2x+2+3+ 2x+3) 2x+2+3 (2x+3) ( 2x+2+3+ 2x+3) Tus f (x) lim 0 f(x+) f(x) lim 0 2 2x+2+3+ 2x+3 2 2x+3+ 2x+3 2 2 2x+3 1 2x+3 (b) First, let us find te expression 1 f(x + ) f(x) 1 1 1 2(x+)+3 2x+3 2x+2+3 2 ( 2x+2+3+ 2 2x+3) ( 2x+2+3+ 2x+3) 2x+3 2x+3 2x+2+3 2x+3 (2x+2+3) 2x+3 2x 2 3 (2x+2+3)(2x+3) (2x+2+3)(2x+3) (2x+2+3)(2x+3) (2x+2+3)(2x+3) Now f(x+) f(x) 2) (2x+2+3)(2x+3) 2 (2x+2+3)(2x+3) 2 f (x) lim 0 f(x+) f(x) lim 0 2 2 (2x+3)(2x+3) 2 (2x+3) 2 (2x+2+3)(2x+3) (2x+2+3)(2x+3) 2 (2x+2+3)(2x+3) Tus 2 Find te derivative of te following functions and simplify your answers (a) 12x 3 + 4x 2 x 2 (b) (1 + 4x)e 4x (c) (sec(x) + tan(x)) 3 (d) x cos(x) 6x sin(x) 6 cos(x) (e) ( cos(x) 1+sin(x) ) Solution: (a) First, we rewrite 12x 3 x 2 + 4x 2 12x 3 x 2 + 4x 2 (12x 3 +4x 2 x 2 ) (12x 3 x 2 +4x 2 60x 4 + 6 x 3 8x ) 12 x 4 3 ( 2)x 3 +4 ( 2 So ) x (b) Applying te product rule, we ave ((1 + 4x)e 4x ) (1 + 4x) e 4x + (1 + 4x)(e 4x ) 4e 4x + (1 + 4x)e 4x ( 4x) 4e 4x + (1 + 4x)e 4x ( 4) 4e 4x 4e 4x 16xe 4x 16xe 4x (c) [(sec(x) + tan(x)) 3 ] 3(sec(x) + tan(x)) 2 (sec(x) + tan(x)) 3(sec(x) + tan(x)) 2 (sec(x) tan(x) + sec 2 (x)) 3(sec(x) + tan(x)) 2 sec(x) (sec(x) + sec(x)) 3 sec(x)(sec(x) + tan(x)) 3 (d)(x cos(x) 6x sin(x) 6 cos(x)) (x cos(x)) (6x sin(x)) (6 cos(x)) x 4 cos(x) + x ( sin(x)) 6 sin(x) 6x cos(x) 6( sin(x)) x 4 cos(x) x sin(x) 6 sin(x) 6x cos(x) + 6 sin(x) x 4 cos(x) x sin(x) 6x cos(x) MATH 180: page 1 of 6

Solution to Review Problems for Midterm II MATH 180: page 2 of 6 (e) [( cos(x) 1+sin(x) ) ] ( cos(x) 1+sin(x) )4 ( cos(x) 1+sin(x) ) ( cos(x) ( cos(x) 1+sin(x) )4 ( ( sin(x))(1+sin(x)) cos(x) cos(x) (1+sin(x)) 2 ( cos(x) 1+sin(x) )4 ( sin(x) 1 (1+sin(x)) 2 ) ( cos(x) 1+sin(x) )4 ( (cos(x)) (1+sin(x)) cos(x)(1+sin(x)) ) (1+sin(x)) 2 ) ( cos(x) 1+sin(x) )4 ( sin(x) sin2 (x) cos 2 (x) ) (1+sin(x)) 2 1+sin(x) )4 1 ( ) cos4 (x) (1+sin(x)) (1+sin(x)) 3 Find te derivative of te following functions You don t ave to simplify your answer (a) (2x + 1) 3 (1 + e 2x ) (b) (2x+1)3 (c) tan(sin(xe x )) (d) cot 6 ( 2) (1+e 2x ) t (e) (f) e 4x sec(x2) (g) sin 3 (2t) cos 3 (2t) () x 3 tan 3 ((1 + x 2 ) 2 ) 2 +e x2 (i) ex2 csc(3x) x 2 (j) x 4 e 3x cos(x) (k) sin (2x) (1+x 2 ) 2 x Solution:(a) [(2x + 1) 3 (1 + e 2x ) ] {}}{}{{} [(2x + 1) 3 ] }{{} (1 + e2x ) + (2x + 1) 3 [(1 + e 2x ) ] product rule x cos3 (2x) 3 (l) 1 + t cos(t 2 ) 2t3 3 sin(t2 ) {}}{ 3(2x + 1) 2 (2x + 1) }{{} (1 + e2x ) + (2x + 1) 3 (1 + e 2x ) 4 (1 + e 2x ) 3(2x + 1) 2 2 (1 + e 2x ) + (2x + 1) 3 (1 + e 2x ) 4 e 2x (2x) 6(2x + 1) 2 (1 + e 2x ) + (2x + 1) 3 (1 + e 2x ) 4 e 2x 2 6(2x + 1) 2 (1 + e 2x ) + 10(2x + 1) 3 (1 + e 2x ) 4 (b) First, we can rewrite (2x+1)3 (2x + 1) 3 (1 + e 2x ) (1+e 2x ) [ (2x+1)3 ] [(2x + 1) 3 (1 + e 2x ) ] (1+e 2x ) {}}{}{{} [(2x + 1) 3 ] }{{} (1 + e2x ) + (2x + 1) 3 [(1 + e 2x ) ] product rule {}}{ 3(2x + 1) 2 (2x + 1) }{{} (1 + e2x ) + (2x + 1) 3 ( ) (1 + e 2x ) 6 (1 + e 2x ) 3(2x + 1) 2 2 (1 + e 2x ) + (2x + 1) 3 ( ) (1 + e 2x ) 6 e 2x (2x) 6(2x + 1) 2 (1 + e 2x ) + (2x + 1) 3 ( ) (1 + e 2x ) 6 e 2x 2 6(2x + 1) 2 (1 + e 2x ) 10(2x + 1) 3 (1 + e 2x ) 6 (c) [tan(sin(xe x ))] sec 2 (sin(xe x ))[sin(xe x )] sec 2 (sin(xe x )) cos(xe x )(xe x ) sec 2 (sin(xe x )) cos(xe x )(e x + xe x ) (d) Note tat cot 6 ( 2 t ) (cot(2t 1 )) 6 So [cot 6 ( 2 t )] [(cot(2t 1 )) 6 ] 6(cot(2t 1 )) [cot(2t 1 )] 6(cot(2t 1 )) [ csc 2 (2t 1 )(2t 1 ) 6(cot(2t 1 )) [ csc 2 (2t 1 )]( 2t 2 ) (e) We can rewrite 4 x 2 +e x2 (x 2 +e x2 ) 1 4 [(x 2 + e x2 ) 1 4 ] [(x 2 + e x2 ) 1 4 ] (x 2 + e x2 ) 1 4 So ( 4x 2 +e x2 )

MATH 180: page 3 of 6 Solution to Review Problems for Midterm II ( 1 4 ) (x2 + e x2 ) 4 (x 2 + e x2 ) ( 1 4 ) (x2 + e x2 ) 4 (2x + e x2 (x 2 ) ) ( 1) 4 (x2 + e x2 ) 4 (2x + e x2 (2x)) (f) (e sec(x2) ) e sec(x2) (sec(x 2 )) }{{} esec(x2) sec(x 2 ) tan(x 2 )(x 2 ) }{{} e sec(x2) sec(x 2 ) tan(x 2 ) (2x) (g) (sin 3 (2t) cos 3 (2t)) (sin 3 (2t)) cos 3 (2t) + sin 3 (2t)(cos 3 (2t)) 3(sin 2 (2t)) (sin(2t)) cos 3 (2t) + sin 3 (2t) 3 (cos 2 (2t))(cos(2t)) 3(sin 2 (2t)) cos(2t) 2 cos 3 (2t) + sin 3 (2t) 3 (cos 2 (2t))( sin(2t)) 2 () [x 3 tan 3 ((1 + x 2 ) 2 )] (x 3 ) tan 3 ((1 + x 2 ) 2 ) + x 3 [tan 3 ((1 + x 2 ) 2 )] 3x 2 tan 3 ((1 + x 2 ) 2 ) + x 3 3 tan 2 ((1 + x 2 ) 2 )[tan((1 + x 2 ) 2 )] 3x 2 tan 3 ((1 + x 2 ) 2 ) + x 3 3 tan 2 ((1 + x 2 ) 2 )[sec 2 ((1 + x 2 ) 2 )][(1 + x 2 ) 2 ] 3x 2 tan 3 ((1 + x 2 ) 2 ) + x 3 3 tan 2 ((1 + x 2 ) 2 )[sec 2 ((1 + x 2 ) 2 )] 2 (1 + x 2 ) (2x) (i)note tat ex2 csc(3x) x 2 (1+x 2 ) 2 (e x2 csc(3x) x 2 )(1 + x 2 ) 2 So ( ex2 csc(3x) x 2 ) [(e x2 csc(3x) x 2 )(1 + x 2 ) 2 ] (1+x 2 ) 2 [(e x2 csc(3x) x 2 )] (1 + x 2 ) 2 + (e x2 csc(3x) x 2 )[(1 + x 2 ) 2 ] ([e x2 csc(3x)] 2x)(1 + x 2 ) 2 + (e x2 csc(3x) x 2 ) ( 2)[(1 + x 2 ) 3 ](1 + x 2 ) ((e x2 ) csc(3x) + e x2 (csc(3x)) 2x)(1 + x 2 ) 2 + (e x2 csc(3x) x 2 ) ( 2)[(1 + x 2 ) 3 ] (2x) ([e x2 (2x) csc(3x) + e x2 ( csc(3x) cot(3x)) 3] 2x)(1 + x 2 ) 2 + (e x2 csc(3x) x 2 ) ( 2)[(1 + x 2 ) 3 ](2x) (j) (x 4 e 3x cos(x)) (x 4 e 3x ) cos(x) + x 4 e 3x (cos(x)) [(x 4 ) e 3x + x 4 (e 3x ) ] cos(x) + x 4 e 3x ( sin(x)) [4x 3 e 3x + x 4 e 3x ( 3)] cos(x) + x 4 e 3x ( sin(x)) (k) Note tat sin (2x) x So ( sin (2x) x x cos3 (2x) 3 sin (2x)x 1 1 3 x cos3 (2x) x cos3 (2x) 3 ) (sin (2x)x 1 ) 1 3 (x cos3 (2x)) (sin (2x)) x 1 + sin (2x)(x 1 ) 1 3 (x cos 3 (2x) + x(cos 3 (2x)) ) ( ) (sin 6 (2x))(sin(2x)) x 1 +sin (2x) ( 1)x 2 1 3 (cos3 (2x)+x 3(cos 2 (2x))(cos(2x)) ) ( ) (sin 6 (2x))(cos(2x)) 2 x 1 + sin (2x) ( 1)x 2 1 3 (cos3 (2x) + x 3(cos 2 (2x))( 2 sin(2x)) 2) (l) Note tat So ( 1 + t cos(t 2 ) 2t3 3 sin(t2 ) [1 + t cos(t 2 ) 2t3 3 sin(t2 )] 1 2 1 + t cos(t 2 ) 2t3 3 sin(t2 )) ([1 + t cos(t 2 ) 2t3 3 sin(t2 )] 1 2 ) 1[1 + t 2 cos(t2 ) 2t3 3 sin(t2 )] 1 2 [1 + t cos(t 2 ) 2t3 3 sin(t2 )] 1[1 + t 2 cos(t2 ) 2t3 3 sin(t2 )] 1 2 [t cos(t 2 )+t(cos(t 2 )) ( 2t3 3 ) sin(t 2 ) 2t3 3 (sin(t2 )) ]

Solution to Review Problems for Midterm II MATH 180: page 4 of 6 1[1 + t 2 cos(t2 ) 2t3 3 sin(t2 )] 1 2 [cos(t 2 ) + t( sin(t 2 )) (2t) (2t 2 ) sin(t 2 ) 2t 3 3 (cos(t2 )) 2t] 4 Find te first derivative (y ) and second derivative (y ) of te following functions (a) y (6 + 4 x ) (b) y x 3 e 3x Solution: (a)note tat y (6 + 4 x ) (6 + 4x 1 ) So y [(6 + 4x 1 ) ] (6 + 4x 1 ) 4 (6 + 4x 1 ) (6 + 4x 1 ) 4 ( 4x 2 ) 20(6 + 4x 1 ) 4 x 2 y [ 20(6 + 4x 1 ) 4 x 2 ] 20[(6 + 4x 1 ) 4 ] x 2 20(6 + 4x 1 ) 4 (x 2 ) 20 4 (6 + 4x 1 ) 3 ((6 + 4x 1 )) x 2 20(6 + 4x 1 ) 4 ( 2x 3 ) 20 4 (6 + 4x 1 ) 3 ( 4x 2 ) x 2 + 40(6 + 4x 1 ) 4 x 3 320 (6 + 4x 1 ) 3 x 4 + 40(6 + 4x 1 ) 4 x 3 (b) y (x 3 e 3x ) (x 3 ) e 3x + x 3 (e 3x ) 3x 2 e 3x + x 3 e 3x 3 3x 2 e 3x + 3x 3 e 3x (3x 2 + 3x 3 )e 3x y [(3x 2 + 3x 3 )e 3x ] (3x 2 + 3x 3 ) e 3x + (3x 2 + 3x 3 )(e 3x ) (6x + 9x 2 )e 3x + (3x 2 + 3x 3 )e 3x 3 (6x + 9x 2 )e 3x + (9x 2 + 9x 3 )e 3x (6x + 9x 2 + 9x 2 + 9x 3 )e 3x (6x + 18x 2 + 9x 3 )e 3x Use implicit differentiation to find dy dx (a) 2xy y 2 x (b) x 3 + 3x 2 y + y 3 8 (c) x+y x y x2 + y 2 (d) cos(xy) + x y (e) e xy sin(x + y) In implicit differentiation, Suppose y y(x) ten (f(y)) f (y)y Solution:(a) Differentiating 2xy y 2 x, we get 2(xy) (y 2 ) x 2x y+2xy 2yy 1 2y+2xy 2yy 1 Now we ave 2xy 2yy 1 2y y (2x 2y) 1 2y y 1 2y 2x 2y (b) Differentiating te equation, we get (x 3 + 3x 2 y + y 3 ) (8) 3x 2 + 3(x 2 ) y + 3x 2 y + 3y 2 y 0 and 3x 2 + 6xy + 2x 2 y + 3y 2 y 0 Tis implies tat 2x 2 y + 3y 2 y 3x 2 6xy, y (2x 2 + 3y 2 ) 3x 2 6xy and y 3x2 6xy 2x 2 +3y 2 (c) Note tat x+y x y x2 + y 2 is te same as (x + y) (x y)(x 2 y 2 ) Differentiating te equation, we get (x + y) [(x y)(x 2 y 2 )] 1 + y (x y) (x 2 y 2 ) + (x y)(x 2 y 2 ) 1 + y (1 y )(x 2 y 2 ) + (x y)(2x 2yy ) 1 + y x 2 y 2 y (x 2 y 2 ) + 2x(x y) 2y(x y)y y + y (x 2 y 2 ) + 2y(x y)y x 2 y 2 + 2x 2 2xy 1 3x 2 y 2 2xy 1 y (1 + x 2 y 2 + 2yx 2y 2 ) 3x 2 y 2 2xy 1 and y (1 + x 2 3y 2 + 2yx) 3x 2 y 2 2xy 1 Tis gives y 3x2 y 2 2xy 1 1+x 2 3y 2 +2yx

MATH 180: page of 6 Solution to Review Problems for Midterm II (d) [cos(xy) + x ] (y ) sin(xy)(xy) + x 4 y 4 y sin(xy)(y + xy ) + x 4 y 4 y sin(xy)y sin(xy)xy + x 4 y 4 y sin(xy)xy y 4 y sin(xy)y x 4 y ( sin(xy)x y 4 ) sin(xy)y x 4 y sin(xy)y x4 sin(xy)x y 4 (e) (e xy ) (sin(x + y)) e xy (xy) cos(x + y)(x + y) e xy (y+xy ) cos(x+y)(1+y ) e xy y+e xy xy cos(x+y)+ cos(x+y)y cos(x + y)y + e xy xy cos(x + y) e xy y y ( cos(x + y) + e xy x) cos(x + y) e xy y y cos(x+y) exy y cos(x+y)+e xy x 6 Sow tat (1, 2) lie on te curve 2x 3 + 2y 3 9xy 0 Ten find te te tangent and normal to te curve at (1, 2) Solution: Plugging (1, 2) to te equation 2x 3 + 2y 3 9xy, we get 2 1 3 + 2 2 3 9 1 2 2 + 2 8 18 2 + 16 18 0 Tis means tat (1, 2) lie on te curve 2x 3 + 2y 3 9xy 0 Next we find y by implicit differentiation Differentiating 2x 3 + 2y 3 9xy 0, we get 2(x 3 ) + 2(y 3 ) 9(xy) 0 6x 2 + 6y 2 y 9y 9xy 0 6y 2 y 9xy 6x 2 + 9y y (6y 2 9x) 6x 2 + 9y y 6x2 +9y 6y 2 9x At (1, 2), we ave y (1) 6 12 +9 2 6+18 12 4 So te slope of 6 2 2 9 1 24 9 1 te tangent line is m 4 and te point is (1, 2) By te point slope formula, we ave y 2 4 (x 1) From te slope of te tangent line, we know tat te slope of te normal line is m 4 So te equation of te normal line is y 2 (x 1) 4 Find te normal to te curve xy + 2x y 0 tat are parallel to te line x + 2y 0 Solution: First we find y by implicit differentiation Differentiating xy + 2x y 0, we get (xy) + 2(x) (y) 0 y + xy + 2 y 0 xy y y 2 So te slope of te tangent line at (x, y) is y 2 From ere, we know tat te slope of te normal line is x 1 x 1 x 1 Te equation x + 2y 0 can be rewritten as 2y x and y 2 y+2 y 1x So te slope is m 1 At (x, y), te slope of te normal to 2 2 te curve xy + 2x y 0 tat are parallel to te line x + 2y 0 must ave slope 1 x 1 Tis implies tat 1, 2x 2 y 2 and y 2x 2 y+2 2 y (x 1) y 2 y y 2 x 1

Solution to Review Problems for Midterm II MATH 180: page 6 of 6 Plugging y 2x into te equation of te curve xy + 2x y 0, we get x( 2x) + 2x ( 2x) 0 2x 2 + 2x + 2x 0 2x 2 + 4x 0 2x(x 2) 0 x 0or x 2 Recall tat y 2x Tis implies tat y 0 or y 4 So te point is (0, 0) and te slope is (2, 4) Recall te slope of te normal line is 1 So te normal line parallel to x + 2y 0 2 are y 1x (point(0, 0))and y + 4 1 (x 2) (point(2, 4)) 2 2