Importing ab-initio theory into DFT: Some applications of the Lieb variation principle

Similar documents
The calculation of the universal density functional by Lieb maximization

Ab-initio studies of the adiabatic connection in density-functional theory

The adiabatic connection

Density functional theory in magnetic fields

Molecular Magnetic Properties

Molecular electronic structure in strong magnetic fields

Computational Methods. Chem 561

DFT calculations of NMR indirect spin spin coupling constants

Density-functional theory

Molecules in strong magnetic fields

The Role of the Hohenberg Kohn Theorem in Density-Functional Theory

Fundamentals of Density-Functional Theory

Electron Correlation - Methods beyond Hartree-Fock

OVERVIEW OF QUANTUM CHEMISTRY METHODS

Molecules in Magnetic Fields

Orbital dependent correlation potentials in ab initio density functional theory

Density-functional theory in quantum chemistry. Trygve Helgaker. From Quarks to the Nuclear Many-Body Problem

Convergence properties of the coupled-cluster method: the accurate calculation of molecular properties for light systems

Electronic structure theory: Fundamentals to frontiers. 2. Density functional theory

Highly accurate quantum-chemical calculations

Introduction to density-functional theory. Emmanuel Fromager

Excitation energies from density-functional theory some failures and successes. Trygve Helgaker

Molecular Magnetism. Magnetic Resonance Parameters. Trygve Helgaker

Oslo node. Highly accurate calculations benchmarking and extrapolations

Basis sets for electron correlation

The Rigorous Calculation of Molecular Properties to Chemical Accuracy. T. Helgaker, Department of Chemistry, University of Oslo, Norway

Théorie de la fonctionnnelle de la densité avec séparation de portée pour les forces de van der Waals

The Accurate Calculation of Molecular Energies and Properties: A Tour of High-Accuracy Quantum-Chemical Methods

TDDFT in Chemistry and Biochemistry III

Molecular Magnetic Properties

Introduction to Computational Chemistry

Electron Correlation

Density-functional theory at noninteger electron numbers

Adiabatic connection from accurate wave-function calculations

Density Functional Theory. Martin Lüders Daresbury Laboratory

QUANTUM CHEMISTRY FOR TRANSITION METALS

Wave function methods for the electronic Schrödinger equation

Spring College on Computational Nanoscience May Variational Principles, the Hellmann-Feynman Theorem, Density Functional Theor

Advanced Quantum Chemistry III: Part 3. Haruyuki Nakano. Kyushu University

Session 1. Introduction to Computational Chemistry. Computational (chemistry education) and/or (Computational chemistry) education

Combining density-functional theory and many-body methods

Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride. Dimer. Philip Straughn

Diamagnetism and Paramagnetism in Atoms and Molecules

1 Density functional theory (DFT)

Molecular Magnetic Properties

Electronic band structure, sx-lda, Hybrid DFT, LDA+U and all that. Keith Refson STFC Rutherford Appleton Laboratory

Jack Simons, Henry Eyring Scientist and Professor Chemistry Department University of Utah

Density Functional Theory - II part

Chemical bonding in strong magnetic fields

Short Course on Density Functional Theory and Applications VII. Hybrid, Range-Separated, and One-shot Functionals

Electric properties of molecules

Computational Chemistry I

Adiabatic connections in DFT

Ab initio calculations for potential energy surfaces. D. Talbi GRAAL- Montpellier

Molecules in strong magnetic fields

A new generation of density-functional methods based on the adiabatic-connection fluctuation-dissipation theorem

AN INTRODUCTION TO QUANTUM CHEMISTRY. Mark S. Gordon Iowa State University

Molecular bonding in strong magnetic fields

Introduction to multiconfigurational quantum chemistry. Emmanuel Fromager

Electronic structure theory: Fundamentals to frontiers. 1. Hartree-Fock theory

T. Helgaker, Department of Chemistry, University of Oslo, Norway. T. Ruden, University of Oslo, Norway. W. Klopper, University of Karlsruhe, Germany

Time-independent molecular properties

Jack Simons, Henry Eyring Scientist and Professor Chemistry Department University of Utah

GEM4 Summer School OpenCourseWare

Introduction to Computational Chemistry: Theory

Module 6 1. Density functional theory

Molecular Mechanics: The Ab Initio Foundation

Extending Kohn-Sham density-functional theory

DFT basée sur le théorème de fluctuation-dissipation avec séparation de portée pour les interactions de van der Waals

Optimization of quantum Monte Carlo wave functions by energy minimization

Range-separated density-functional theory with long-range random phase approximation

Introduction to Electronic Structure Theory

Teoría del Funcional de la Densidad (Density Functional Theory)

Adiabatic-connection fluctuation-dissipation density-functional theory based on range separation

v(r i r j ) = h(r i )+ 1 N

Quantum Chemistry Methods

Generalized generalized gradient approximation: An improved density-functional theory for accurate orbital eigenvalues

Electronic Structure Calculations and Density Functional Theory

Exercise 1: Structure and dipole moment of a small molecule

Density-functional-theory response-property calculations with accurate exchange-correlation potentials

Introduction to Computational Quantum Chemistry: Theory

Jack Simons, Henry Eyring Scientist and Professor Chemistry Department University of Utah

Walter Kohn was awarded with the Nobel Prize in Chemistry in 1998 for his development of the density functional theory.

Molecular Magnetism. Molecules in an External Magnetic Field. Trygve Helgaker

Introduction to Density Functional Theory

Orbital currents in the Colle-Salvetti correlation energy functional and the degeneracy problem. Abstract

Adiabatic connection for near degenerate excited states

Orbital Density Dependent Functionals

DENSITY FUNCTIONAL THEORY FOR NON-THEORISTS JOHN P. PERDEW DEPARTMENTS OF PHYSICS AND CHEMISTRY TEMPLE UNIVERSITY

Chemistry 4560/5560 Molecular Modeling Fall 2014

arxiv: v1 [physics.chem-ph] 29 Jan 2018

Advanced Electronic Structure Theory Density functional theory. Dr Fred Manby

Jack Simons, Henry Eyring Scientist and Professor Chemistry Department University of Utah

Methods for Treating Electron Correlation CHEM 430

Molecules in strong magnetic fields


JULIEN TOULOUSE, PAOLA GORI-GIORGI, ANDREAS SAVIN

Density Functional Theory

Quantum chemistry: wave-function and density-functional methods

3: Density Functional Theory

Transcription:

Importing ab-initio theory into DFT: Some applications of the Lieb variation principle Trygve Helgaker, Andy Teale, and Sonia Coriani Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Oslo, Norway Dipartimento di Scienze Chimiche, Università degli Studi di Trieste, Trieste, Italy ACS 241st National Meeting & Exposition ACS Award for Computers in Chemical and Pharmaceutical Research Award: Symposium in Honor of Thom Dunning Anaheim Convention Center, Anaheim, California, USA, March 27 31, 2011 T. Helgaker (CTCC, University of Oslo) Calculation of the universal density functional ACS 241st National Meeting 1 / 26

The universal density functional Consider the ground-state energy with interaction strength λ: E λ [v] = inf Ψ T + i v(r i ) + λv ee Ψ the Rayleigh Ritz variation principle Ψ We may summarize density-functional theory in two variation principles: E λ [v] = inf ρ ( Fλ [ρ] + (v ρ) ) the Hohenberg Kohn variation principle (1964) ( Eλ [v] (v ρ) ) the Lieb variation principle (1983) F λ [ρ] = sup v these are alternative attempts at sharpening the same inequality into an equality F λ [ρ] E λ [v] (v ρ) E λ [v] F λ [ρ] + (v ρ) Fenchel s inequality The Hohenberg Kohn variation principle underlies all applications of DFT in chemistry its success hinges on the accurate modelling of F λ [ρ] The Lieb variation principle provides a tool for studying F λ [ρ] numerically we have implemented the Lieb variation principle at various levels ab initio theory our motivation is to benchmark approximate F λ [ρ] and to develop new ones Previous work: studies by Colonna and Savin (1999) for few-electron atoms work by Wu and Yang (2003) on Lieb maximizations different but related work: Ab initio DFT by Bartlett and coworkers Helgaker et al. (CTCC, University of Oslo) Lieb s universal density functional ACS 241st National Meeting 2 / 26

Conjugate functionals E[v] F [ρ] The ground-state energy E[v] is concave in v by the Rayleigh Ritz variation principle it can therefore be exactly represented by its convex conjugate F [ρ]: E[v] F [ρ] F Ρ sup v E v v Ρ F Ρ F Ρ Ρ min v max E v E v E v inf Ρ F Ρ v Ρ v Ρ v Ρ Each variation principle represents a Legendre Fenchel transformation the essential point is the concavity of E[v] rather than the details of the Schrödinger equation we may therefore construct F [v] also for approximate E[v] if these are concave (HF theorem) Helgaker et al. (CTCC, University of Oslo) Lieb s universal density functional ACS 241st National Meeting 3 / 26

The concave envelope E[v] F [ρ] co E[v] E[v] However, approximate E[v] may not be concave (not variationally minimized) it still generates a convex F [ρ], conjugate to the concave envelope co E[v] E[v] F Ρ sup v E v v Ρ F Ρ F Ρ Ρ min v max co E v E v E v E v inf Ρ F Ρ v Ρ v Ρ v Ρ The concave envelope co E[v] is the least concave upper bound to E[v] with this caveat, we may introduce all ab-initio levels of theory for E[v] into DFT as E[v] converges to the exact ground-state energy, so does co E[v] Helgaker et al. (CTCC, University of Oslo) Lieb s universal density functional ACS 241st National Meeting 4 / 26

Lieb maximizations The effective external potential is parameterized as suggested by Wu and Yang 2003: v c(r) = v ext(r) + (1 λ)v ref (r) + ct gt(r) t the physical, external potential v ext(r) a reference potential to ensure correct asymptotic behaviour an expansion in Gaussians g t(r) with coefficients c t The Lieb maximization is carried out using Newton and quasi-newton methods F λ [ρ] = max c ( Eλ [v c] (v c ρ) ) because of concavity there are no global convergence problems 5 10 iterations with the exact Hessian to gradient norm 10 6 10 15 iterations with an approximate noninteracting Hessian possible oscillations in the potential do not affect F λ [ρ] All code is implemented in DALTON for HF, MP2, CCD, CCSD, and CCSD(T) Helgaker et al. (CTCC, University of Oslo) Lieb maximization ACS 241st National Meeting 5 / 26

Kohn Sham theory and the adiabatic connection For given E λ [v] and ρ, we calculate the universal functional and its λ derivative: F λ [ρ] = E λ [v max] (v max ρ) Lieb maximization F λ [ρ] = E λ [vmax] first-order property We introduce Kohn Sham theory by expanding about λ = 0: F λ [ρ] = F 0 [ρ] + λf 0 [ρ] + E c,λ[ρ] = T s[ρ] + λ(j[ρ] K[ρ]) + E c,λ [ρ] The correlation energy is the only term that depends on λ in a nontrivial manner: E c,λ [ρ] = F λ [ρ] F 0 [ρ] = Ψ λ V ee Ψ λ Ψ 0 V ee Ψ 0 AC integrand The correlation energy is negative and concave in λ, here illustrated for the neon atom: 0 5 0.10 area E c Ρ 0.15 0.20 0.25 0.30 E c, Λ Ρ ' E c,λ Ρ area T c Ρ 0.35 Helgaker et al. (CTCC, University of Oslo) Lieb maximization ACS 241st National Meeting 6 / 26

Basis-set convergence of the AC integrand Helium atom at the FCI/aug-cc-pVXZ levels of theory 1.02 E XC aug cc pv6z 1.06631 a.u. E XC aug cc pv6z FCI 1.06631 a.u. 1.04 WΛ 1.06 1.08 1.10 0.2 0.4 0.6 0.8 0 Helgaker et al. (CTCC, University of Oslo) Dynamical correlation ACS 241st National Meeting 7 / 26

Hartree Fock DFT The HF energy has a tiny correlation contribution ( 2.1 mh for water) at λ = 1, the total energy is minimized at λ = 0, the kinetic energy is minimized for the same density The associated orbital-relaxation energy is proportional to λ 2 the AC correlation curve is therefore very nearly a straight line 8.956 E c Ρ WXC,Λ a.u. 8.957 8.958 T c Ρ 8.959 0.2 0.4 0.6 0.8 1.0 Λ In HF-OEP theory, the energy is slightly higher than the HF energy (by 2.2 mh) in OEP, we insist on a local potential for an explicit exchange functional Helgaker et al. (CTCC, University of Oslo) Dynamical correlation ACS 241st National Meeting 8 / 26

The HOMO LUMO gap The HOMO LUMO gap increases with increasing λ LUMO 2 0.5 Eigenvalue a.u. 0.5 1.0 3p 433 3s 0.1100 2p 0.8063 LUMO 1 LUMO HOMO 3s 0.2094 3p 0.2063 2p 0.8507 1.5 2s 1.6739 HOMO 1 2s 1.9310 2.0 0.2 0.4 0.6 0.8 1.0 Virtual orbitals increase in energy as nonlocal exchange replaces local exchange Occupied orbitals decrease in energy because of relaxation Helgaker et al. (CTCC, University of Oslo) Dynamical correlation ACS 241st National Meeting 9 / 26

Dynamical correlation energy Dynamical correlation is quadratic in λ (by perturbation theory) the AC curves should therefore be linear in λ (by differentiation) The MP2 (red) and CCSD (blue) AC curves of water bend upwards why? 9.0 9.1 E c Ρ WXC,Λ a.u. 9.2 9.3 T c Ρ 9.4 9.5 0.2 0.4 0.6 0.8 1.0 Λ Helgaker et al. (CTCC, University of Oslo) Dynamical correlation ACS 241st National Meeting 10 / 26

The increasing importance of density constraint Second-order perturbation theory suggests the following model: E MP2 (λ) = ijab λ 2 ij ab 2 ε a(λ)+ε b (λ) ε i (λ) ε j (λ) λ2 g 2 h+λg = λg λg h+λg a quadratic dependence damped by an increasing HOMO LUMO gap Differentation yields a two-parameter AC model adjusted to initial slope and end point 0.1 0.2 CCSD water WΛ a.u. 0.3 0.4 CCSD neon 0.5 0.6 0.2 0.4 0.6 0.8 1.0 Λ The wave function loses its ability to adjust with increasing λ indeed, for λ 0, the AC curve becomes horizontal (strictly correlated electrons) Helgaker et al. (CTCC, University of Oslo) Dynamical correlation ACS 241st National Meeting 11 / 26

Higher-order dynamical correlation Higher-order correlation corrections are proportional to λ 3 the triples correction to the AC curve depends quadratically on λ 9.0 9.1 E c Ρ WXC,Λ a.u. 9.2 9.3 9.4 T c Ρ CCSD CCSD T CCSD 9.5 CCSDT 0.2 0.4 0.6 0.8 1.0 Λ Helgaker et al. (CTCC, University of Oslo) Dynamical correlation ACS 241st National Meeting 12 / 26

From dynamical to static correlation: H 2 dissociation As H 2 dissociates, correlation changes from dynamical to static increasing curvature for small λ with decreasing HOMO LUMO gap Static correlation energy arises from (near) degeneracy of electronic configurations it is of first order in λ (first-order degenerate perturbation theory) the corresponding AC curve is therefore horizontal 5 1.4 bohr 0.10 0.15 0.20 5 bohr 0.25 10 bohr Helgaker et al. (CTCC, University of Oslo) Static correlation ACS 241st National Meeting 13 / 26 0

A two-parameter model for the H 2 molecule From a two-level CI model, we obtain the ground-state energy E CI (λ) = 1 2 E 1 2 E 2 + 4g 2 λ 2, E = h + gλ Differentiation gives a two-parameter model for the AC integrand good least-square fits (full lines) and fits to initial gradient and end point (dashed lines) 0 Wc,Λ a.u. 5 0.10 0.15 R 0.7 a.u. R 1.4 a.u. R 3.0 a.u. 0.20 R 5.0 a.u. R 7.0 a.u. 0.25 R 1 a.u. 0.2 0.4 0.6 0.8 1.0 Helgaker et al. (CTCC, University of Oslo) Static correlation ACS 241st National Meeting 14 / 26

Strongly interacting electrons (λ > 1) Which two input values (parameters) can be used to construct accurate AC curves? Initial slope is twice the second-order Görling Levy perturbation theory E (0) = 2E0 GL2 [ρ] Görling Levy theory is an order-by-order expansion in λ for fixed density The point-charge-plus-continuum (PC) model yields the end point E ( ) = W PC[ρ] developed by Seidl, Perdew and Kurth (2000) for strictly correlated electrons λ = used in the interaction-strength-interpolation (ISI) model of the AC integrand Helgaker et al. (CTCC, University of Oslo) Static correlation ACS 241st National Meeting 15 / 26

Attractive electrons (λ < 0) Attractive electrons have recently been considered by Seidl and Gori-Giorgi (2010) 0.4 R 1 a.u. 0.3 0.2 WΛ W0 a.u. 0.1 0.1 0.2 1.0 0.5 0.5 1.0 Λ Repulsive electrons (λ > 0): all AC curves become horizontal as the electrons become strictly correlated (for fixed density) Attractive electrons (λ < 0): all AC curves become equally sloped as the electrons move together (for fixed density) Helgaker et al. (CTCC, University of Oslo) Static correlation ACS 241st National Meeting 16 / 26

Benchmarking explicit exchange correlation functionals Dissociation of H 2 at the RHF, BLYP and FCI levels of theory the BLYP functional improves considerably on HF theory for dissociation what is the reason for this improvement? 0.5 0.6 0.7 0.8 HF 0.9 1.0 BLYP FCI 1.1 1.2 Helgaker et al. (CTCC, University of Oslo) Static correlation ACS 241st National Meeting 17 / 26

BLYP and FCI correlation curves for H 2 The BLYP functional treats correlation as dynamical at all bond distances it was designed for spin-unrestricted theory but is used here in a spin-restricted manner it hence ignores static correlation BLYP FCI BLYP FCI R 1.4 bohr R 3.0 bohr BLYP BLYP R 5.0 bohr FCI R 1 bohr FCI Helgaker et al. (CTCC, University of Oslo) Static correlation ACS 241st National Meeting 18 / 26

BLYP and FCI exchange correlation curves for H 2 The improved BLYP performance arises from an overestimation of exchange error cancellation between exchange and correlation reduces total error to about one third R 1.4 bohr R 3.0 bohr FCI exchange BLYP exchange BLYP correlation FCI correlation R 5.0 bohr R 1 bohr Helgaker et al. (CTCC, University of Oslo) Static correlation ACS 241st National Meeting 19 / 26

Generalized, range-dependent adiabatic connection Interactions may also be turned on in a range-dependent manner ( ) λ erf w g λ (r 1 λ r ij ij ) = 2 ( λ r ij π 1 λ ) ( exp 1 ( λ 3 1 λ ) 2 ) r 2 ij Λ 0.5 Λ 0.75 6 6 5 5 4 Λ 0.9 4 Λ 0.99 3 3 2 2 1 1 0 0 As λ increases, we build up the full interaction from the outer to inner region this provides an alternative view of correlation Savin et al. 1996, Yang 1998, Toulouse et al. 2004 Helgaker et al. (CTCC, University of Oslo) Range separation ACS 241st National Meeting 20 / 26

AC correlation curves for the He isoelectronic series Curves reveal increasing compactness with increasing Z 0 0 2 4 6 8 0.10 0.12 0.14 Z 1 Z 2 0.1 0.2 0.3 0.4 0.5 Z 4 Z 10 Note: short-range interactions to the left; long-range interactions to the right Helgaker et al. (CTCC, University of Oslo) Range separation ACS 241st National Meeting 21 / 26

Range separation: dissociation of H 2 We consider first the total AC curve, including Coulomb, exchange and correlation it moves towards small λ values with increasing separation at full separation, all total interactions are interatomic 2.0 1.4 bohr 2.0 3.0 bohr 1.5 1.5 1.0 1.0 0.5 0.5 2.0 5.0 bohr 2.0 1 bohr 1.5 1.5 1.0 1.0 0.5 0.5 Note: short-range interactions to the left; long-range interactions to the right Helgaker et al. (CTCC, University of Oslo) Range separation ACS 241st National Meeting 22 / 26

Range separation: dissociation of H 2 We consider next the correlation-only AC curve at short bond distances, the interactions are predominantly short-ranged at long distances, short- and long-ranged interactions partially cancel 0.4 1.4 bohr 0.4 3.0 bohr 0.2 0.2 0.2 0.4 0.6 0.4 5.0 bohr 0.4 1 bohr 0.2 0.2 0.2 0.4 0.6 Note: short-range interactions to the left; long-range interactions to the right Helgaker et al. (CTCC, University of Oslo) Range separation ACS 241st National Meeting 23 / 26

Dispersion: the helium dimer Range-separated CCSD(T)/d-aug-cc-pVQZ AC curves at 8 bohr the interactions are predominantly atomic and short-ranged the small dispersion contribution (multiplied by 1000) is interatomic and long-ranged 0 1000 disp. 5 0.10 total correlation 0.15 0.20 0.25 Helgaker et al. (CTCC, University of Oslo) Range separation ACS 241st National Meeting 24 / 26

Dispersion: the helium dimer Dispersion leads to distorted atomic densities atoms are subsequently attracted to its own distorted density (Feynman) Dispersion distortions in the helium-dimenr density at a separation of 8 bohr CCSD(T)/d-aug-cc-pVQZ theory (red line) and Kohn Sham theory (blue line) 0 5. 10 6 0001 00015 Helgaker et al. (CTCC, University of Oslo) Range separation ACS 241st National Meeting 25 / 26

Summary and acknowledgments We have calculated the universal density functional by Lieb maximization what information can be gotten from the Lieb variation principle? can accurate calculations of AC help in the design of density functionals? An interesting project is to study the current dependence of F [ρ, j] we have code for gauge-origin-invariant calculations of E[v, A] in finite magnetic fields a generalized Legendre Fenchel transform will provide F [ρ, j] with charge and current densities this will help in benchmarking and developing approximate E xc[ρ, j] We would like to thank Andreas Savin and Paola Gori-Giorgi for discussions This work was supported by the Norwegian Research Council through Grant No. 171185 (A.M.T) Grant No. 179568/V30 Centre for Theoretical and Computational Chemistry (CTCC) Helgaker et al. (CTCC, University of Oslo) Summary and acknowledgments ACS 241st National Meeting 26 / 26