Electromagnetic Field Theory I (NFT I) Numerische Methoden der. 7th Lecture / 7. Vorlesung Dr.-Ing. René Marklein

Similar documents
Numerical Methods of Electromagnetic Field Theory II (NFT II) Numerische Methoden der Elektromagnetischen Feldtheorie II (NFT II) /

EFIT SIMULATIONS FOR ULTRASONIC NDE

Simulation of Electromagnetic Fields: The Finite-Difference Time-Domain (FDTD) Method and Its Applications

arxiv:physics/ v1 19 Feb 2004

Part E1. Transient Fields: Leapfrog Integration. Prof. Dr.-Ing. Rolf Schuhmann

Divergent Fields, Charge, and Capacitance in FDTD Simulations

Finite Difference Solution of Maxwell s Equations

Publication II Wiley Periodicals. Reprinted by permission of John Wiley & Sons.

Dispersion of Homogeneous and Inhomogeneous Waves in the Yee Finite-Difference Time-Domain Grid

DOING PHYSICS WITH MATLAB

Advanced Engineering Electromagnetics, ECE750 LECTURE 11 THE FDTD METHOD PART III

Applications of Time Domain Vector Potential Formulation to 3-D Electromagnetic Problems

New Scaling Factors of 2-D Isotropic-Dispersion Finite Difference Time Domain (ID-FDTD) Algorithm for Lossy Media

ANALYSIS OF DISPERSION RELATION OF PIECEWISE LINEAR RECURSIVE CONVOLUTION FDTD METHOD FOR SPACE-VARYING PLASMA

Modeling Focused Beam Propagation in a Scattering Medium. Janaka Ranasinghesagara

THE total-field/scattered-field (TFSF) boundary, first proposed

Generalized Analysis of Stability and Numerical Dispersion in the Discrete-Convolution FDTD Method

A Novel Design of Photonic Crystal Lens Based on Negative Refractive Index

Numerical Analysis of Electromagnetic Fields in Multiscale Model

Simulation and Numerical Modeling of a Rectangular Patch Antenna Using Finite Difference Time Domain (FDTD) Method

An iterative solver enhanced with extrapolation for steady-state high-frequency Maxwell problems

Multi-transmission Lines Loaded by Linear and Nonlinear Lumped Elements: FDTD Approach

Comparison Study of the Band-gap Structure of a 1D-Photonic Crystal by Using TMM and FDTD Analyses

A Time Domain Approach to Power Integrity for Printed Circuit Boards

COLLOCATED SIBC-FDTD METHOD FOR COATED CONDUCTORS AT OBLIQUE INCIDENCE

Finite-Difference Time-Domain and Beam Propagation Methods for Maxwell s Equations

Modul 3. Finite-difference time-domain (FDTD)

FDTD Simulations of Surface Plasmons Using the Effective Permittivity Applied to the Dispersive Media

INTEGRAL PML ABSORBING BOUNDARY CONDITIONS FOR THE HIGH-ORDER M24 FDTD ALGORITHM

Solution of the Maxwell s Equations of the Electromagnetic Field in Two Dimensions by Means of the Finite Difference Method in the Time Domain (FDTD)

Simulation of Propagating Ultrasonic Waves in Complex Composite Material

THE ADI-FDTD METHOD INCLUDING LUMPED NET- WORKS USING PIECEWISE LINEAR RECURSIVE CON- VOLUTION TECHNIQUE

8.03 Lecture 12. Systems we have learned: Wave equation: (1) String with constant tension and mass per unit length ρ L T v p = ρ L

ELECTROMAGNETIC FIELDS AND WAVES

Maxwell Equations: Electromagnetic Waves

Pseudospectral and High-Order Time-Domain Forward Solvers

Numerical Technique for Electromagnetic Field Computation Including High Contrast Composite Material

Algebra. Übungsblatt 12 (Lösungen)

EXTENSIONS OF THE COMPLEX JACOBI ITERATION TO SIMULATE PHOTONIC WAVELENGTH SCALE COMPONENTS

Lecture 14 (Poynting Vector and Standing Waves) Physics Spring 2018 Douglas Fields

High Order Accurate Modeling of Electromagnetic Wave Propagation across Media - Grid Conforming Bodies

Class 30: Outline. Hour 1: Traveling & Standing Waves. Hour 2: Electromagnetic (EM) Waves P30-

Electromagnetic Waves Retarded potentials 2. Energy and the Poynting vector 3. Wave equations for E and B 4. Plane EM waves in free space

Lars Valerian Ahlfors: Collected Papers Volume Rae Michael Shortt Assistant Editor

Principles of Mobile Communications

Advances in Radio Science

arxiv: v1 [physics.comp-ph] 22 Feb 2013

B. H. Jung Department of Information and Communication Engineering Hoseo University Asan, Chungnam , Korea

Course Nov 03, Statistische Mechanik plus. Course Hartmut Ruhl, LMU, Munich. People involved. Hinweis.

Roberto B. Armenta and Costas D. Sarris

Electrodynamics I Final Exam - Part A - Closed Book KSU 2005/12/12 Electro Dynamic

SUPPLEMENTARY INFORMATION

Transient analysis of spectrally asymmetric magnetic photonic crystals with ferromagnetic losses

Lecture Outline. Maxwell s Equations Predict Waves Derivation of the Wave Equation Solution to the Wave Equation 8/7/2018

ECE 546 Lecture 04 Resistance, Capacitance, Inductance

Density of modes maps for design of photonic crystal devices

X. L. Wu and Z. X. Huang Key Laboratory of Intelligent Computing & Signal Processing Anhui University Feixi Road 3, Hefei , China

Modelling of tree height growth

TECHNO INDIA BATANAGAR

Large omnidirectional band gaps in metallodielectric photonic crystals

EFFICIENT SIMULATIONS OF PERIODIC STRUC- TURES WITH OBLIQUE INCIDENCE USING DIRECT SPECTRAL FDTD METHOD

Electromagnetic Theory (Hecht Ch. 3)

Fast FDTD Simulation Using Laguerre Polynomials in MNA Framework

Modeling Focused Beam Propagation in scattering media. Janaka Ranasinghesagara, Ph.D.

Citation for published version (APA): Sjöberg, D. (2008). Finite scale homogenization of chiral media. In [Host publication title missing] URSI.

A MATLAB GUI FOR SIMULATING THE PROPAGATION OF THE ELECTROMAGNETIC FIELD IN A 2-D INFINITE SPACE

Modeling of Kerr non-linear photonic components with mode expansion

Design and Analysis of Printed Circuit Boards Using FDTD Method for The 20-H Rule

Routing of Deep-Subwavelength Optical Beams and Images without Reflection and Diffraction Using Infinitely Anisotropic Metamaterials

Extension of the FDTD Huygens Subgridding to Frequency Dependent Media

ECE Spring Prof. David R. Jackson ECE Dept. Notes 1

Negative Refraction and Subwavelength Lensing in a Polaritonic Crystal

Effective Permittivity for FDTD Calculation of Plasmonic Materials

Electromagnetic Waves & Polarization

arxiv: v1 [physics.comp-ph] 9 Dec 2008

Maxwell s equations and EM waves. From previous Lecture Time dependent fields and Faraday s Law

Klausur zur Vorlesung Vertiefung Theoretische Informatik Sommersemester 2016

Lecture 3 Fiber Optical Communication Lecture 3, Slide 1

FEMLAB as a General Tool to Investigate the Basic Laws of Physics

Electromagnetic Wave Propagation Lecture 1: Maxwell s equations

TENTATIVE CONTENTS OF THE COURSE # EE-271 ENGINEERING ELECTROMAGNETICS, FS-2012 (as of 09/13/12) Dr. Marina Y. Koledintseva

arxiv: v1 [physics.comp-ph] 8 Jun 2017

Propagation of Surface Plasmon Polariton in the Single Interface of Gallium Lanthanum Sulfide and Silver

Course Updates. 2) This week: Electromagnetic Waves +

Arbitrary High-Order Discontinuous Galerkin Method for Solving Electromagnetic Field Problems in Time Domain

Worked Examples Set 2

Computational Modeling of Geoelectrical Soundings using PML-FDTD

1-D Implementation of Maxwell s Equations in MATLAB to Study the Effect of Absorption Using PML

arxiv: v1 [physics.class-ph] 10 Feb 2009

CLASS OF BI-QUADRATIC (BQ) ELECTROMAGNETIC MEDIA

Combined FDTD/Macromodel Simulation of Interconnected Digital Devices

Electromagnetic waves in free space

REVIEW SESSION. Midterm 2

The Nature of Light. Prof. Stephen Sekula 4/12/2010 Supplementary Material for PHY1308 (General Physics Electricity and Magnetism)

Lecture 13 Notes, Electromagnetic Theory I Dr. Christopher S. Baird University of Massachusetts Lowell

ELEC 621 NUMERICAL TECHNIQUES IN ELECTROMAGNETICS

Wavelength-scale microdisks as optical gyroscopes: a finite-difference time-domain simulation study

Three-dimensional analysis of subwavelength diffractive optical elements with the finite-difference time-domain method

Inside-out electromagnetic cloaking

One-Dimensional Numerical Solution of the Maxwell-Minkowski Equations

Transcription:

Numerical Methods of Electromagnetic Field Theory I (NFT I) Numerische Methoden der Elektromagnetischen Feldtheorie I (NFT I) / 7th Lecture / 7. Vorlesung Dr.-Ing. René Marklein marklein@uni-kassel.de http://www.tet.e-technik.uni-kassel.de http://www.uni-kassel.de/fb6/tet/marklein/index.html Universität Kassel Fachbereich Elektrotechnik / Informatik (FB 6) Fachgebiet Theoretische Elektrotechnik (FG TET) Wilhelmshöher Allee 7 Büro: Raum 3 / 5 D-34 Kassel University of Kassel Dept. Electrical Engineering / Computer Science (FB 6) Electromagnetic Field Theory (FG TET) Wilhelmshöher Allee 7 Office: Room 3 / 5 D-34 Kassel

-D EM Wave Propagation -D FDTD Staggered Grid in Space / D EM Wellenausbreitung -D FDTD Versetztes Gitter im Raum Interleaving of the and H y field components in space and time in the -D FDTD formulation / Überlappung der -und H y -Feldkomponente in der D-FDTD-Formulierung im Raum und in der Zeit 3 n z n z n z + 3 n z + Time plane / Zeitebene n t H y ( n z ) ( n z ) ( z ) n ( ) n z + ( ) n t 3 n z n z n z + 3 n z + n t +

-D EM Wave Propagation FDTD Normalization / D EM Wellenausbreitung FDTD Normierung t t = ( nz, nt) ( nz, nt ) ( nz+ /, nt /) ( nz /, nt /) ( nz, nt /) Hy Hy Ex Ex Jm y µ 0 z µ 0 ( nz + /, nt+ /) ( nz+ /, nt /) t ( nz+, nt) ( nz, nt) t ( nz+ /, nt) x = x y y e x ε0 z ε0 E E H H J xref xref t = t ref t tref = t = t cref cref z = x ref z c= cref cˆ ε = εref ε µ = µ ref µ µ ref = µ 0 E ˆ x = Eref Ex ˆ E ref ε µ ε Hy = Href Hy Href = = Eref = Eref = c ref µ ref µ µ ε ref Jex = Jeref Je x Jeref = Eref t ref µ ref E ref Jm x = Jm ref Jm x Jm ref = Href = t t c ref ref ref ref ref ref ref ref ref ref E Z H = H t E E tj ( nz, nt) ( nz, nt ) ( nz+ /, nt /) ( nz /, nt /) ( nz, nt /) y y x x m y E = E t H H t J ( nz + /, nt+ /) ( nz+ /, nt /) ( nz+, nt) ( nz, nt) ( nz+ /, nt) x x y y e x 3

-D FDTD Staggered Grid in Space Global Node Numbering / D-FDTD Versetztes Gitter im Raum Globale Knotennummerierung ( nz, nt ) H y ( n z, n H y t ) ( nz, nt ) H y ( nz,, nt ) H y + ( nz 3/, nt /) + E ( nz /, nt+ /) ( nz /, nt /) x + + ( nz 3/, nt /) + + z 3 n z n z n z n z n z n z + n z + n z + 3 ( n, n t ) H y H y ( n, n t ) ( n, n t ) ( nn, ) H t y ( n, n t ) ( nn E, t ) x ( n, n t ) H y + ( n, n t ) + 3 n z n z n z n z n z n z + n z + n z + 3 z 4

-D FDTD Algorithm Flow Chart / D-FDTD-Algorithmus Flussdiagramm Start n t = Compute -D Faraday s FDTD equation: For all nodes n inside the simulation region: ( nn, t) ( nn, ) (, /) (, /) t nn t n n t Hy = Hy t Ex E x Compute -D Ampère-Maxwell s FDTD equation: For all nodes n inside the simulation region: = + + E E t H H ( nn, t /) ( nn, t /) ( n, nt) ( nn, t) x x y y Electric current density excitation: For all excitation nodes n: ˆ( nn, t+ /) ˆ( nn, t+ /) ˆ( nn, t) E = E tj y y e y Boundary condition: For all PEC boundary nodes n: ˆ ( nn, t + /) E y = 0 nt = nt + No Yes nt Nt Stop 5

-D FDTD Algorithm Flow Chart / D-FDTD-Algorithmus Flussdiagramm Start n t = Berechne die D-Faraday-FDTD-Gleichung: Für alle Knoten n im Simulationsgebiet: ( nn, t) ( nn, ) (, /) (, /) t nn t n n t Hy = Hy t Ex E x Berechne die D-Ampère-Maxwell-FDTD-Gleichung: Für alle Knoten n im Simulationsgebiet:: = + + E E t H H ( nn, t /) ( nn, t /) ( n, nt) ( nn, t) x x y y Elektrische Stromdichteanregung: Für alle Anregungsknoten n ˆ( nn, t+ /) ˆ( nn, t+ /) ˆ( nn, t) E = E tj y y e y Randbedingungen: Für alle IEL-Randknoten n ˆ ( nn, t + /) E y = 0 nt = nt + Nein Ja nt Nt Stopp 6

FDTD Solution of the First Two -D Scalar Maxwell s Equations / FDTD-Lösung der ersten beiden D skalaren Maxwell-Gleichungen Maxwell s equations / Maxwellsche Gleichungen 0 z Z Hy(,) z t = Ex(,) z t Jm y(,) z t for / für t µ 0 z µ 0 0 t T E (,) z t = H (,) z t J (,) z t t z x y e x ε0 ε0 Initial condition / Anfangsbedingung H ( z, t) = J ( z, t) = 0 t 0 y m y Ex( z, t) = Je x( z, t) = 0 t 0 J (,) z t = K ( z ) δ ( z z ) f() t t > 0 ex e0 0 0 Causality / Kausalität Hyperbolic initialboundary-value problem / Hyperbolisches Anfangs-Randwert- Problem Boundary condition for a perfectly electrically conducting (PEC) material / Randbedingung für ein ideal elektrisch leitendes Material Ex (0, t) = 0 Ex ( Z, t) = 0 t x (0, ) 0 E t = Z x (,) E z t x (, ) 0 E Z t = z = 0 z = Z 7

FDTD Solution of the First Two -D Scalar Maxwell s Equations / FDTD-Lösung der ersten beiden D skalaren Maxwell-Gleichungen Discrete -D FDTD equations / Diskrete D-FDTD-Gleichungen ( z, t) ( z, t ) ( /, /) ( /, /) (, /) z+ t z t z t n N Hy = Hy t Ex E x tjm y for / für n N n n n n n n n n n n z z ( n z+ /, nt+ /) ( n /, /) (, ) (, ) z+ nt n z+ nt n z nt Ex = Ex t Hy H y ( n + /, n tj ) e x z t t t Initial condition / Anfangsbedingung ( nz, nt) ( nz, nt) y m y t H = J = 0 n ( nz, nt) ( nz, nt) x = e x = t ( n, n ) ( n ) ( n n ) ( n ) ex ex δ t E J 0 n z0 z z J z t K 0 f t n = > Causality / Kausalität Boundary condition for a perfectly electrically conducting (PEC) material / Randbedingung für ein ideal elektrisch leitendes Material (, n ) E t x ( Nz, nt) = 0 = 0 n N t t (, ) n t = (, ) n t H y = 0 0 n z = (, n t ) H y (, n t ) Z = zn z nz nt n, z n E t x Hy (, ) (, ) ( N z, n t ) H y z z z z nz = Nz ( Nz, nt) x E = 0 Discrete hyperbolic initial-boundary-value problem / Diskretes hyperbolisches Anfangs-Randwert- Problem 8

FDTD Solution of the First Two -D Scalar Maxwell s Equations / FDTD-Lösung der ersten beiden D skalaren Maxwell-Gleichungen Excitation pulse: RC(t) Time Domain / Anregungsfunktion: RC(t) Zeitbereich Excitation pulse: RC(f) Frequency Domain / Anregungsfunktion: RC(f) Frequenzbereich 9 Magntiude RC(f) / Betrag RC(f) Amplitude RC(t) / Amplitude RC(t)

FDTD Solution of the First Two -D Scalar Maxwell s Equations / FDTD-Lösung der ersten beiden D skalaren Maxwell-Gleichungen 0

FDTD Solution of the First Two -D Scalar Maxwell s Equations / FDTD-Lösung der ersten beiden D skalaren Maxwell-Gleichungen

Implementation of Boundary Conditions / Implementierung von Randbedingungen Boundary condition for a perfectly electrically conducting (PEC) material / Randbedingung für ein ideal elektrisch leitendes Material (, n ) E t x ( Nz, nt) = 0 = 0 n N t t Absorbing/open boundary condition / Absorbierende/offene Randbedingung Space-time-extrapolation of the first order / Raum-Zeit-Extrapolation der ersten Ordnung For / Für t = 0.5 a plane wave needs two time steps, n t, to travel over one grid cell with the size / braucht eine ebene Welle zwei Zeitschritte, n t, um sich über eine Gitterzelle der Größe auszubreiten (, nt) (, nt ) Ex = E x ( Nz, nt) ( Nz, nt ) Ex = Ex n N t t Space-time-extrapolation of the first order / Raum-Zeit-Extrapolation der ersten Ordnung

FDTD Solution of the First Two -D Scalar Maxwell s Equations / FDTD-Lösung der ersten beiden D skalaren Maxwell-Gleichungen 3

FDTD Solution of the First Two -D Scalar Maxwell s Equations / FDTD-Lösung der ersten beiden D skalaren Maxwell-Gleichungen 4

FDTD Solution of the First Two -D Scalar Maxwell s Equations / FDTD-Lösung der ersten beiden D skalaren Maxwell-Gleichungen 5

FDTD Books / FDTD-Bücher Kunz, K. S., Luebbers, R. J.: The Finite Difference Time Domain Method for Electromagnetics. 993 Taflove, A. (Editor): Advances in Computational Electrodynamics: The Finite-Difference Time- Domain Method. Artech House, 998. Taflove, A. (Editor): Computational Electrodynamics: The Finite- Difference Time-Domain Method. Artech House, Boston, 995. Taflove, A. (Editor): Computational Electrodynamics: The Finite-Difference Time- Domain Method. nd Editon, Artech House, Boston, 000. 6

FDTD Books / FDTD-Bücher Sullivan, D. M.: Electromagnetic Simulation Using the FDTD Method. IEEE Press, New York, 000. 7

End of Lecture 7 / Ende der 7. Vorlesung 8