From Classical to Quantum mechanics

Similar documents
Physics 43 HW #9 Chapter 40 Key

Chapter. 3 Wave & Particles I

Davisson Germer experiment Announcements:

Why is a E&M nature of light not sufficient to explain experiments?

Atomic Physics. Final Mon. May 12, 12:25-2:25, Ingraham B10 Get prepared for the Final!

Final exam: Tuesday, May 11, 7:30-9:30am, Coates 143

Atomic energy levels. Announcements:

Chapter 1 Late 1800 s Several failures of classical (Newtonian) physics discovered

General Physics (PHY 2140)

Davisson Germer experiment

PH300 Modern Physics SP11 Final Essay. Up Next: Periodic Table Molecular Bonding

Introduction to the quantum theory of matter and Schrödinger s equation

Compton Scattering. There are three related processes. Thomson scattering (classical) Rayleigh scattering (coherent)

Quantum transport in 2D

Hydrogen Atom and One Electron Ions

Characteristics of Gliding Arc Discharge Plasma

Physics 2D Lecture Slides Lecture 12: Jan 28 th 2004

Lecture 28 Title: Diatomic Molecule : Vibrational and Rotational spectra

Phys 402: Nonlinear Spectroscopy: SHG and Raman Scattering

Contemporary, atomic, nuclear, and particle physics

Dual Nature of Matter and Radiation

ELEMENTARY QUANTUM MECHANICS

Quantum Physics ANSWERS TO QUESTIONS CHAPTER OUTLINE

APP-IV Introduction to Astro-Particle Physics. Maarten de Jong

Background: We have discussed the PIB, HO, and the energy of the RR model. In this chapter, the H-atom, and atomic orbitals.

Physics 2D Lecture Slides Lecture 14: Feb 1 st 2005

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields

4E : The Quantum Universe. Lecture 5, April 5 Vivek Sharma

6. The Interaction of Light and Matter

2. Background Material

The pn junction: 2 Current vs Voltage (IV) characteristics

Physics 2D Lecture Slides. Oct 21. UCSD Physics. Vivek Sharma

38. Photons and Matter Waves

High Energy Physics. Lecture 5 The Passage of Particles through Matter

HYSTERESIS AND BLEACHING OF ABSORPTION BY ELECTRONS ON HELIUM

PHYSICS 489/1489 LECTURE 7: QUANTUM ELECTRODYNAMICS

orbiting electron turns out to be wrong even though it Unfortunately, the classical visualization of the

Studies of Turbulence and Transport in Alcator C-Mod Ohmic Plasmas with Phase Contrast Imaging and Comparisons with GYRO*

The failure of the classical mechanics

Today. Wave-Matter Duality. Quantum Non-Locality. What is waving for matter waves?

(most) due to long range e m forces i.e. via atomic collisions or due to short range nuclear collisions or through decay ( = weak interactions)

Ch. 24 Molecular Reaction Dynamics 1. Collision Theory

Quasi-Classical States of the Simple Harmonic Oscillator

Schrodinger Equation in 3-d

Title: Vibrational structure of electronic transition

22/ Breakdown of the Born-Oppenheimer approximation. Selection rules for rotational-vibrational transitions. P, R branches.

de/dx Effectively all charged particles except electrons

Intro to Nuclear and Particle Physics (5110)

ATOMIC PHYSICS PREVIOUS EAMCET QUESTIONS ENGINEERING

CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I

Pair (and Triplet) Production Effect:

ECE507 - Plasma Physics and Applications

REGISTER!!! The Farmer and the Seeds (a parable of scientific reasoning) Class Updates. The Farmer and the Seeds. The Farmer and the Seeds

UNIT-1 MODERN PHYSICS

Exam 2 Thursday (7:30-9pm) It will cover material through HW 7, but no material that was on the 1 st exam.

Gamma-ray burst spectral evolution in the internal shock model

fiziks Institute for NET/JRF, GATE, IIT JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics NUCLEAR AND PARTICLE PHYSICS NET/JRF (JUNE-2011)

2. Laser physics - basics

λ = 2L n Electronic structure of metals = 3 = 2a Free electron model Many metals have an unpaired s-electron that is largely free

Single electron experiments in quantum conductors : the on-demand single electron source the charge relaxation resistance

Classical Magnetic Dipole

Chapter 30: Quantum Physics

fiziks Institute for NET/JRF, GATE, IIT JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

Precise Masses of particles

A Propagating Wave Packet Group Velocity Dispersion

Chapter 10: Wave Properties of Particles

Radiation Physics Laboratory - Complementary Exercise Set MeBiom 2016/2017

Disorder and mesoscopic physics. Lecture 2. Quantum transport, Landauer-Büttiker weak-localization G 2. Landauer-Büttiker formulae.

Spatial channeling of energy and momentum of energetic ions by destabilized Alfvén eigenmodes

Lecture 18 - Semiconductors - continued

BETA DECAY VISUAL PHYSICS ONLINE

Phys 446: Solid State Physics / Optical Properties. Lattice vibrations: Thermal, acoustic, and optical properties. Fall v =

Chemical Engineering 412

On the Hamiltonian of a Multi-Electron Atom

Particles and Waves Particles Waves

Derivation of Electron-Electron Interaction Terms in the Multi-Electron Hamiltonian

Structure of the Atom. Thomson s Atomic Model. Knowledge of atoms in Experiments of Geiger and Marsden 2. Experiments of Geiger and Marsden

Problem Set 4 Solutions Distributed: February 26, 2016 Due: March 4, 2016

Addition of angular momentum

High Energy Astrophysics

Neutrino Physics. Caren Hagner, Universität Hamburg

Lecture contents. Bloch theorem k-vector Brillouin zone Almost free-electron model Bands Effective mass Holes. NNSE 508 EM Lecture #9

The Photoelectric Effect

Chemical Physics II. More Stat. Thermo Kinetics Protein Folding...

The Relativistic Stern-Gerlach Force C. Tschalär 1. Introduction

DIS-Parity. Search for New Physics Through Parity Violation In Deep Inelastic Electron Scattering. The Physics Case

Quantitative Model of Unilluminated Diode part II. G.R. Tynan UC San Diego MAE 119 Lecture Notes

Introduction. Learning Objectives. On completion of this chapter you will be able to:

Simulations des micro-décharges de type MHCD

Addition of angular momentum

Sinusoidal Response Notes

Standard Model - Electroweak Interactions. Standard Model. Outline. Weak Neutral Interactions. Electroweak Theory. Experimental Tests.

Collisions between electrons and ions

PHYS 3313 Section 001 Lecture #16

Coupled Pendulums. Two normal modes.

26-Sep-16. Nuclear energy production. Nuclear energy production. Nuclear energy production. Nuclear energy production

PRINCIPLES OF PLASMA PROCESSING Course Notes: Prof. J. P. Chang Part B3: ATOMIC COLLISIONS AND SPECTRA

ELECTRON-MUON SCATTERING

Prelab Lecture Chmy 374 Thur., March 22, 2018 Edited 22mar18, 21mar18

Quantitative Model of PV Cells The Illuminated Diode. G.R. Tynan UC San Diego MAE 119 Lecture Notes

Transcription:

From Classical to Quantum mcanics Engl & Rid 99-300 vrij Univrsitit amstrdam Classical wav baviour Ligt is a wav Two-slit xprimnt wit potons (81-85) 1

On sourc Intrfrnc sourcs ttp://www.falstad.com/matpysics.tml ttp://www.falstad.com/matpysics.tml On narrow slit On wid slit ttp://www.falstad.com/matpysics.tml ttp://www.falstad.com/matpysics.tml narrow slits Two-slit xprimnt wit ligt ttp://www.falstad.com/matpysics.tml

Non-classical baviour of ligt Non-classical baviour of ligt Two-slit xprimnt wit potons (81-85) Blac body radiation (77-78) Hot Stl and Pyromtr Spctral nrgy dnsity de/df Enrgy dnsity low tmpratur 1.5 1.0 0.5 0.0 deω ω 3 π c P5.67 x 10-8 T 4 [W/m ] 300 K 600 K 900 K 100 K ω ω B T 1 0.0 0.5 1.0 1.5.0.5 3.0 Poton nrgy [V] 1 V nrgy is.417970 10 14 Hz T nrgy of potons is quantizd E f ω deω ω π c 3 ω ω B T 1 Y Axis Titl Bacground blacbody radiation deω ω π c 3 ω ω B T 1 T.76 K X Axis Titl ttp://www.unidata.ucar.du/staff/blynds/tmp.tml#uni 3

0.00001 K variations Non-classical baviour of ligt Two-slit xprimnt wit potons (81-85) Blac body radiation (77-78) Potolctric ffct (79-80) Gorg F. Smoot Jon C. Matr Potolctric ffct 1 Potolctric ffct 0 0 Potolctric ffct 3 Potolctric ffct 4 0 Wa ngativ voltag 0 4

Potolctric ffct 5 Exprimntal rsults _ Larg ngativ voltag 0 + Stopping potntial (V) 0 10 0 Potassium Tungstn Potassium Tungstn / / -10 0 x10 15 4x10 15 6x10 15 Frquncy of ligt (s -1 ) Non-classical baviour of ligt X-rays Two-slit xprimnt wit potons (81-85) Blac body radiation (77-78) Potolctric ffct (79-80) X-ray production _ + Willm Rontgn s laboratory Willm Rontgn potograps ttp://www.f-wurzburg.d/rontgn/ ttp://www.f-wurzburg.d/rontgn/ 5

Modrn X-ray tub X-ray spctra Targt Bryllium window Focus cup Tungstn filamnt Intnsity Poton nrgy (V) Non-classical baviour of ligt T positiv lctron Two-slit xprimnt wit potons (81-85) Blac body radiation (77-78) Potolctric ffct (79-80) X-ray production Pair production Pair cration discovry Bubbl cambr 6

Pair cration simulation Pair production nuclus positron poton lctron Non-classical baviour of ligt Compton s papr Two-slit xprimnt wit potons (81-85) Blac body radiation (77-78) Potolctric ffct (79-80) X-ray production Pair production Compton ffct Compton ffct Assumption: poton as momntum /λ y λ λ cos m c Θ x ϕ ( 1 Θ) cos Θ + γmu cosϕ ' λ λ sin Θ γmu sin ϕ ' λ λ c c + mc + γmc ' λ λ y λ λ cos m c Θ x ϕ ( 1 Θ) 7

Non-classical baviour of ligt Two-slit xprimnt wit on poton at a tim Two-slit xprimnt wit potons (81-85) Blac body radiation (77-78) Potolctric ffct (79-80) X-ray production Pair production Compton ffct Two-slit xprimnt wit on poton (81-85) Non-classical baviour of ligt Conclusions for ligt Two-slit xprimnt wit potons (81-85) Blac body radiation (77-78) Potolctric ffct (79-80) X-ray production Pair production Compton ffct Two-slit xprimnt wit on poton (81-85) E f ω E f ω E f ω E f ω p mv λ Singl poton as still a wav caractr Dpnding on t typ of xprimnt ligt can b dscribd as a wav or as particls T ligt particls ar potons. T nrgy of a poton wit an angular frquncy ω is T momntum of a poton wit wav vctor is E ω p Non-classical baviour of particls Non-classical baviour of particls Two-slit xprimnt wit lctrons (81-85) Davisson and Grmr xprimnt (81) Elctron microscop (lctur) Nutron diffraction (lctur) 8

Non-classical baviour of particls Two-slit xprimnt for lctrons Two-slit xprimnt wit lctrons (81-85) Two-slit : quantitativ analysis Two-slit : intrfrnc Amplitud Two-slit : dstructiv intrfrnc Two-slit : constructiv intrfrnc 9

Elctrons+potons Non-classical baviour of particls Ψ n lctrons Two-slit xprimnt wit lctrons (81-85) Davisson and Grmr xprimnt (81) potons Davisson original papr Dtail of t original papr Davisson-Grmr xprimnt Exprimntal rsults θ d 10

Davisson-Grmr xprimnt Davisson-Grmr xprimnt 3 X θ θ d d Elctron scattring at t surfac Non-classical baviour of particls θ Two-slit xprimnt wit lctrons (81-85) Davisson and Grmr xprimnt (81) Elctron microscop (lctur) d d sinθ nλ Scanning lctron microscop Non-classical baviour of particls λ mv Two-slit xprimnt wit lctrons (81-85) Davisson and Grmr xprimnt (81) Elctron microscop (lctur) Nutron diffraction (lctur) 11

Elctron scattring in t bul Nutron diffraction θ Nutrons av also a wav caractr D D cosθ nλ Conclusions for particls Two-slit xprimnt wit lctrons (81-85) Davisson and Grmr xprimnt (81) Elctron microscop (lctur) Nutron diffraction (lctur) ω E p Gussing Scrödingr s quation for a fr particl Wav-particl duality Wat av w larnd so far? From wav to particl From particl to wav Scrödingr quation p mv λ E ν ω On would also li to av 1 p E m vparticl m ω m λ p E ν p E ω ( ) 1 p ω E m vparticl m m 1

Wat ar w looing for? A wav so tat: T intnsity of t wav is proportional to t dnsity of particls ω m Ψ n Tis wav sould b solution of a wav quation u t u x V u u α β t x ω V αω β ω m Nota bn: tis is only possibl wit a complx wav i(x-ωt). It dos not wor wit sin or cosin functions How to coos α and β? Insrt i(x-ωt) into α ( i) β m u u i m x t u u α β t x ( ) α( ω) β( )( ) β ix ωt ix ( ωt) ix ( ωt) i i i ω m Ψ Ψ i m x t Hisnbrg s uncrtainty principl As i(x-ωt) is a complx wav w cannot simply ta t squar, but Ψ n Ψ ( x, t) Fr particl wav function i A ( x ωt ) is a solution of Scrödingr s quation Ψ Ψ i m x t ( x ωt ) i( x ωt ) i Ψ( x, t) A A A Many i ( x ) ωt ar ncssary to localiz a wav function x x 1 Ψ constant Tis is not ralistic for a particl 13

Hisnbrg s Uncrtainty Principl Hisnbrg s Uncrtainty Principl x 1 ( ) x p x x p x E x t 3 tims quantum pysics Elctron tunnling p x Hisnbrg s uncrtainty principl Spin of t lctron Atoms cannot b vanisingly small Many i ( x ) ωt ar ncssary to localiz a wav function V g d ω m Vg d m p mv v m m particl T vlocity of a particl is givn by t group vlocity V g d ω m Vg d m p mv v m m particl 14

T group vlocity is compltly diffrnt from t pas vlocity V pas ω ω m ω Vpas m p mv v m m particl V g d ω m Vg d m p mv v m m particl Gussing Scrödingr s quation for a particl in a potntial Potntial nrgy Total nrgy F E total E intic + U x v ½mv +½Kx x x Forc F-Kx U ½Kx F U ½Kx Wor ÛFdx - Potntial nrgy U x x How to introduc potntial nrgy? Stationary stats Insrt i(x-ωt) into Ψ Ψ i m x t givs W loo for solutions of t tim-dpndnt Scrödingr quation Kintic nrgy m ω Kintic + nrgy Total nrgy in t form Ψ Ψ + U( x)ψ i m x t Ψ ( x, t) Φ( x) Et i and find m U x + ( ) ω Ψ Ψ + U( x)ψ i m x t Φ + U( x) Φ EΦ m x Tis is t tim-indpndnt Scrödingr quation for stationary stats (standing wavs) 15