The direct effect of the harbour. micropollutant concentration. Workshop Characterization of atmospheric pollution in harbour areas 26 June 2013

Similar documents
Environmental Forensic Principals for Sources Allocation of Polycyclic Aromatic Hydrocarbons

Supporting Information

Determination of Polycyclic Aromatic Hydrocarbons (PAHs) in Seafood Using GC/MS

MEASUREMENT OF DRY DEPOSITION AMOUNT OF PAHS IN ZONGULDAK REGION

Determination of Polycyclic Aromatic Hydrocarbons (PAH) Adsorbed on Soot Formed in Pyrolysis of Acetylene at Different Temperatures

This project has been funded with support from the European Commission. This publication reflects the views only of the authors, and the Commission

Mathematical Modelling of Partitioning Processes of Polycyclic Aromatic Hydrocarbons as Gas Waste

*

Determination of 24 PAHs in Drinking Water

Accelerated Solvent Extraction GC-MS Analysis and Detection of Polycyclic Aromatic Hydrocarbons in Soil

Estimating PAH Dry Deposition by Measuring Gas and Particle Phase Concentrations in Ambient Air

Multi-residue Analysis for PAHs, PCBs and OCPs on Agilent J&W FactorFour VF-Xms

Application Note. Agilent Application Solution Analysis of PAHs in soil according to EPA 8310 method with UV and fluorescence detection.

Andrei Medvedovici, Florina Micăle, Florentin Tache

Supporting Information

Polycyclic Aromatic. atmosphere of Guangzhou,

METHOD 8100 POLYNUCLEAR AROMATIC HYDROCARBONS

The Use of Tandem Quadrupole GC/MS/MS for the Determination of Polycyclic Aromatics Hydrocarbons (PAHs) in Food Products

Occupational exposure to polycyclic aromatic hydrocarbons in various technological processes i INTRODUCTION

The Role of Sources and Atmospheric Conditions in the Seasonal Variability of Particulate Phase PAHs at the Urban Site in Central Poland

Analysis of Polycyclic Aromatic Hydrocarbons in Soil with Agilent Bond Elut HPLC-FLD

Determination of Polycyclic Aromatic Hydrocarbons in Industrial Harbor Sediments by GC-MS

PAHs in Sediments along the Semi-closed Areas of

APPENDIX G. Data Management Rules. Dioxin Data Report Appendix G. Lower Duwamish Waterway Superfund Site: T-117 Early Action Area

Analytical Method for the Determination of Selected PACs in Ambient Air Samples

Application Note. Abstract. Introduction. Determination of Polycyclic Aromatic Hydrocarbons in Seafood by an Automated QuEChERS Solution

A Newly Designed Solid-Phase Extraction-type Collection Device for Precise Determination of Polycyclic Aromatic Hydrocarbons in Air

Technology, Kuala Lumpur, Malaysia Published online: 26 Mar 2015.

DETERMINATION OF POLYCYCLIC AROMATIC HYDROCARBONS IN SOIL AT AL-NAHRAWAN BRICKS FACTORY Thamera K. M. Al-Rudaini 1 and Israa M.H.

Sensitive and rapid determination of polycyclic aromatic hydrocarbons in tap water

PAH Analyses with High Efficiency GC Columns: Column Selection and Best Practices

ESTIMATION OF POLYCYCLIC AROMATIC HYDROCARBONS (PAHs) POLLUTANTS IN THE AMBIENT AIR OF KHARTOUM CITY, SUDAN (Part III)

The Design of High Temperature Capillary Gas Chromatography Columns Based on Polydimethylsiloxane

Specific Dual Beam Fluorometry Analysis of Benzo[a]pyrene and Benzo[k]fluoranthene in Diesel Exhaust Particulate Samples

ISTC Reports. Source Apportionment of Polycyclic Aromatic Hydrocarbons in Illinois River Sediment

Determination of Particle-associated Polycyclic Aromatic Hydrocarbons in Urban Air of Beijing by GC/MS

The Suite for Environmental GC Analysis

Method 8270C PAH. FD- Field Duplicate Samples

Facility: Mansfield Revision 3. Title: PAHs by SPME Page 1 of 11

Dissemination patterns and risks impersonated of PAHs contaminated in the surface and subsurface soil

APPENDIX K. Fingerprinting Justification Memo

What Does the EPA Method Round Robin Data Really Tell Us?

Polycyclic aromatic hydrocarbons (PAHs) in the Mediterranean Sea: atmospheric

Copyright 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Analysis of Biomarkers in Crude Oil Using the Agilent 7200 GC/Q-TOF

Katherine K. Stenerson, Michael Ye, Michael Halpenny, Olga Shimelis, and Leonard M. Sidisky. Supelco, Div. of Sigma-Aldrich Bellefonte, PA USA

Monitoring of PAHs in the natural protected areas in non-heating season using Norway spruce (Picea abies (L.) Karst) needles

TECHNICAL MEMORANDUM June 16, 2011

Occurrence and Bioaccumulation of Micropollutants in Black Cicada

DISTRIBUTION OF POLYCYCLIC AROMATIC HYDROCAR- BONS IN SURFACE SEDIMENTS OF KOH SICHANG ANCHORAGE AREA IN THAILAND

Application of an Analytical Technique for Determining Alkyl PAHs, Saturated Hydrocarbons and Geochemical Biomarkers

MODIFIED METHOD FOR DETERMINATION OF PAHs IN AMBIENT AIR IN BANGKOK USING GAS CHROMATOGRAPHY-MASS SPECTROMETRY

SPE AND GC MS INVESTIGATION OF ORGANIC CONTAMINANTS IN ATMOSPHERIC PRECIPITATION

TOTALLY INNOVATIVE MULTIMODE AUTOSAMPLER NEW KONIK ROBOKROM Laboratory Gas Generators An Overview +8 OPERATIONAL MODES MAIN FEATURES

STUDY ON POLYCYCLIC AROMATIC HYDROCARBONS AND POLY CHLORINATED BIPHENYLS YEARLY BASED CONCENTRATION IN WASTE OIL-SLUDGE AT MATHURA-AGRA REGION

ILLA SpA VIA GHISOLFI GUARESCHI, NOCETO (PR)

Particle-Associated PAHs in Urban and Rural Ambient Air Samples

Electron beam flue gas treatment and effects on volatile organic compounds Andrzej G. Chmielewski

Multifactorial Optimization Approach for Determination of Polycyclic Aromatic Hydrocarbons in Sea Sediments of Turkish Mediterranean Coast

Size Distribution of Particulate Polycyclic Aromatic Hydrocarbons in the Diluted Four-stroke Motorcycle Exhausts

Selection of a Capillary

Appendix 1: Polycyclic Aromatic Compounds: Nomenclature and Analysis

Optimizing GC Parameters for Faster Separations with Conventional Instrumentation

APPENDIX D Laboratory Analytical Reports

DETERMINATION OF POLYCYCLIC AROMATIC HYDROCARBONS (PAHs) IN OIL SHALE PROCESSING WASTES: CURRENT PRACTICE AND NEW TRENDS

Analysis of Alkyl PAHs And Geochemical Biomarkers

ENVIRONMENTAL analysis

APPENDIX AVAILABLE ON REQUEST

The Potential Environmental Impact of Polycyclic Aromatic Hydrocarbons emitted from Brick Factories

Effect of Relative Humidity on Polycyclic Aromatic Hydrocarbon Emissions from Smoldering Incense

Potential health risks posed by polycyclic aromatic hydrocarbons in muscle tissues of fishes from the Athabasca and Slave Rivers, Canada

Rely on Rxi -PAH Columns

EL608. Deodorants [EL /1/ ]

Test Report No. SH / CHEM Date: Apr. 28, 2008 Page 1 of 6

Technical Report on activities carried out by CNR-IIA and INAIL - ex ISPESL in the frame of the EXPAH Project (Actions 3.2 and 3.

Distribution, Composition Profiles and Source Identification of. Polycyclic Aromatic Hydrocarbons in Roadside Soil of Delhi, India

Selection of a Capillary GC Column

Profile of Atmospheric PAHs in Rawalpindi, Lahore and Gujranwala Districts of Punjab Province (Pakistan)

Compatibility of Surfactants and Thermally Activated Persulfate for Enhanced. Subsurface Remediation

Journal of Hazardous Materials

CALIBRATION OF GC/MS METHOD AND VALIDATION OF THE MODIFIED SAMPLE PREPARATION FOR DETERMINATION OF POLYCYCLIC AROMATIC HYDROCARBONS

Results of a Sediment Survey in the Near Offshore Waters of the Proposed Quarry Site in the Vicinity of Whites Cove, Digby Neck, Nova Scotia

Preparation of Micelle Supported Magnetic Hydroxylated Multi-walled Carbon Nanotubes for Determination of PAHs

TETRA TECH, INC. December 8, Lynn Nakashima Berkeley Regional Office 700 Heinz Avenue, Suite 200C Berkeley, California 94710

Developing Large Volume Injection (LVI) in Split / Splitless Inlets. Philip J. Koerner Phenomenex Inc. NEMC 2014

SUPPORTING INFORMATION. Screening Nonionic Surfactants for Enhanced Biodegradation of Polycyclic Aromatic

The Effect of Unresolved Complex Mixtures (UCM) on Isotopic Profile of Aromatic Hydrocarbons

Trends in Polycyclic Aromatic Hydrocarbon Concentrations Sampled in the Tacoma Tideflats. June Justin P. Miller-Schulze

Non-Potable Water A2LA Certificate

Test Report No. : CE/2009/34977 Date : 2009/03/25 Page : 1 of 10

Analytische Qualitätssicherung Baden-Württemberg

Determination of atmospheric particulate-phase polycyclic aromatic hydrocarbons from low volume air samples

Proximate Analysis and Polycyclic Aromatic Hydrocarbon Levels. in Some Selected Raw Food Stuffs in Aroje and Owode, Nigeria.

Test Report No. : CE/2008/38467 Date : 2008/04/07 Page : 2 of 11 Test Result(s) PART NAME NO.1 : BLACK PLASTIC TUBE Cadmium (Cd) Lead (Pb) Mercury (Hg

Experimental design optimization of chromatographic separation for polycyclic aromatic hydrocarbons in vegetable oils

Ultrasound-assisted pressurized solvent extraction for aliphatic and polycyclic aromatic hydrocarbons from soils

Meeting Challenging Laboratory Requirements for USEPA Method 8270 Using a Highly Sensitive, Robust, and Easy-to-Use GC/MS

Polynuclear aromatic hydrocarbons(pahs) inthesedimentsofthe Oder Estuary(Szczecin Lagoon) before the flood of 1997

Test Report. Report No. ECL01H Page 1 of 5

Jin Zhang*, Jens Tränckner and Peter Krebs

Transcription:

pollution in harbour areas 26 June 2013 The direct effect of the harbour of Brindisi on organic micropollutant concentration Elena Gregoris, Andrea Gambaro Institute for the dynamics of the environmental processes National Research Council (IDPA CNR), Venice Department of Environmental Science Informatics and Statistics, University Ca Foscari of Venice

Introduction Overview INTRODUCTION Polyciclic aromatic hydrocarbons (PAHs) METHOD Sampling design, pre analytical procedure and analysis Interpretation of results BRINDISI HARBOUR PAHsconcentration Effect of harbour on PAHs concentration Sources estimation Health effect 2/21

Introduction Polyciclic aromatic hydrocarbons (PAHs) Anthracene PAHs is mostly produced by incomplete combustion and pyrolysis of fossil fuel, wood or waste and release of petroleum products. Why are we interested in? Several PAHs are probable or possible cancirogenic for humans They can persist in the environment for a long time, bioaccumulate and they are affected by long range transport Italian limit value (D. M. 25/11/1994) Benzo[a]pyrene []py < 1 ng/m 3 3/21

Method Sampling High volume sampler GAS PHASE PUF polyurethane foam PARTICULATE PHASE AirFlowPUF Analitica Strumenti QFF Quartz Fiber Filter porosity 1 μm 4/21

Method Sampling design We used two high volume samplers: 1) One sampler collects air from all directions 2) One sampler is programmed to activate when the wind blows from a selected sector. Sampler a 360 Sampler wind select HARBOUR AREA 5/21

Method Pre analytical procedure EXTRACTION using a mixture n hexane /dichloromethane 1:1 v/v. Experimental conditions: 100 C / 1000 psi 7 minutes / x 3 cycles. Internal Standard method: 13 C acenaphtylene; 13 C phenanthrene; PURIFICATION by adding the extract to a neutral silica column (30 ml n hexane / 30 ml n hexane/dichloromethane 1:1 v/v) 13 C benzo[a]pyrene Recovery standard: 13 C chrysene PowerPrep Purification System FLS PLE Pressurized liquid extractor FLS Piazza et al. Anal Bioanal Chem 405 (2013) 917 932 6/21

Method Analysis and quantification Gas chromatograph mass spectrometer HRGC LRMS Quadrupole Agilent 5975C 7890A Operative conditions: EI 70 ev; 60 m fused silica capillary column (0.25 mm I. D.; 0.25 μm). GC Programme: 70 C (1.5 min); 10 C/min to 150 C (10 min); 3 C/min to 280 C (28 min); 20 C/min to 300 C (0 min); 305 for 30 min (post run). SIM mode acquisition. Masses: 152.1, 154.1, 158.1, 166.1, 178.1, 184.1, 202.1, 228.1, 234.1, 252.1, 256.3, 276.1, 278.1. QUANTIFICATION 1. Evaluation of the instrumental response factor (F) 2. Comparison of the native compound peak area with that of the internal standard, by correcting for F. 7/21

Method Interpretation of results ΣPAHs from 360 sampling (Q 360 ) ΣPAHs from harbour sampling (Q P ) P Evaluation of the direct effect of the harbour area on micropollutant concentration Q P Q 360 100 GENERAL EFFECT OF HARBOUR Considering also the variability of wind direction and intensity Wind dependent! % PAHs? Harbour (%) Q P,h Q P,h Q A,h 100 Q h P P Q P h Q h P 360 360 Q h P P 100 Sampling site 8/21

BRINDISI HARBOUR

Brindisi Harbour Sampling site Airport Harbour Harbour Industrial area Urban area Industrial area A: The roof of the building of the Consortium for Industrial Development Area (ASI) of Brindisi 10/21

Brindisi Harbour PAHs concentration Conc (ng/m 3 ) 360 SAMPLING HARBOUR SECTOR SAMPLING Average (Range) Average (Range) Acenaphtylene 0.005 (n. d. 0.020) 0.035 (n. d. 0.112) Acenaphtene 0.003 (n. d. 0.012) 0.042 (n. d. 0.156) Fluorene 0.064 (0.031 0.163) 0.515 (0.089 0.841) Phenanthrene 0.799 (0.218 1.486) 2.05 (0.31 4.11) Anthracene 0.033 (0.006 0.123) 0.108 (n. d. 0.355) Fluoranthene 1.28 0.18 4.63 0.900 (0.287 2.453) Pyrene 0.989 (0.175 3.210) 1.32 (0.11 2.89) Benzo[a]Anthracene 0.151 (0.019 0.591) 0.045 (0.007 0.271) Chrysene 0.371 (0.066 1.325) 0.191 (0.057 0.775) Benzo[b]Fluoranthene 0.166 (0.034 0.484) 0.069 (0.025 0.2100) Benzo[k]Fluoranthene 0.052 (0.013 0.144) 0.023 (0.008 0.074) Benzo[a]Pyrene 0.050050 (0.023023 0.094) 094) 0.074074 (0.028028 0.150) Benzo[ghi]Perylene 0.140 (0.024 0.399) 0.074 (0.001 0.243) Indeno[1,2,3 c,d]pyrene 0.158 (0.022 0.382) 0.265 (n. d. 1.217) Dibenzo[a,h]Anthracene 0.017 (n. d. 0.050) 0.007 (n. d. 0.036) Σ 15 PAH 4.28 (1.10 12.63) 5.73 (1.85 9.26) Benzo[a]pyrene < 1 ng/m 3 D. M. 25/11/1994 11/21

Brindisi Harbour PAHs concentration gas particle distribution 360 SAMPLING HARBOUR SECTOR SAMPLING Conc (ng/m 3 ) Gas phase Particulate phase Gas phase Particulate phase Average (Range) Average (Range) Average (Range) Average (Range) Acenaphtylene 0.003003 (n. d. 0.007) 007) 0.002002 (n. d. 0.013) 013) 0.026026 (n. d. 0.097) 097) 0.007007 (n. d. 0.041) 041) Acenaphtene 0.002 (n. d. 0.010) 0.002 (n. d. 0.010) 0.029 (n. d. 0.102) 0.012 (n. d. 0.091) Fluorene 0.061 (0.031 0.163) 0.003 (n. d. 0.013) 0.473 (0.081 0.822) 0.011 (n. d. 0.062) Phenanthrene 0.734 (0.218 1.416) 0.064 (n. d. 0.424) 1.54 (0.31 2.81) 0.417 (n. d. 1.790) Anthracene 0.024 (0.004 0.077) 0.009 (n. d. 0.078) 0.054 (n. d. 0.164) 0.047 (n. d. 0.191) Fluoranthene 122 1.22 (0.12 4.53) 0.054054 (0.031031 0.095) 095) 0.966 (0.146 2.387) 0.128 (n. d. 0.250) Pyrene 0.906 (0.140 2.953) 0.083 (0.006 0.257) 0.887 (0.089 1.571) 0.566 (n. d. 1.852) Benzo[a]Anthracene 0.126 (0.005 0.521) 0.025 (0.010 0.071) 0.053 (n. d. 0.199) 0.022 (0.006 0.071) Chrysene 0.308 (0.029 1.179) 0.063 (0.030 0.146) 0.170 (0.015 0.602) 0.074 (0.034 0.173) Benzo[b]Fluoranthene 0.071 (0.002 0.289) 0.095 (0.032 0.286) 0.025 (n. d. 0.039) 0.063 (0.025 0.210) Benzo[k]Fluoranthene 0.021 (0.0006 0.107) 0.032 (0.011 0.081) 0.006 (n. d. 0.009) 0.021 (0.008 0.071) Benzo[a]Pyrene 0.003 (0.001 0.006) 0.047 (0.021 0.093) 0.013 (n. d. 0.025) 0.061 (0.024 0.131) Benzo[ghi]Perylene 0.002 (n. d. 0.011) 0.138 (0.023 0.397) 0.004 (n. d. 0.025) 0.070 (n. d. 0.234) Indeno[1,2,3 c,d]pyrene 0.010 (n. d. 0.065) 0.147 (0.018 0.382) 0.027 (n. d. 0.203) 0.238 (n. d. 1.179) Dibenzo[a,h]Anthracene 0.00010001 (n. d. 0.0004) 0004) 0.017017 (n. d. 0.050) 050) 0.00020002 (n. d. 0002) 0.002) 0.007007 (n. d. 0.036) 036) Σ 15 PAH 3.49 (0.57 10.98) 0.781 (0.227 1.654) 4.27 (0.66 7.82) 1.74 (0.14 4.24) 18% 82% GAS PARTICULATE 30% 70% GAS PARTICULATE 12/21

Brindisi Harbour PAHs concentration congener distribution 360 sampling Harbour sector sampling BbF 4% CHR 9% PYR 23% PHE 19% FLA 30% ACY ACE FL PHE ANT FLA BaA 4% PYR BaA CHR BbF BkF BaP BhiP BghiP CHR 3% PYR 23% FLA 16% FL 9% PHE 36% ACY ACE FL PHE ANT FLA PYR BaA CHR BbF BkF BaP BhiP BghiP IcdP 100 90 80 70 60 50 40 30 20 10 0 Gas % ACY Particulate ACE FL PHE ANT FLA PYR BaA CHR BbF BkF BaP Bg hip Ic cdp Da aha % 100 90 80 70 60 50 40 30 20 10 0 Gas Particulate AC CY AC CE FL PH HE AN NT FL LA PY YR Ba aa CH HR Bb bf B kf Ba ap Bgh hip Icd dp Dah ha 13/21

Brindisi Harbour Effect of harbour on PAHs concentration ε: 27 % (12 48 %) χ : 55 % (29 87 %) INTERPRETATION One person, staying in the sampling site, during the sampling has 27% of PAHs intake coming from the harbour χ (%) 100 90 80 70 60 50 40 30 20 10 0 INTERPRETATION The general contribute of harbour to PAHs concentration in Brindisi is 55%. χ (%) tonnage 0.9 0.8 0.7 0.6 0.5 04 0.4 0.3 0.2 0.1 0.0 nage x10 6 Ton 14/21

Brindisi Harbour Sources estimation PHE, FLA e PYR 1. PAH MARKERS: Lighter PAHs FL, FLA, PYR Motor vehicles Incineration Diesel vehicles Oil combustion 2. DIAGNOSTIC FACTORS (DR): ANT ANT PHE <0.1 >0.1 petroleum combustion FLA FLA PYR <0.5 >0.5 gasoline diesel COMB TOT BaA BaA CHR 1 combustion <0.2 petroleum 0.2 0.35 mix sources > 0.35 combustion BbF BkF IcdP IcdP BghiP >0.5 diesel 0.35 0.70 diesel 15/21

Brindisi Harbour Sources estimation DR ANT/(ANT+PH HE) COMB/TOT 0.12 0.10 0.08 0.06 0.04 002 0.02 360 Harbour Combustion gasoline diesel Petroleum 0.5 0.00 0.0 0.2 0.4 0.6 0.8 1.0 FLA/(FLA+PYR) 1.00 0.90 0.80 070 0.70 0.60 0.50 0.40 0.30 0.20 0.10 ine gasoli diese el 360 Harbour combustion sources 0.00 0.0 1.0 2.0 3.0 4.0 5.0 BbF/BkF petrogenic sources A/(BaA+CHR) Ba 0.6 360 Harbour 0.4 0.3 0.2 0.1 Combustion Petrogenic+ combustion Petrogenic diesel 0.0 0.0 0.2 0.4 0.6 0.8 1.0 IcdP/(IcdP+BghiP) Principal source: fuels Both diesel and gasoline 16/21

Brindisi Harbour Health effect TEQ 360 sampling Harbour sector sampling TEF Conc BaP conc Contribute Conc BaP conc Contribute ng/m 3 pg/m 3 TEF to TCA ng/m 3 pg/m 3 to TCA ACY 0.001 0.005 0.005 0.00 ACY 0.001 0.035 0.035 0.03 ACE 0.001 0.003 0.003 0.00 ACE 0.001 0.042 0.042 0.03 FL 0.001 0.064 0.064 0.05 FL 0.001 0.515 0.515 0.40 PHE 0.001 0.799 0.799 0.62 PHE 0.001 2.053 2.053 1.60 ANT 0.01 0.033 0.334 0.26 ANT 0.01 0.108 1.076 0.84 FLA 0.001 1.276 1.276 1.00 FLA 0.001 0.900 0.900 0.70 PYR 0.001 0.989 0.989 0.77 PYR 0.001 1.325 1.325 1.04 BaA 0.1 0.151 15.092 11.80 BaA 0.1 0.045 4.541 3.55 CHR 0.01 0.370 3.705 2.90 CHR 0.01 0.191 1.914 1.50 BbF 0.1 0.166 16.579 12.96 BbF 0.1 0.069 6.942 5.43 BkF 01 0.1 0.052052 5.245 410 4.10 BkF 01 0.1 0.023023 2.299299 180 1.80 BaP 1 0.050 49.858 38.98 BaP 1 0.074 73.643 57.58 BghiP 0.01 0.140 1.402 1.10 BghiP 0.01 0.074 0.741 0.58 IcdP 0.1 0.158 15.760 12.32 IcdP 0.1 0.265 26.474 20.70 DahA 1 0.017017 16.795 13.13 DahA 1 0.007007 7.216 564 5.64 TCA: 128 pg/m 3 TCA: 130 pg/m 3 < 1 ng/m 3 17/21

Brindisi Harbour Health effect TEQ gas particle distribution 360 sampling Harbour sector sampling GAS PARTICULATE GAS PARTICULATE TEF Conc BaP conc % to Conc BaP conc % to Conc BaP conc % to Conc BaP conc % to TEF ng/m 3 pg/m 3 TCA ng/m 3 pg/m 3 TCA ng/m 3 pg/m 3 TCA ng/m 3 pg/m 3 TCA ACY 0.001 0.003 0.003 0.01 0.002 0.002 0.00 ACY 0.001 0.029 0.029 0.09 0.007 0.007 0.01 ACE 0.001 0.002 0.002 0.01 0.002 0.002 0.00 ACE 0.001 0.030 0.030 0.09 0.012 0.012 0.01 FL 0.001 0.061 0.061 0.19 0.003 0.003 0.00 FL 0.001 0.504 0.504 1.59 0.011 0.011 0.01 PHE 0.001 0.734 0.734 2.31 0.064 0.064 0.07 PHE 0.001 1.635 1.635 5.14 0.417 0.417 0.43 ANT 0.01 0.024 0.242 0.76 0.009 0.092 0.10 ANT 0.01 0.061 0.611 1.92 0.046 0.465 0.48 FLA 0.001 1.222 1.222 3.84 0.054 0.054 0.06 FLA 0.001 0.771 0.771 2.43 0.128 0.128 0.13 PYR 0.001 0.906 0.906 2.85 0.083 0.083 0.09 PYR 0.001 0.759 0.759 2.39 0.566 0.566 0.59 BaA 0.1 0.126 12.557 39.49 0.025 2.535 2.64 BaA 0.1 0.024 2.363 7.43 0.022 2.178 2.27 CHR 0.01 0.308 3.075 9.67 0.063 0.629 0.65 CHR 0.01 0.117 1.172 3.69 0.074 0.742 0.77 BbF 0.1 0.071 7.078 22.26 0.095 9.502 9.89 BbF 0.1 0.007 0.668 2.10 0.063 6.274 6.53 BkF 0.1 0.021 2.067 6.50 0.032 3.178 3.31 BkF 0.1 0.002 0.163 0.51 0.021 2.136 2.22 BaP 1 0.003 2.730 8.58 0.047 47.128 49.04 BaP 1 0.013 12.984 40.83 0.061 60.659 63.12 BghiP 0.01 0.002 0.021 0.07 0.138 1.381 1.44 BghiP 0.01 0.004 0.041 0.13 0.070 0.700 0.73 IcdP 0.1 0.010 1.042 3.28 0.147 14.718 15.31 IcdP 0.1 0.027 2.665 8.38 0.238 23.810 24.77 DahA 1 0.000 0.057 0.18 0.017 16.737 17.42 DahA 1 0.000 0.250 0.79 0.007 6.966 7.25 TCA: 31 pg/m 3 TCA: 96 pg/m 3 TCA: 25 pg/m 3 TCA: 105 pg/m 3 18/21

Conclusions Method: Using 2 high volume samplers; one of them programmed to turn on when the wind blows from the harbour sector Effect of harbour: abou Global contribute: 55 ± 19% Hypotethycal intake in the sampling site: 27 ± 10% Source analysis: Petroleum products as principal PAH concentration: sources 360 sampling: 4.2 ±3.5 ng/m 3 Both diesel and gasoline motors Harbour sector: 5.7 ± 2.7 ng/m 3 PAHs abundants in gas phase Health effect: High molecular PAHs mostly in B[a]P contribute for 39 58% to TCA particulate phase Benzo[a]pyrene and TCA < 1 ng/m 3 Particulate is more dangerous than gas 19/21

Aknowledgements ISAC CNR CNR Lecce: Daniele Contini Antonio Donateo Daniela Cesari Fabio Grasso University Ca Foscari of Venice Elena Argiriadis Elena Barbaro Gjulten Ndi Nedzip IDPA CNR Venice Elisa Morabito AND THANK YOU FOR YOUR ATTENTION 20/21

Comparison with Venice Harbour ΣPAHs BRINDISI from 360 sampling 4.2 ng/m 3 (1.1 12.6 ng/m 3 ) from harbour direction sampling 5.7 ng/m 3 (1.9 9.3 ng/m 3 ) Sampling site ΣPAHs VENICE from 360 sampling 24ng/m 2.4 3 (1.5 52ng/m 5.2 3 ) from harbour direction sampling 6.6 ng/m 3 (2.1 13.5 ng/m 3 ) BRINDISI ε: 27% (12 48%) χ : 55% (29 87%) VENICE ε: 78% (43 100%) χ : 84% (50 100%) 21/21