Source process of the 2011 off the Pacific coast of Tohoku Earthquake inferred from waveform inversion with long-period strong-motion records

Similar documents
Source Process and Constitutive Relations of the 2011 Tohoku Earthquake Inferred from Near-Field Strong-Motion Data

STRONG GROUND MOTIONS DURING THE 2011 PACIFIC COAST OFF TOHOKU, JAPAN EARTHQUAKE

Source characterization of induced earthquakes by the 2011 off Tohoku, Japan, earthquake based on the strong motion simulations

Rupture process of the 2007 Chuetsu-oki, Niigata, Japan, earthquake Waveform inversion using empirical Green s functions

Source process of the 2011 off the Pacific coast of Tohoku Earthquake with the combination of teleseismic and strong motion data

Complicated repeating earthquakes on the convergent plate boundary: Rupture processes of the 1978 and 2005 Miyagi-ken Oki earthquakes

Source model of the 2005 Miyagi-Oki, Japan, earthquake estimated from broadband strong motions

Coulomb stress change for the normal-fault aftershocks triggered near the Japan Trench by the 2011 M w 9.0 Tohoku-Oki earthquake

Scaling of characterized slip models for plate-boundary earthquakes

LETTER Earth Planets Space, 57, , 2005

Ground motion and rupture process of the 2004 Mid Niigata Prefecture earthquake obtained from strong motion data of K-NET and KiK-net

High Acceleration Motions generated from the 2011 Pacific coast off Tohoku, Japan Earthquake

Source Characteristics of Large Outer Rise Earthquakes in the Pacific Plate

Joint inversion of strong motion, teleseismic, geodetic, and tsunami datasets for the rupture process of the 2011 Tohoku earthquake

Scaling relations of seismic moment, rupture area, average slip, and asperity size for M~9 subduction-zone earthquakes

Broadband ground motion simulations of mega-thrust subduction earthquakes based on multi-scale heterogeneous-source model

A Prototype of Strong Ground Motion Prediction Procedure for Intraslab Earthquake based on the Characterized Source Model

Source rupture process of the 2003 Tokachi-oki earthquake determined by joint inversion of teleseismic body wave and strong ground motion data

SUPPLEMENTARY INFORMATION

by A. Nozu and K. Irikura Introduction

Imaging an asperity of the 2003 Tokachi-oki earthquake using a dense strong-motion seismograph network

Effects of Surface Geology on Seismic Motion

Rapid magnitude determination from peak amplitudes at local stations

A complex rupture image of the 2011 off the Pacific coast of Tohoku Earthquake revealed by the MeSO-net

Centroid-moment-tensor analysis of the 2011 off the Pacific coast of Tohoku Earthquake and its larger foreshocks and aftershocks

Rupture process of the 2005 West Off Fukuoka Prefecture, Japan, earthquake

Simulation of Strong Ground Motions for a Shallow Crustal Earthquake in Japan Based on the Pseudo Point-Source Model

LETTER Earth Planets Space, 58, 63 67, 2006

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109, B08306, doi: /2004jb002980, 2004

MODELING OF HIGH-FREQUENCY WAVE RADIATION PROCESS ON THE FAULT PLANE FROM THE ENVELOPE FITTING OF ACCELERATION RECORDS

LETTER Earth Planets Space, 63, , 2011

SOURCE MODELING OF RECENT LARGE INLAND CRUSTAL EARTHQUAKES IN JAPAN AND SOURCE CHARACTERIZATION FOR STRONG MOTION PREDICTION

Outline of the 2011 off the Pacific coast of Tohoku Earthquake (M w 9.0) Earthquake Early Warning and observed seismic intensity

Effects of subsurface structures of source regions on long period ground motions observed in the Tokyo Bay area, Japan

A possible mechanism of M 9 earthquake generation cycles in the area of repeating M 7 8 earthquakes surrounded by aseismic sliding

Empirical Green s Function Analysis of the Wells, Nevada, Earthquake Source

RECIPE FOR PREDICTING STRONG GROUND MOTIONS FROM FUTURE LARGE INTRASLAB EARTHQUAKES

X-2 HIKIMA AND KOKETSU: THE 2004 CHUETSU, JAPAN, EARTHQUAKE We relocated the hypocenters of the 2004 Chuetsu earthquake sequence, Niigata, Japan, usin

Centroid moment-tensor analysis of the 2011 Tohoku earthquake. and its larger foreshocks and aftershocks

Effects of Surface Geology on Seismic Motion

Slip distributions of the 1944 Tonankai and 1946 Nankai earthquakes including the horizontal movement effect on tsunami generation

An intermediate deep earthquake rupturing on a dip-bending fault: Waveform analysis of the 2003 Miyagi-ken Oki earthquake

Synthetic sensitivity analysis of high frequency radiation of 2011 Tohoku-Oki (M W 9.0) earthquake

High-frequency rupture properties of the M w 9.0 off the Pacific coast of Tohoku Earthquake

Shear-wave splitting in a region with newly-activated seismicity after the 2011 Tohoku earthquake

JCR (2 ), JGR- (1 ) (4 ) 11, EPSL GRL BSSA

Temporal changes of site response during the 2011 M w 9.0 off the Pacific coast of Tohoku Earthquake

Effects of Surface Geology on Seismic Motion

Rupture process of the largest aftershock of the M 9 Tohoku-oki earthquake obtained from a back-projection approach using the MeSO-net data

2011/3/11 14:46, Depth 24km, M9.0 (JMA)

Coseismic slip distribution of the 2005 off Miyagi earthquake (M7.2) estimated by inversion of teleseismic and regional seismograms

SPATIAL DISTRIBUTION OF STRONG GROUND MOTION CONSIDERING ASPERITY AND DIRECTIVITY OF FAULT

RISKY HIGH-RISE BUILDINGS RESONATING WITH THE LONG-PERIOD STRONG GROUND MOTIONS IN THE OSAKA BASIN, JAPAN

Long-period ground motion simulation in the Kinki area during the MJ 7.1 foreshock of the 2004 off the Kii peninsula earthquakes

Challenges of Applying Ground Motion Simulation to Earthquake Engineering

Earthquake Source. Kazuki Koketsu. Special Session: Great East Japan (Tohoku) Earthquake. Earthquake Research Institute, University of Tokyo

Citation Earth, Planets and Space (2014), 66. Commons Attribution License. provided the original work is prope

Nonlinear site response from the 2003 and 2005 Miyagi-Oki earthquakes

Open Access FRONTIER LETTER. Kimiyuki Asano * and Tomotaka Iwata

Multi-planar structures in the aftershock distribution of the Mid Niigata prefecture Earthquake in 2004

GROUND MOTION SPECTRAL INTENSITY PREDICTION WITH STOCHASTIC GREEN S FUNCTION METHOD FOR HYPOTHETICAL GREAT EARTHQUAKES ALONG THE NANKAI TROUGH, JAPAN

Off-fault aftershocks of the 2005 West Off Fukuoka Prefecture Earthquake: Reactivation of a structural boundary?

Strong ground motions recorded by a near-source seismographic array during the 16 August 2005 Miyagi-Ken-Oki, JAPAN, earthquake (Mw 7.

Moment tensor inversion of near source seismograms

Coseismic slip distribution of the 1946 Nankai earthquake and aseismic slips caused by the earthquake

SOURCE, PATH AND SITE EFFECTS ON STRONG GROUND MOTIONS FROM THE 2003 TOKACHI-OKI EARTHQUAKE SEQUENCE

10th International Workshop on Seismic Microzoning and Risk Reduction September 25, 2013,Tokyo, Japan

The M7.1 May 26, 2003 off-shore Miyagi Prefecture Earthquake in northeast Japan: Source process and aftershock distribution of an intra-slab event

4 Associate Professor, DPRI, Kyoto University, Uji, Japan

Source modeling of hypothetical Tokai-Tonankai-Nankai, Japan, earthquake and strong ground motion simulation using the empirical Green s functions

THREE-DIMENSIONAL FINITE DIFFERENCE SIMULATION OF LONG-PERIOD GROUND MOTION IN THE KANTO PLAIN, JAPAN

Tsunami waveform inversion of the 2007 Bengkulu, southern Sumatra, earthquake

A shallow strong patch model for the 2011 great Tohoku oki earthquake: A numerical simulation

STRONG-MOTION SEISMOGRAPH NETWORK OPERATED BY NIED: K-NET AND KiK-net

Effects of Surface Geology on Seismic Motion

Earthquakes and Tsunamis

Title. Author(s)Yomogida, Kiyoshi; Yoshizawa, Kazunori; Koyama, Junj. CitationEarth, Planets and Space, 63(7): Issue Date Doc URL.

SEISMIC HAZARD ASSESSMENT FOR JAPAN AFTER THE 2011 TOHOKU-OKI MEGA-THRUST EARTHQUAKE (Mw9.0)

BROADBAND STRONG MOTION SIMULATION OF THE 2004 NIIGATA- KEN CHUETSU EARTHQUAKE: SOURCE AND SITE EFFECTS

THEORETICAL EVALUATION OF EFFECTS OF SEA ON SEISMIC GROUND MOTION

New Prediction Formula of Fourier Spectra Based on Separation Method of Source, Path, and Site Effects Applied to the Observed Data in Japan

Seismic Activity and Crustal Deformation after the 2011 Off the Pacific Coast of Tohoku Earthquake

GEOPHYSICAL RESEARCH LETTERS, VOL. 31, L19604, doi: /2004gl020366, 2004

DETERMINATION OF SLIP DISTRIBUTION OF THE 28 MARCH 2005 NIAS EARTHQUAKE USING JOINT INVERSION OF TSUNAMI WAVEFORM AND GPS DATA

LONG-PERIOD GROUND MOTION SIMULATION OF OSAKA SEDIMENTARY BASIN FOR A HYPOTHETICAL NANKAI SUBDUCTION EARTHQUAKE

AVERAGE AND VARIATION OF FOCAL MECHANISM AROUND TOHOKU SUBDUCTION ZONE


STRONG GROUND MOTION PREDICTION FOR HUGE SUBDUCTION EARTHQUAKES USING A CHARACTERIZED SOURCE MODEL AND SEVERAL SIMULATION TECHNIQUES

Widespread Ground Motion Distribution Caused by Rupture Directivity during the 2015 Gorkha, Nepal Earthquake

Spatial distribution of centroid moment tensor solutions for the 2004 off Kii peninsula earthquakes

LETTER Earth Planets Space, 56, , 2004

SOURCE PROCESS OF THE 2003 PUERTO PLATA EARTHQUAKE USING TELESEISMIC DATA AND STRONG GROUND MOTION SIMULATION

Coupled Simulation of Ground Shaking and Tsunami for Mega-thrust Subduction Earthquakes

Effects of Surface Geology on Seismic Motion

SOURCE MODELING OF SUBDUCTION-ZONE EARTHQUAKES AND LONG-PERIOD GROUND MOTION VALIDATION IN THE TOKYO METROPOLITAN AREA

Precise location of the fault plane and the onset of the main rupture of the 2005 West Off Fukuoka Prefecture earthquake

Scenario Earthquake Shaking Maps in Japan

Dynamic rupture simulation of the 2011 off the Pacific coast of Tohoku Earthquake: Multi-event generation within dozens of seconds

3D modeling of the cycle of a great Tohoku oki earthquake, considering frictional behavior at low to high slip velocities

RELOCATION OF THE MACHAZE AND LACERDA EARTHQUAKES IN MOZAMBIQUE AND THE RUPTURE PROCESS OF THE 2006 Mw7.0 MACHAZE EARTHQUAKE

Transcription:

LETTER Earth Planets Space, 63, 577 582, 2011 Source process of the 2011 off the Pacific coast of Tohoku Earthquake inferred from waveform inversion with long-period strong-motion records Kunikazu Yoshida 1, Ken Miyakoshi 1, and Kojiro Irikura 2 1 Geo-Research Institute, 4-3-2 Itachibori, Nishi-ku, Osaka 550-0012, Japan 2 Aichi Institute of Technology, 1247 Yachigusa, Yakusa, Toyota, Aichi 470-0392, Japan (Received April 15, 2011; Revised June 27, 2011; Accepted June 28, 2011; Online published September 27, 2011) We have investigated the rupture process of the 2011 off the Pacific coast of Tohoku Earthquake using a multitime-window linear waveform inversion method using long-period strong-ground motion data. From the record section of the long-period motion of the 3 phases, it is indicated that the rupture process mainly consists of the 3 stages. We have assumed a single planar fault model of 468 km long in strike and 228 km wide in dip. The seismic moment of this earthquake was estimated to be 4.3 10 22 Nm(M w 9.0). The inverted slip distribution shows a large asperity with a maximum slip of about 47 m which is located on the shallower part of the fault plane. The rupture process is divided into three stages: a first stage with moderate slip; a second stage with large and long-duration slip in the shallow part of the fault; and a third stage with relatively small and short-duration slip in the southern part of the fault. The feature of the ground motion suggested from the record section is well represented by the peak moment rate distributions, rather than the slip distributions. The rupture velocity is around 3 4 km/s in the first and third stages, while rupture progression was suspended for a while before the rupture of the asperity. Key words: 2011 Tohoku Earthquake, long-period ground motion, strong motion, source process, peak moment rate distribution. 1. Introduction On 11 March 2011, the Tohoku Earthquake of M W 9.0 (Japan Meteorological Agency) struck the Tohoku region, Japan, and generated a huge tsunami. Historical and seismic records indicate that interplate earthquakes with magnitudes of about 7.5 have occurred repeatedly around the hypocenter of this event with a recurrence interval of about 37 years (the Headquarters for Earthquake Research Promotion, MEXT, Japan, 2001). Recent studies have pointed out that the magnitude of the AD 869 Jogan earthquake, which occurred around the off coast of Miyagi area, was greater than M w 8.4 (e.g., Satake et al., 2008). The 2011 Tohoku Earthquake (the 2011 off the Pacific coast of Tohoku Earthquake named by JMA) is the first M 9 earthquake to have been recorded by many near-field strongmotion stations. During previous historical M 9-class earthquakes (e.g., 2004 Sumatra, 1964 Alaska, 1960 Chile), few strong-motion seismometers near the source region were operated. It is important to discuss whether the asperity estimated from waveform inversion using long-period strong motion is the same as those using the tsunami, and to discuss the relationship between large slip area (asperities) expected to excite tsunami, and strong-motion generating areas (SMGAs). In this study, we first investigate the characteristics of the Copyright c The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences; TERRAPUB. doi:10.5047/eps.2011.06.050 rupture from the observed seismograms directly. Then, we estimate the source process using the long-period strongmotion waveform data in the near-field region of the event. 2. Observed Seismograms A large number of strong motion records were obtained during the mainshock. In this section, we use the data obtained from the strong-motion seismometers of F-net and KiK-net (Aoi et al., 2004; Okada et al., 2004) operated by the National Research Institute for Earth Science and Disaster Prevention. From the KiK-net stations, we chose stations located on relatively hard rock to avoid local site effects. Due to the large number of seismometers, it is possible to build up dense record sections. Record sections of bandpass filtered velocity seismograms are displayed along latitude in Fig. 1. Two significant phases (1 and 2) originating around the epicenter (38.5 N) are identified. The origin of Phase 2 seems to be slightly north of that of Phase 1. Phase 2 propagated in both directions, north and south, judging from the decrease in its amplitude. The apparent pulse width of Phase 2 coming around the epicenter is about 30 40 seconds. In the station south of 37 N, the amplitude of this phase does not attenuate despite the increase in source distance. The apparent pulse width of the phase (about 20 s) is shorter than that of Phase 2 (about 30 40 s). Thus, it is suggested that this wave is another phase excited by another source around 37 N (Phase 3). These origins of the phases are discussed in Section 4. 577

578 K. YOSHIDA et al.: SOURCE PROCESS OF THE 2011 TOHOKU EARTHQUAKE Fig. 1. (Left) Map showing F-net and KiK-net stations (solid square) and the assumed fault plane (rectangle). The star shows the epicenter determined by JMA. (Right) Band-pass filtered velocity seismograms of the horizontal EW component. Pass-bands are 0.01 0.05 Hz (100 20 s). The waveforms are pasted up with the delay time from the origin time. 3. Inversion of the Source Process We used the strong-motion data obtained from 37 stations of F-net and KiK-net, and 1 station (MYR, Sasatani et al., 2002) of Hokkaido University (Fig. 2). These stations are located on relatively hard rock. The velocity-type broadband seismometers used for F-net (VSE-355G3) and MYR (VS3, Muramatsu et al., 2001) are very capable of recording very long-period components excited by this M 9 earthquake. The data were windowed for 300 s, starting at P-wave arrival time, and band-pass filtered between periods of 200 s to 20 s (0.005 0.05 Hz) for waveform inversion. The accelerograms obtained from the KiK-net were integrated into ground velocities with a sampling time of 4 s. We assumed a single fault plane for the waveforminversion analysis. The fault size is assumed to be 468 km long in strike and 228 km wide in dip, referring to the aftershock distribution. We assume N193 E and 10 as the strike and dip angles, respectively, referring to the JMA CMT solution. The rupture starting point is located at the hypocenter determined by JMA: 38.103 N, 142.861 E, 23.7 km. Theoretical Green s functions are calculated using the discrete wavenumber method (Bouchon, 1981) and the reflection/transmission-coefficient matrix method (Kennet and Kerry, 1979) using a stratified medium. The velocitystructure model proposed by Wu et al. (2008, 2009) for the waveform inversion of the 1979 and 2005 Miyagi-oki earthquake was used for calculating the theoretical Green s functions (Fig. 3). We use an identical structure model for all stations, because the stations used in the inversion are located on almost hard rock, so it is expected that the observed seismograms are less affected by local site effects in the long-period range. We use a multi-time-window linear waveform-inversion Fig. 2. Projection of the final slip distribution on the map. The star and squares indicate the rupture starting point and the strong-motion stations that are used for the inversion. The dotted line shows plate boundaries (Bird, 2003). Fig. 3. Velocity-structure model used in the inversion analysis (Wu et al., 2008, 2009). procedure (e.g., Hartzell and Heaton, 1983) in which the moment-release distribution is discretized in both space and time. For discretization in space, we divide the fault plane into 39 in the strike direction and into 19 in the down-dip direction (making a total of 741 subfaults over an area of 12 km 12 km). We use 8 smoothed ramp functions with a duration of 16 s separated by 8-s intervals to represent the slip history of each subfault. The triggering front of the first-time-window propagates at a constant velocity, and the multi-time-window analysis allows a variable rupture velocity and slip duration in an inverted rupture model by

K. YOSHIDA et al.: SOURCE PROCESS OF THE 2011 TOHOKU EARTHQUAKE 579 weighted time windows. To suppress instability or excessive complexity, a smoothing constraint is introduced to reduce differences in moment release values close in space. The smoothing constrained parameter used in the inversion was determined to choose the solution with a total slip which agrees with that expected from the geodetic data (e.g. 24 m at off coast of Miyagi, by Sato et al., 2011). Nonnegative constraints (Lawson and Hanson, 1974) to limit the rake-angle variation are also adopted. The rake angles are allowed to vary within 45 centered at 90. We use the first time window triggering velocity (FTWTV) as 2.5 km/s, and the rupture velocity will be discussed in Section 4. MYR N E U TMR IWTH08 IWTH10 GJM IWTH02 IWTH14 AKTH02 TYS IWTH22 MYGH05 YMTH13 YMTH01 MYGH08 YMTH04 SBT FKSH16 FKSH01 FKSH17 FKSH19 4. Result and Discussion In the total slip distribution, we can see a large asperity area with a large slip in the shallow part of the fault plane. The asperity size is about 300 km 100 km, and the slip on the asperity is about 20 to 47 m (Fig. 4). The slip vectors indicate an almost pure dip-slip fault mechanism (Fig. 2). The total moment release is 4.3 10 22 Nm (M w 9.0). This moment is similar to the seismic moment of 3.43 10 22 N m which is derived from GPS data (Ozawa et al., 2011). Synthetics calculated from the estimated rupture process are compared with the observed data in Fig. 5. The overall matching between synthetics and observation is very good. Slip models by tsunami inversion are proposed by Satake IWTH23 AKTH03 AKTH04 AKTH05 AKTH06 KSN MYGH02 MYGH12 MYGH06 0 150 300 Time (s) 10 cm/s FKSH09 HRO YMZ IBRH13 ASI IBRH18 IBRH19 CHBH14 Fig. 5. Comparison of observed (black) and synthetic (red) velocity waveforms. The origin of the time axis is the arrival of the P-wave. The pass-band of the band-pass filter is from 200 s to 20 s. Note that the order of the records is from north to south. HJO Fig. 4. Upper: Distributions of coseismic slip obtained for the 2011 Tohoku Earthquake. The star indicates the rupture starting point. The rectangle represented by the dashed line indicates 3 areas, Area 1, 2, and 3 denoted in the text. Lower: Distributions of peak moment rate together with the slip rate function at each subfault. et al. (2011). The overall slip patterns and the average slip in the shallow part of the fault along the trench in this study are nearly the same as their results (the maximum slip of about 30 m). The time progression of the rupture (Fig. 6) shows that the source process of the earthquake consists of 3 rupture stages. In order to explain the contributions to the waveforms in the three stages, we divided the source model into Areas 1, 2 and 3: the deeper part of the fault, the shallower asperity area of the northern part of the fault, and the southern part of the fault (Fig. 4). In the first stage of the fault rupture, moderate moment-rate areas are found at the southern and deeper side of the rupture starting point (the frame of 15 30 s). The rupture front also reached the shallower part of the fault (asperity area) at about 40 s after the rupture initiation, and rupture progression seems to be suspended in that part (the frame of 30 45 s in Fig. 6). At 45 60 s after the rupture initiation, the second stage of the rupture started in the shallower part of the fault (the asperity area, Area 2 in Fig. 4(A)). The asperity area, with a length of about 300 km, simultaneously began to rupture with a high moment rate, and the rupture continued for 30 40 s (the frames of 45 60 s to 75 90 s). Moderate moment was released in the deeper part of the fault (the frame of 75 90 s in Fig. 6, I in Fig. 4(B)). After the moment rate in the asperity area declined, the third stage of the rupture seemed to be triggered. After that, the rupture mainly progressed to the southern part of the fault (the frame of 90 105 s), and the deeper part

580 K. YOSHIDA et al.: SOURCE PROCESS OF THE 2011 TOHOKU EARTHQUAKE Fig. 6. Snapshots of the rupture progression for every 15 s. The star indicates the rupture starting point. The numbers at the top of each frame show the time after the start of the rupture. Rupture stages denoted in the text are also shown. of the fault (the frames after 105 120 s). In the frames of 90 105 s and 105 120 s, some moderate moment-rate areas in the southern part of the fault plane (Area 3 in Fig. 4(A)) are recognized. The rupture of these areas radiated shortperiod components with a short pulse width of moment-rate functions (II in Fig. 4(B)). The total source duration time is about 200 s. Phases 1, 2 and 3 identified from the record sections (Fig. 1) correspond to the rupture stages. We examine the contribution of slips in three areas on the fault plane to waveforms at 3 stations (Fig. 7). In the first stage of the rupture, the rupture occurred around the rupture starting point. Figure 7 shows that the first arrival waves (Phase 1) come from Area 1.

K. YOSHIDA et al.: SOURCE PROCESS OF THE 2011 TOHOKU EARTHQUAKE 581 Fig. 8. Moment rate as a function of time and distance from the rupture starting point. The moment rate at each mesh is shown with an interval of 2.5 s in time and 15 km in distance. FTWTV of 2.5 km/s (no moment releases before this line) is indicated by the dotted line. Dashed lines show the apparent rupture velocity of 3.5 km/s. Fig. 7. Comparison of the contribution of the slip at each area shown in Fig. 4 to the waveforms at TMR, KSN and IBRH19. Traces 1, 2, and 3 are the synthetics calculated from Area 1, 2, and 3 of the fault model (Fig. 4). Phase 2 (around 100 s in Fig. 7) is expected to be generated during the second stage of the rupture. The synthetics calculated from Area 2 (the asperity area) explain the largest waves observed at the northern station (e.g. TMR). At KSN, Phase 2 consists of the superposition of the waves calculated from Areas 1 and 2 with similar amplitudes. The pulse width coming from Area 1 is short ( 20 s), whilst that from Area 2 is long (>30 s). The high moment rate on the deeper part (I in Fig. 4(B)) just after the rupture of the asperity (frame 75 90 s in Fig. 6) also contributes to Phase 2, which is overlapping on the seismic waves coming from Area 2. Phase 3, which is the largest wave at the southern station (e.g. IBRH19), is not explained by the synthetics calculated from Area 1 or 2. The synthetics calculated from Area 3, which is active in the third stage, explain Phase 3. Although there is no clear slip in the total slip distribution in Area 3, a moderate peak moment-rate area (II in Fig. 4(B)) is found in Area 3. The distribution of the peak moment rate indicates some strong peak areas of the moment-rate functions. Two high peak moment-rate areas are located on the deeper side of the rupture starting point (I) and one moderate peak area is recognized on the southern part of the fault plane (II). The strong motion-generating area derived by EGF modeling (Kurahashi and Irikura, 2011) agrees well with the peak moment-rate distribution, rather than the slip distribution. The moment-rate function gives far-field displacement waveforms of P and S waves (e.g. Aki and Richards, 2002). Thus, ground motions reflect moment rate rather than slip distribution; in particular, short-period motions depend on the peak moment-rate distribution. Figure 8 shows the moment rate as a function of time and distance from the rupture starting point in order to investigate the rupture velocity. The apparent rupture velocity can be found by tracing the peak of the moment rate. The first time window triggering time (FTWTV=2.5 km/s) is also plotted on the same figure. As shown in Fig. 6, the rupture of the asperity is not smoothed. In contrast to the complicated rupture of the asperity, the rupture in the first (0 45 s from the rupture start) and third (90 180 s) stages progressed in velocities of 3 4 km/s. This rupture velocity is similar to the S-wave velocity of the lower crust or upper mantle (3.68 4.29 km/s, Fig. 3). The rupture front reaches the edge of the fault (about 300 km) at about 130 s after the rupture start. As a result of the heterogeneous rupture propagation, the average rupture velocity of the entire fault is about 2.2 km/s, which is obviously slower than 2.6 3.0 km/s that is expected from the S-wave velocity (Geller, 1976). The average rupture velocity obtained from the inversion is similar to that obtained from the 2004 Sumatra- Andaman earthquake (2.2 km/s, Vallée, 2007). The rupture velocities during the first and third stages are similar to those of the 1978 and 2005 Miyagi-oki earthquakes (M w 7.5 and 7.1). For example, Wu et al. (2008, 2009) used FTWTV as 3.2 and 3.4 km/s for their inversions of the rupture processes of the 1978 and 2005 events, respectively. 5. Conclusions We have investigated the rupture process of the 2011 Tohoku Earthquake by examining the long-period components of the near-source region strong-motion waveforms and by multi-time-window linear-waveform inversion using the long-period (20 200 s) strong-motion records. The record section of the long-period strong ground motion implies that the rupture process consists of 3 stages. The inverted-source process model shows that a large asperity (about 300 km 100 km) located on the shallower part of the fault was estimated, and maximum slip is about 47 m. This source model with a shallow large asperity is consistent with the tsunami source model (Satake et al., 2011). The rupture process is divided into three stages: the first stage with moderate slip in the deeper area of the northern part of the fault; the second stage with large and longduration slip in the shallow area of the northern part of the fault (the asperity area); and the third stage with the rupture of the southern part of the fault. The feature of the ground motion suggested from the record section is wellrepresented by the peak moment-rate distributions, rather than the slip distributions. The rupture velocity is around

582 K. YOSHIDA et al.: SOURCE PROCESS OF THE 2011 TOHOKU EARTHQUAKE 3 4 km/s in the first and third stages, while rupture progression is suspended for a while before the rupture of the asperity. As a result of the heterogeneous rupture propagation, the average rupture velocity in the entire fault is about 2.2 km/s. Acknowledgments. We thank the National Research Institute for Earth Science Disaster Prevention and Hokkaido University to provide the strong-motion data. The clarity and completeness of the article was improved by reviews from Dr. Yoshiaki Shiba and an anonymous reviewer. Many of the figures in this paper were produced using GMT (Wessel and Smith, 1998). References Aki, K. and P. G. Richards, Quantitative Seismology, second edition, 700 pp, University Science Books, Sausalito, 2002. Aoi, S., T. Kunugi, and H. Fujiwara, Strong-motion seismograph network operated by NIED: K-NET and KiK-net, J. Jpn. Assoc. Earthq. Eng., 4, 65 74, 2004. Bird, P., An updated digital model of plate boundaries, Geochem. Geophys. Geosyst., 4, 1027, 2003. Bouchon, M., A simple method to calculate Green s functions for elastic layered media, Bull. Seismol. Soc. Am., 71, 959 971, 1981. Geller, R. J., Scaling relations for earthquake source parameters and magnitudes, Bull. Seismol. Soc. Am., 66, 1501 1523, 1976. Hartzell, S. H. and T. H. Heaton, Inversion of strong ground motion and teleseismic waveform data for the fault rupture history of the 1979 Imperial Valley, California, earthquake, Bull. Seismol. Soc. Am., 73, 1553 1583, 1983. Kennet, B. L. N. and N. J. Kerry, Seismic waves in a stratified half space, Geophys. J. R. Astron. Soc., 57, 557 583, 1979. Kurahashi, S. and K. Irikura, Source model for generating strong ground motions during the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63, this issue, 571 576, 2011. Lawson, C. L. and R. J. Hanson, Solving Least Square Problems, Prentice- Hall, Inc., New Jersey, 1974. Muramatsu, I., T. Sasatani, and I. Yokoi, Velocity-type strong-motion seismometer using a coupled pendulum: Design and performance, Bull. Seismol. Soc. Am., 91, 604 616, 2001. Okada, Y., K. Kasahara, S. Hori, K. Obara, S. Sekiguchi, H. Fujiwara, and A. Yamamoto, Recent progress of seismic observation networks in Japan Hi-net, F-net, K-NET and KiK-net, Earth Planets Space, 56, xv xxviii, 2004. Ozawa, S., T. Nishimura, H. Suito, T. Kobayashi, M. Tobita, and T. Imakiire, Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku- Oki earthquake, Nature, 475, 373 376, 2011. Sasatani, T., T. Maeda, K. Yoshida, N. Morikawa, M. Ichiyanagi, Y. Motoya, and M. Kasahara, Strong-motion Observation in Hokkaido with Broadband, Velocity-type Seismometers, Geophys. Bull. Hokkaido Univ., 65, 335 345, 2002. Satake, K., Y. Namegaya, and S. Yamaki, Numerical simulation of the AD 869 Jogan tsunami in Ishinomaki and Sendai plains, Ann. Rep. Active Fault Paleoearthq. Res., Geological Survey of Japan/AIST, 8, 71 89, 2008. Satake, K., S. Sakai, Y. Fujii, M. Shinohara, and T. Kanazawa, Tsunami source of 2011 Tohoku Earthquake, Kagaku, 81, 407 410, 2011. Sato, M., T. Ishikawa, N. Ujihara, S. Yoshida, M. Fujita, M. Mochizuki, and A. Asada, Displacement above the hypocenter of the 2011 Tohokuoki Earthquake, 332, 1395, 2011. The Headquarters for Earthquake Research Promotion, MEXT, Japan, Long-term evaluation of the Miyagi-oki earthquake, http://www.jishin.go.jp/main/index.html, 2001. Vallée, M., Rupture properties of the giant Sumatra Earthquake imaged by empirical Green s function analysis, Bull. Seismol. Soc. Am., 97, S103 S114, 2007. Wessel, P. and W. H. F. Smith, New, improved version of the Generic Mapping Tools released, Eos Trans. AGU, 79, 579, 1998. Wu, C., K. Koketsu, and H. Miyake, Source processes of the 1978 and 2005 Miyagi-oki, Japan, earthquakes: Repeated rupture of asperities over successive large earthquakes, J. Geophys. Res., 113, B08316, 2008. Wu, C., K. Koketsu, and H. Miyake, Correction to Source processes of the 1978 and 2005 Miyagi-oki, Japan, earthquakes: Repeated rupture of asperities over successive large earthquakes, J. Geophys. Res., 113, B08316, 2009. K. Yoshida (e-mail: yoshida@geor.or.jp), K. Miyakoshi, and K. Irikura