arxiv:math/ v1 [math.nt] 1 Dec 1997

Similar documents
Introduction Let F = Q( N ) be a cyclotomic eld. By Borel's deep theorem we know the ranks of all higher K-groups K (F ). It is dim K n (F ) Q 0 = r 2

l-adic Representations

arxiv: v1 [math.ag] 15 Nov 2007 Introduction

Extensions of motives and higher Chow groups

Notes on p-divisible Groups

Isogeny invariance of the BSD conjecture

A Version of the Grothendieck Conjecture for p-adic Local Fields

ON THE KERNELS OF THE PRO-l OUTER GALOIS REPRESENTATIONS ASSOCIATED TO HYPERBOLIC CURVES OVER NUMBER FIELDS

COMPLEX MULTIPLICATION: LECTURE 15

Chern classes à la Grothendieck

THE MONODROMY-WEIGHT CONJECTURE

Iwasawa algebras and duality

Fundamental groups, polylogarithms, and Diophantine

Level Structures of Drinfeld Modules Closing a Small Gap

Mixed Motives Associated to Classical Modular Forms

PURITY FOR INTERSECTION COHOMOLOGY AFTER DELIGNE-GABBER

The Grothendieck-Katz Conjecture for certain locally symmetric varieties

Fourier Mukai transforms II Orlov s criterion

An overview of D-modules: holonomic D-modules, b-functions, and V -filtrations

Introduction to Chiral Algebras

Hodge Theory of Maps

SPEAKER: JOHN BERGDALL

Some remarks on Frobenius and Lefschetz in étale cohomology

A short proof of Klyachko s theorem about rational algebraic tori

Finiteness of the Moderate Rational Points of Once-punctured Elliptic Curves. Yuichiro Hoshi

On a question of Pink and Roessler

QUANTIZATION VIA DIFFERENTIAL OPERATORS ON STACKS

A p-adic GEOMETRIC LANGLANDS CORRESPONDENCE FOR GL 1

p-divisible Groups and the Chromatic Filtration

8 Perverse Sheaves. 8.1 Theory of perverse sheaves

Proof of the Shafarevich conjecture

On the Eisenstein symbol

Finite group schemes

ON A LOCALIZATION FORMULA OF EPSILON FACTORS VIA MICROLOCAL GEOMETRY

Arithmetic of certain integrable systems. University of Chicago & Vietnam Institute for Advanced Study in Mathematics

Kleine AG: Travaux de Shimura

Voevodsky s Construction Important Concepts (Mazza, Voevodsky, Weibel)

Tunisian Journal of Mathematics an international publication organized by the Tunisian Mathematical Society

Odds and ends on equivariant cohomology and traces

Injective Modules and Matlis Duality

Lifting Galois Representations, and a Conjecture of Fontaine and Mazur

INTEGRATION OF ONE-FORMS ON p-adic ANALYTIC SPACES

AFFINE PUSHFORWARD AND SMOOTH PULLBACK FOR PERVERSE SHEAVES

SERRE FINITENESS AND SERRE VANISHING FOR NON-COMMUTATIVE P 1 -BUNDLES ADAM NYMAN

Isogeny invariance of the BSD formula

CATEGORICAL GROTHENDIECK RINGS AND PICARD GROUPS. Contents. 1. The ring K(R) and the group Pic(R)

Characteristic classes in the Chow ring

Reciprocity maps with restricted ramification

LECTURE 7: STABLE RATIONALITY AND DECOMPOSITION OF THE DIAGONAL

( files chap2 to chap

Peter Scholze Notes by Tony Feng. This is proved by real analysis, and the main step is to represent de Rham cohomology classes by harmonic forms.

Lecture 2: Elliptic curves

ON A VANISHING THEOREM OF S. SAITO AND K. SATO. Jean-Baptiste Teyssier

Weil Conjectures (Deligne s Purity Theorem)

ON THE FUNDAMENTAL GROUPS OF LOG CONFIGURATION SCHEMES

Segre classes of tautological bundles on Hilbert schemes of surfaces

Galois Theory and Diophantine geometry ±11

Chern numbers and Hilbert Modular Varieties

Appendix by Brian Conrad: The Shimura construction in weight 2

FORMAL GLUEING OF MODULE CATEGORIES

RAPHAËL ROUQUIER. k( )

Galois groups with restricted ramification

Rigidity, locally symmetric varieties and the Grothendieck-Katz Conjecture

PICARD GROUPS OF MODULI PROBLEMS II

Beilinson s conjectures I

LOCAL VS GLOBAL DEFINITION OF THE FUSION TENSOR PRODUCT

Abelian Varieties and the Fourier Mukai transformations (Foschungsseminar 2005)

DELIGNE S THEOREMS ON DEGENERATION OF SPECTRAL SEQUENCES

On the modular curve X 0 (23)

ARITHMETIC OF CURVES OVER TWO DIMENSIONAL LOCAL FIELD

PERVERSE SHEAVES: PART I

Proof of Langlands for GL(2), II

Weil-étale Cohomology

Motives. Basic Notions seminar, Harvard University May 3, Marc Levine

Theta divisors and the Frobenius morphism

APPENDIX 3: AN OVERVIEW OF CHOW GROUPS

THE SMOOTH BASE CHANGE THEOREM

NOTES ON PROCESI BUNDLES AND THE SYMPLECTIC MCKAY EQUIVALENCE

Homotopy types of algebraic varieties

PERVERSE SHEAVES. Contents

Elliptic curves, Néron models, and duality

1 Replete topoi. X = Shv proét (X) X is locally weakly contractible (next lecture) X is replete. D(X ) is left complete. K D(X ) we have R lim

Three Descriptions of the Cohomology of Bun G (X) (Lecture 4)

THE SHIMURA-TANIYAMA FORMULA AND p-divisible GROUPS

CHAPTER 0 PRELIMINARY MATERIAL. Paul Vojta. University of California, Berkeley. 18 February 1998

DERIVED CATEGORIES OF STACKS. Contents 1. Introduction 1 2. Conventions, notation, and abuse of language The lisse-étale and the flat-fppf sites

CHARACTER SHEAVES ON UNIPOTENT GROUPS IN CHARACTERISTIC p > 0. Mitya Boyarchenko Vladimir Drinfeld. University of Chicago

Mathematical Research Letters 1, (1994) DERIVED CATEGORIES AND MOTIVES. I. Kriz and J. P. May

IC of subvarieties. Logarithmic perversity. Hyperplane complements.

A Note on Dormant Opers of Rank p 1 in Characteristic p

SECTION 5: EILENBERG ZILBER EQUIVALENCES AND THE KÜNNETH THEOREMS

ARITHMETICALLY COHEN-MACAULAY BUNDLES ON HYPERSURFACES

Hodge cohomology of invertible sheaves

15 Elliptic curves and Fermat s last theorem

Lenny Taelman s body of work on Drinfeld modules

Wild ramification and the characteristic cycle of an l-adic sheaf

THE MOTIVE OF THE FANO SURFACE OF LINES. 1. Introduction

ALGEBRAIC GROUPS JEROEN SIJSLING

Draft: January 2, 2006 ON THE INTERPOLATION OF SYSTEMS OF EIGENVALUES ATTACHED TO AUTOMORPHIC HECKE EIGENFORMS

Non characteristic finiteness theorems in crystalline cohomology

Transcription:

Degeneration of l-adic Eisenstein classes and of the elliptic polylog arxiv:math/9712295v1 [math.nt] 1 Dec 1997 Annette Huber huber@math.uni-muenster.de Guido Kings kings@math.uni-muenster.de Math. Institut, Einsteinstr. 62, 48 149 Münster, Germany Contents 0 Notations and conventions 5 1 The Eisenstein symbol and the cup product construction 6 1.1 A residue sequence in K-theory................. 7 1.2 The Eisenstein symbol...................... 8 1.3 The cup-product construction.................. 10 1.4 The main theorem........................ 11 2 Proof of the main theorem 14 2.1 Translation to a degeneration theorem............. 14 2.2 Connection with the cohomological polylog.......... 17 2.3 Degeneration of Eis and Pol coh E/M................ 19 2.4 End of proof........................... 21 A Elliptic and classical polylogarithm 22 A.1 The logarithmic sheaf...................... 22 A.2 The universal property of the logarithm............ 26 A.3 The polylogarithm........................ 29 B Degeneration in the local situation 30 B.1 Degeneration of Log and Pol.................. 30 B.2 Proof of the degeneration theorem B.1.3............ 34 C The comparison theorem and values at torsion sections 36 C.1 Residue of the elliptic polylog at torsion sections....... 36 C.2 The polylog at torsion sections................. 37 C.3 The residue computation..................... 40 1

Introduction Let F = Q(µ N ) be a cyclotomic field. By Borel s deep theorem we know the ranks of all higher K-groups K (F). It is { 0 n > 0 even, dimk n (F) Q = n > 1 odd. (We will not consider the more elementary and exceptional cases n = 0,1.) However, Borel s proof does not produce explicit elements in K 2k+1 (F). Soulé nearly has achieved this. For each primenumberland aprimitive root of unity ω F, he constructed a projective system of cyclotomic elements in K 2k+1 (F,Z/l r ). It induces an element in K 2k+1 (F) Z l. The main consequence was the surjectivity of the higher Chern classes for k 1 r 2 K 2k+1 (F) Z l H 1 (F,Z l (k +1)) where the right hand side is continuous Galois cohomology. It was conjectured that Soulé s elements for different l are induced by the same element in K 2k+1 (F). This is indeed the case. More precisely, we give a new proof of the following main comparison theorem: Theorem (Beilinson, Deligne, Huber, Wildeshaus, [HuW]). For each root of unity ω F = Q l (µ N ), (N 3) with ω different from 1 and for k 1, there is an element in K 2k+1 (F) whose image in K 2k+1 (F) Z l and hence in H 1 (F,Z l (k +1)) agrees with Soulé s cyclotomic elements for all l. Moreover the Beilinson regulator of these elements in Deligne cohomology can be computed and is given by higher logarithm functions. For the precise formulae we refer to theorem 1.4.4. These formulae were conjectured by Bloch and Kato ([BlK] 6.2). For (l,n) = 1 a weaker form was shown by Gros using syntomic cohomology. The general case was settled by constructing the motivic polylogarithm in [HuW]. The alternative proof which we are going to present in this paper is a lot less demanding on the technical side and quite short. Our interest in the comparison theorem comes from its arithmetic applications. It is needed in attacking the conjectures on special values of ζ-functions of more generally L-functions of abelian number fields. The Tamagawa number conjecture of Bloch and Kato was proved by themselves for the motives Q(n) with n > 1, i.e., the Riemann-ζ-function, under the 2

assumption of the above result ([BlK]). Another proved case is a version of the Lichtenbaum conjecture for abelian number fields ([KNF]). We now want to sketch the line of the argument. The first key idea is to construct mixed motives for cyclotomic fields via modular curves. Anderson (k = 0) and Harder (k 0) were the first to show that it is possible to construct mixed motives in this way. In fact, this paper is a sequel of [HuK] where we showed that Harder s construction has a K-theoretic analogue. So let M be the modular curve over F (see 1.1) and j : M M its compactification. Let i : SpecF M the inclusion of the cusp. Finally let H be the Tate-module of the universal elliptic curve over M. It is an l-adic sheaf on M. The Eisenstein symbol gives elements in H 1 et (M,Symk H(1)) = H 1 et (M F,Symk H(1)) G(F/F). Over the complex numbers they are related to Eisenstein series. The functor i Rj - a derived version of degeneration at infinity - induces a little diagram H 1 et (M,Symk H(1)) 0 H 1 et(f,i j Sym k H(1)) H 1 et(f,i Rj Sym k H(1)) H 0 et(f,i R 1 j Sym k H(1)) In other words: an Eisenstein symbol whose residue in vanishes, induces an element of H 0 et(specf,i R 1 j Sym k H(1)) = Q l H 1 et(specf,i j Sym k H(1)) = H 1 (F,Q l (k +1)), i.e., in the Galois cohomology group of F. We call these elements Harder- Anderson elements because this construction can be shown to be equivalent to Harder s original one. Now K-theory enters: Beilinson has constructed the Eisenstein symbol as element of K-groups of powers of the universal elliptic curve. The cup-product construction (see 1.2) in l-adic cohomology is a different way of writing down the above diagram. Phrased like this, the construction works in K-theory as well. We now have to compute the degeneration of Eisenstein symbols with residue zero. In the Hodge theoretic analogue this can be done by direct computation (see [HuK] thm. 8.1). In the l-adic case, which is the subject 3

of this paper, we use a different approach. We make use of the machinery of polylogarithms. All Eisenstein symbols appear as components of the cohomological polylog Pol coh (see A.3.3) on the universal elliptic curve, more precisely as linear combinations of its fibres at torsion sections. If ψ is a formal linear combination of torsion sections, we denote the corresponding linear combination of fibres by ψ Pol coh. If ψ Pol coh has residue zero at infinity, the degeneration i j ψ Pol coh is equal to the degeneration of the usual elliptic polylog i j ψ Pol( 1). This degeneration is known and is equal to the classical polylog. Its value at torsion sections is again known and given by a linear combination of cyclotomic elements in l-adic cohomology. This finishes the computation. A different idea for the computation of the degeneration of l-adic Eisenstein classes was communicated to us by Harder. The second subject of our paper (as is already apparent from the above sketch of our proof) is the systematic study of the degeneration of the elliptic into the classical polylogarithm induced by the degeneration of an elliptic curve into G m. Although the main results were known before, we found it helpful to introduce the concept of the cohomological polylogarithm in order to understand precisely what is going on. The two lines of thought, the connection of the cohomological polylogarithm and its degenerations with Eisenstein classes and the degeneration of the elliptic polylog into the classical polylog are given in the appendices C.1.1 and B.1.3, C.2.2. Unfortunately, we found it hard to quote the results from the literature. E.g., the comparison theorem C.2.2 is implicit in [BeL] and [W] but not stated. In a couple of cases (B.1.3 and C.1.1) it took us a while to understand the arguments in [BeL]. Given the nature of our application we had to be precise about factors and hence normalizations. In the end, we decided to make the paper as self-contained as possible. If it has doubled its length, it has hopefully also made it easier to read. Decisive was the urge to demonstrate that this is not at all a difficult theory. Overview: Chapter 0 contains notations on sheaves and the like. In chapter 1 we first review Beilinson s Eisenstein symbol. Section 1.2 contains the main results of this article. The proof of the main theorem is given in chapter 2. Appendix A reviews the construction of the elliptic and the classical polylogarithm in unified form. In appendix B we study the degeneration of the elliptic into the classical polylog. The last appendix C treats the relation of the cohomological polylogarithm with the Eisenstein symbol. The appendices in the second part are meant to be (nearly) independent of the main text. Appendix B and C are independent of each other. Readers not 4

familiar with polylogs should read section 0 and 1, then appendix A and then go on in the main text. We hope that even specialist may find the detailed proofs in appendix B and C useful. Acknowledgments: We thank T. Scholl and J. Wildeshaus for discussions. The first author also wants to thank the DFG for financial support during the time the article was prepared. 0 Notations and conventions Let l be a prime. All schemes are separated and of finite type over some regular scheme of dimension zero or one and l is invertible on them. By l-adic sheaves we mean constructible Q l -sheaves. The category of l- adic sheaves on a scheme X is denoted Sh(X). We abbreviate Hom Sh(X) = Hom X. By Hom X we denote the internal Hom with values in Sh(X). In particular, if H is a lisse l-adic sheaf, then H = Hom X (H,Q l ) is its dual. By the standard map Q l H H we mean the dual of the evaluation map H H Q l. Whenever we have a map of l-adic sheaves H F G, then we mean by the induced map the composition F H H F H G. We will have to use infinite direct products and projective limits of l-adic sheaves. These are to be understood formally. We really mean projective systems of sheaves. Let D (X) be the derived category of l-adic sheaves in the sense of Ekedahl [E]. It is a triangulated category with a canonical t-structure whose heart is Sh(X). Note that D(X) is not the derived category, i.e., morphisms do not compute Ext-groups. However, for F,G Sh(X), we still have Hom X (F,G) = Hom D(X) (F,G), Ext 1 X(F,G) = Hom D(X) (F,G[1]). For F Sh(F), we put H i et (X,F) = Hom D(X)(Q l,f[i]). By [Hu] 4.1, it agrees with continuous étale cohomology as defined by Jannsen [J]. If f : X Y is a morphism, then there are functors Rf,Rf! : D + (X) D + (Y) Rf,Rf! : D + (Y) D + (X) 5

For their properties we refer to [E] theorem 6.3. Definition 0.0.1. Suppose X is a smooth variety over a field and U an open subvariety, such that the closed complement Y is also smooth and of pure codimension 1. a) The residue map res : H q et (U,Q l(k)) H q 1 et (Y,Q l (k 1)) is defined as the connecting morphism of the long exact cohomology sequence for the triangle i Q l ( 1)[ 2] Q l Rj Q l (note that i! Q l = i Q l ( 1)[ 2] by purity). b) For sheaves F and G on U and a morphism in the derived category f : F G[q], we define the residue of f by res(f) : i j F i Rj F i Rj G[q] i R 1 j G[q 1] (note that by assumption Rj has cohomological dimension 1). It is easy to see that these definitions agree when F = Q l, G = Q l (k). We will also use motivic cohomology. Definition 0.0.2. If X is a regular scheme, then we call the motivic cohomology of X. H i M(X,j) := Gr γ j K 2j i(x) Q Remark: For schemes of finite type over a number field we can also use the category of horizontal sheaves and its derived category as defined in [Hu]. In this case, K (X) has to be replaced by the direct limit of the K (X) where X runs through all Z-smooth models of X. The arguments in the article work without any changes. 1 The Eisenstein symbol and the cup product construction In this section we recall the Eisenstein symbol constructed by Beilinson. We thenexplainourmainconstruction. ItyieldselementsofH 1 M (SpecQ(µ N),k+1). Finally we formulate the main theorem - the computation of the regulators of these elements - and its consequences. 6

1.1 A residue sequence in K-theory Let M be the modular curve parameterizing elliptic curves with full level- N-structure and let N 3. It is a geometrically connected variety defined over B := SpecQ(µ N ). We also fix a primitive root of unity ζ Q(µ N ). Let E be the universal elliptic curve with level-n-structure over M. Let M be the compactification of M and Ẽ the Néron model of E over M. Let e : M Ẽ be the unit section. Its connected component in Ẽ is denoted by Ẽ 0. Let Cusp = M M be the subscheme of cusps. The standard-n-gon over B with level-n-structure Z/N Z/N G m Z/N via (a,b) (ζ a,b) defines a section : B Cusp. We have a diagram π E j Ẽ ẼCusp π π M j M Cusp. The Eisenstein symbol will give elements in the motivic cohomology of E k = E M M E the k-fold relative fibre product. The inversion ι operates on E and the symmetric group S k operates on E k. This induces an operation of the semi-direct product µ k 2 S k on E k. Denote by ε the character ε : µ k 2 S k µ 2 which is the multiplication on µ k 2 and the sign-character on S k. The localization sequence for the pair ((Ẽ0 ) k,e k ) gives H k+1 M (Ek,k+1)(ε) H k M ((Ẽ0 ) k Cusp,k)(ε), where (...)(ε) is the ε eigenspace. Recall that ẼCusp is non-canonically isomorphic to G m Z/N Cusp. Thiswouldinduceanisomorphism(viaresidueatzero)HM k ((Ẽ0 ) k Cusp,k)(ε) = HM 0 (Cusp,0). However, this isomorphism is not equivariant under id Gl 2 (Z/N). In order to make the isomorphism canonical, we introduce the µ 2 -torsor on Cusp given by Isom = Isom(G m,ẽ0 Cusp). Over, we have Isom = µ 2, by the very choice of. 7

The isomorphism (given by residue at zero on G m ) H k M((Ẽ0 ) k Isom,k)(ε) = H 0 M(Isom,0) is Gl 2 -equivariant. Composing with the pull-back to (Ẽ0 ) k Isom we get a map res k : H k+1 M (Ek,k +1)(ε) H 0 M(Isom,0) whichwecalltheresidue map. IttakesvaluesinthesubspaceH 0 M (Isom,0)(k) on which 1 µ 2 acts via ( 1) k. Explicitly, we have (using ) Isom(Q) = P(Z/N)\Gl 2 (Z/N) ( ) where P = Gl 0 1 2 with trivial action of Gal(Q/Q(µ N )). In this correspondence, the identity matrix corresponds to id µ 2, = Isom. Definition 1.1.1. Let Q[Isom] (k) = {f : Gl 2 (Z/N) Q f(ug) = f(g) for u P(Z/N) and f( idg) = ( 1) k f(g)}, the space of formal linear combination of points of Isom on which µ 2 operates by ( 1) k. We can identify H 0 M (Isom,0)(k) = Q[Isom] (k). Remark: By choice of a section, Q[Isom] (k) is isomorphic to Q[Cusp] but again this isomorphism cannot be made Gl 2 -equivariant and will not be used. 1.2 The Eisenstein symbol Proposition 1.2.1 (Beilinson). For k 0, there is a map, called the Eisenstein symbol Eis k : Q[Isom] (k) H k+1 M (Ek,k +1)(ε) It is a splitting of the residue map, i.e., res k Eis k = id. 8

Proof. This is [Be] Theorem 7.3 or [Sch-Sch] section 7. Remark: Beilinson s construction really works for all elliptic curves over regular base schemes. Definition 1.2.2. Let Eis k l be the composition of Eis k with the regulator map r l : H k+1 M (Ek,k +1)(ε) H k+1 et (E k,q l (k +1))(ε). Let B k (x) be the k-th Bernoulli polynomial, defined by te tx e t 1 = k=0 B k (x) tk k!. For x R/Z let B k (x) = B k (x) where x is the representative of x in [0,1). Definition 1.2.3. The horospherical map maps ψ : E[N] Q to k(ψ)(g) = k : Q[E[N]] Q[Isom] (k) N k k!(k +2) t=(t (1),t (2) ) (Z/N) 2 ψ(g 1 t)b k+2 ( ) t (2). N This map is well-defined, Gl 2 -equivariant and surjective. It has a kernel. In particular: Lemma 1.2.4. Let Q[E[N] 0] be the Q-vector space of maps ψ : E[N] 0 Q of degree 0. Then is still surjective. : Q[E[N] 0] Q[Isom] (k) Proof. Use the Gl 2 -translates of the element φ Q[E[N] 0] written out in [HuK] lemma 7.6. Remark: Beilinson first constructs the composition Eis k k and then deduces the existence of the section. 9

1.3 The cup-product construction We now construct mixed Dirichlet motives starting from the Eisenstein symbol. This construction already appears in [HuK] Section 4, where the relation to Harder-Anderson motives is also clarified. Let = SpecQ(µ N ) Cusp be as above. Definition 1.3.1. Let res k be the composition of res k with the restriction to. Let { } Q[Isom ] (k) = f Q[Isom] (k) (cf. 1.1.1) f(g) = 0 for g ±P(Z/N). Note that kψ Q[Isom ] (k) is equivalent to res k Eis k ( kψ) = 0. Let be given by φ Q[Isom] (k) 1 g P(Z/N), φ (g) = ( 1) k g P(Z/N), 0 else. To define the space of Harder Anderson elements, consider: H k+1 M (Ek,k +1) Eisk (φ ) H 2k+2 M (Ek,2k +2) Definition 1.3.2. For k 1 let Dir : Q[Isom ] (k) H 1 M(,k +1) π H 2 M (M,k +2) resk HM 1 (,k +1). φ res k π (Eis k (φ) Eis k (φ )) Dir ( Q[Isom ] (k)) is called the space of Harder-Anderson elements. Let Dir l : Q[Isom ] (k) H 1 et(,q l (k+1)) be the composition of Dir with the l-adic regulator. Remark: We call elements in H 1 M (SpecQ(µ N),k + 1) Dirichlet motives because their Hodge regulator is related to Dirichlet series. Dir attaches a Dirichlet motive to a linear combination of cusps. As shown in [HuK] 5.2 and 6.4., the cup-product construction, or more precisely its image in l-adic or Hodge cohomology can be translated into Harder s construction in [Ha] 4.2, whence the name. 10

1.4 The main theorem Our aim is to compute the image of Dir(φ) for φ Q[Isom ] (k) under the l-adic regulator. Recall that Dir l (φ) H 1 et (,Q l(k +1)) = H 1 et (SpecQ(µ N),Q l (k +1)) We will use the following explicit representation of this group. Lemma 1.4.1. Recall that ζ is a fixed primitive N-th root of unity. There is an isomorphism ( ) lim HGal 1 (Q(µ N),Z/l r (k +1)) r 1 Q l = H 1 et (SpecQ(µ N ),Q l (k +1)). Proof. The choice of ζ induces an isomorphism between étale and Galois cohomology. All Z/l r (k +1) are finite, hence lim 1 is zero. Soulé has constructed elements in K-theory with coefficients ([Sou]) whose image in l-adic cohomology is the following: Definition 1.4.2. For u Z/N,u 0 we call the class c k (ζ u ) := Het(SpecQ(µ 1 N ),Q l (k +1)) α lr =ζ u [1 α] (α N ) k (under the identification of 1.4.1) Soulé-Deligne or cyclotomic element. After these preparations we can formulate our main theorem. Recall that the horospherical map (see definition 1.2.3) is surjective. k : Q[E[N] 0] Q[Isom] (k) Theorem 1.4.3 (The main theorem). Let k 1 and ψ Q[E[N] 0]. Assume that kψ Q[Isom ] (k), i.e., that Then is defined (cf. definition 1.3.2). res k Eis k ( kψ) = 0. Dir( kψ) H 1 M (SpecQ(µ N),k +1) r 11

a) The l-adic regulator of Dir( kψ) in H 1 et(specq(µ N ),Q l (k +1)) is given by Dir l ( kψ) = ( 1)k+1 k!n t Z/N ψ(t,0)c k (ζ t ). b) The Hodge regulator of Dir( kψ) in HH 1(SpecQ(µ N) Q C,R(k +1)) is given by r H Dir( kψ) = ( 1) k+1 N k 1 ψ(t,0)li k+1 (σζ t ) via the identification t Z/N H 1 H(SpecQ(µ N ) Q C,R(k+1)) = and where Li k+1 (x) := n>0 xn n k+1. σ:q(µ N ) C σ:q(µ N ) C C/R(k), This theorem will be proved in section 2.4. Part b) is theorem 8.1 in [HuK]. All normalizations agree. Remark: Note that the simple shape of the above formulae is due to the parameterization of Q[Isom] (k) via k. For ψ Ker( k), the formulae imply relations between values of higher logarithm functions respectively between Soulé-Deligne elements. As an immediate consequence we get: Corollary 1.4.4 (Bloch-Kato conjecture 6.2). For u 0 consider the element ψu k := ( 1)k+1 N k 1 (u,0) ( 1)k+1 N 2 1 N k+1 (u,v) Q[E[N] 0]. By definition of the horospherical map (1.2.3) and the distribution relation for Bernoulli numbers, kψ k u Q[Isom ] (k). Hence is defined. Its regulators are given by v 0 Dir( kψ k u) H 1 M(SpecQ(µ N ),k +1) r H Dir( kψ k u ) = [Li k+1(σ(ζ u ))] σ:q(µn ) C 12

and Dir l ( kψ k u) = 1 N k k! ck (ζ u ). Remark: Thesign differsfromtheonegiven in[huw] becauseof adifferent normalization in the identification of H 1 H (B QC,R(k+1)) with a product of C/R(k) s in [W] Part II Thm 3.6 p. 222. TheexistenceofelementsofH 1 M (SpecQ(µ N),k+1)withHodge-regulator as above has been proved by Beilinson [Be]. The compatibility of his elements with Soulé s was a conjecture of Bloch and Kato ([BlK] Conjecture 6.2). A local version has previously been proved in the case (l,n) = 1 by Gros ([G] Thm 2.4) using the syntomic regulator. The general case was settled by Huber and Wildeshaus ([HuW]) using a completely different method due to Beilinson and Deligne. The implications are of course the same as in [HuW]: Completion of the proof of Tamagawa number conjecture of Bloch and Kato for the motives Q(n+1), n 1 given in [BlK] 6.1 ii; a version of the Lichtenbaum conjecture on special values of ζ-functions for abelian number fields ([KNF] Thm 6.4); the proof that Soulé s elements in K-theory with coefficients are induced by elements in K-theory itself. For precise formulations we refer to [HuW] 9.6 to 9.8. Moreover, the above theorem gives a direct computation of the l-adic version of Harder s motives in [Ha] 4.2. For the precise relation we refer to [HuK] 6.4. In the course of the proof of the main theorem 1.4.3 a), we will also show the following assertion, which is interesting in itself: Theorem 1.4.5. We use the notation of 2.1. Let k 1. Let φ Q[Isom ] (k), i.e., Eis k l (φ) in the kernel of resk. Let Ek φ be the sheaf representing Eisk l (φ) Ext 1 M (Q l,sym k H(1)). Finally let ψ Q[E[N] 0] with kψ = φ. Then and it is given by ( 1)k+1 k!n i j E k φ Ext1 (Q l,q l (k+1)) t Z/N ψ(t,0)ck (ζ t ) (cf. 1.4.2). The proof will also be given in section 2.3. 13

2 Proof of the main theorem The strategy is to link the Eisenstein-symbol to the elliptic polylog and the cyclotomic elements to the cyclotomic polylog. Then the degeneration of the elliptic polylog into the cyclotomic polylog is used to show the theorem. 2.1 Translation to a degeneration theorem We want to reduce the computation of Dir l (φ) to the study of the degeneration of Eisenstein classes at, see theorem 2.1.4. Definition 2.1.1. Define H := (R 1 π Q l ) = Hom(R 1 π Q l,q l ) to be the dual of the relative first cohomology group on M. Hence, in every fibre, H is the Tate module. Before we formulate the theorem, we need to understand H in a small neighbourhood of. Let S be the completion of M at, η its generic point. The closed point is = B. We have the diagram E η j Ẽ i G m Z/N π η π π η j S i B Lemma 2.1.2. The sheaf H η (pull-back of H from M to η) has a canonical filtration 0 Q l (1) H η p Ql 0. i j H η is canonically isomorphic to the Tate module of the special fibre Ẽ 0 s = G m which is identified with Q l (1) via residue at zero. is normalized such that i j ( ) = id. The map p is normalized such that the intersection pairing H η H η Q l (1) induces p(1) on Q l (1) H η Q l (1). The proof of this (well-known) lemma is given in B.1.1. Remark: In the usual complex parameterization, let {1, τ} the standard basis for H 1 (E τ ), where E τ = C/(Z+τZ). Then (1) = 1, p(τ) = 1. 14

Corollary 2.1.3. Sym k ( ) induces an isomorphism The projections via p induce isomorphisms Q l (n) i j Sym n H η. Sym n H η Sym n 1 H η i R 1 j Sym n H η = i R 1 j Sym n 1 H η = = i R 1 j Q l = Ql ( 1). Proof. This is shown by induction on n by considering the long exact sequence attached to 0 Q l (n) Sym n H η Sym n 1 H η 0. We now reformulate the cup-product construction in sheaf theoretic terms. Via the Leray spectral sequence for Rπ and Poincaré duality for H we get H k+1 et (E k,q l (k+1))(ε) = H 1 et (M,Symk H(1)). Theorem 2.1.4. For φ Q[Isom ] (k), let E k φ be the sheaf representing Eis k l (φ) H1 et(m,sym k H(1)) = Ext 1 M (Q l,sym k H(1)). Let i,j be as above. Then the sequence 0 i j Sym k H(1) i j E k φ Q l 0 is exact and via the isomorphism (2.1.3) it represents i j Sym k H(1) Q l (k+1) ; Dir l (φ) = r l res k (Eis k (φ) Eis k (φ )) H 1 et(,q l (k +1)). We need a couple of lemmas: Lemma 2.1.5. We have a commutative diagram H 2k+2 et (E k E k,q l (2k +2))(ε,ε) = H 2 et (M,Symk H(1) Sym k H(1)) H 2k+2 where the last map is induced by the intersection pairing. 15 et (E k,q l (2k +2)) π H 2 et (M,Q l(k+2))

Proof. The intersection pairing H H Q l (1) translates via Poincaré duality H = H( 1) into into the cup-product pairing H H R 2 π Q l Ql ( 1). Note that it uses the same trace map which defines π on cohomology. Lemma 2.1.6. Let f : Q l F[1] and g : F G[1] be morphisms in D(M) where F and G are sheaves. We assume that the map i j Q l i R 1 j F induced by f vanishes. Then the residue of g f : Q l G[2] (cf. definition 0.0.1) is given by the composition Q l (i j F)[1] (i R 1 j G)[1]. In other words by the push-out of the short exact sequence 0 i j F i j E f Q l 0 induced by f via the map i j F i R 1 j G induced by g. Proof. Recall how the residue of g f is defined: it is the composition Q l i Rj i Q Rj f l i Rj i F[1] Rj g i Rj G[2] i R 1 j G[1]. By assumption Q l i Rj F[1] factors through Q l i j F[1]. Proof. (of theorem 2.1.4) We have Dir l (φ) := r l (res k (Eisk (φ) Eis k (φ ))) = res k (Eisk l (φ) Eisk l (φ )). We write the cup-product as composition Eis Q k l (φ) id l Sym k id Eis H(1)[1] Q k l (φ ) l Sym k H(1) Sym k H(1)[2] Q l (k+2)[2] Now we apply the previous lemma with F = Sym k H(1) and G = Q l (k+2). It remains to show that the map induced by Eis k l (φ ) Q l (k +1) i j Sym k H(1) i R 1 j Q l(k +2) Q l (k +1) 16

is the identity. We have a commutative diagram i j Sym k H(1) i j id res Q k (Eis k l (φ )) l i j Sym k H(1) i R 1 j Sym k H(1) = i j (Sym k H(1) Q l ) i R 1 j (Sym k H(1) Sym k H(1)) i R 1 j Q l (k +2) The two vertical arrows are given by the cup-product. The top-most map induces the identity by assumption on φ (see definition 1.3.1). That the composition of the two vertical maps on the right is also the identity follows from our normalization in definition 2.1.2 with respect to the intersection pairing. 2.2 Connection with the cohomological polylog We now want to compare the Eisenstein classes with the elliptic cohomological polylog. The theory is developed in [BeL], [W]. For a detailed exposition we refer to the appendix. Let Log E/M on E and Log Gm/B on G m be the elliptic and the classical logarithmic (pro)-sheaf respectively. Furthermore let Pol Gm/B Ext 1 G m e(b) ( π Q l (1),Log Gm/B), Pol E/M Ext 1 E e(m) (π H,Log E/M ) be the classical and the elliptic polylog respectively. We will also need a variant of this. Definition 2.2.1. The cohomological polylogarithm Pol coh E/M Pol coh E/M Ext1 E e(m) (Q l,π H Log E/M (1)) is the class obtained by tensoring Pol E/M with H and pull-back with the standard map Q l H H. The representing sheaf will also be denoted by Pol coh E/M. 17

Recall (e.g. A.2.6) that we have isomorphisms for all torsion sections t t : t Log E/M = e Log E/M = k 0Sym k H, t : t Log Gm/B = e Log Gm/B = k 0Q l (k). For convenience, we make the following definition. Definition 2.2.2. a) For ψ = q i t i Q[E[N] 0] put ψ Pol coh E/M = q i ti (t i Pol coh E/M ) in Ext 1 M (Q l,h e Log E/M (1)). Similarly we define ψ Pol E/M. b) Via the isomorphism Ext 1 M (Q l,h e Log E/M (1)) = k 0Ext 1 M (Q l,h Sym k H(1)) we denote by ( ψ Pol coh E/M) k Ext 1 M (Q l,h Sym k H(1)) the k-th component of ψ Pol coh E/M. Similarly we define ( ψ Pol E/M ) k. Lemma 2.2.3. The operation of H on Log E/M (see appendix A.2) induces e µ has a section µ : Log E/M π H Log E/M. pr : H e Log E/M e Log E/M which on H Sym k H is given by h h 0 h k 1 k +2 It induces an isomorphism k h (h j )h 0 ĥj h k. j=0 Ext 1 M(Q l,h e Log E/M (1)) Ext 1 M(Q l,e Log E/M (1)) It maps the k + 1-st component on the left to the k-th component on the right. 18

Proof. See [W], 3.19 b). Use the Leray spectral sequence and the known weights of the cohomology of Sym k H over Q. We can now formulate the theorem that makes the polylog so important in our context: Theorem 2.2.4 (Elliptic polylog at torsion sections). Let ψ Q[E[N] 0] and k > 0, then as elements of Eis k ( kψ) ( ) k+1 l = N k 1 pr ψ Pol coh E/M Ext 1 M(Q l,sym k H(1)) with the projection pr in lemma 2.2.3. This is implicit in [W] p. 310, and [BeL] 2.1-2.2. For the detailed exposition see the appendix, C.1.1. Remark: This theorem is also true for k = 0. 2.3 Degeneration of Eis and Pol coh E/M The aim of this section is to show: Theorem 2.3.1. Let ψ Q[E[N] 0] with kψ Q[Isom ] (k), i.e., such that Eis k l ( kψ) Ext 1 M (Q l,sym k H(1)) has residue 0 at. Recall that our fixed choice of ζ induces an inclusion Z/N G m (B) via t ζ t. Then in Ext 1 B (Q l,q l (k +1)) i j Eis k l ( kψ) = N k 1 t Z/N ψ(t,0) ( tt Pol Gm/B( 1) ) k+1. We first relate i j ψ Pol coh E/M to i j ψ Pol E/M. It is enough to restrict to the local situation around, with notation as in 2.1. Let : H η Q l( 1) be the dual of the map defined in 2.1.2. 19

Lemma 2.3.2. Let ψ Q[E[N] 0] such that Then the sequence res k ( ψ Pol coh E/η) k+1 = 0. 0 i j (H η Symk+1 H(1)) i j ( ψ Pol coh E/η) k+1 Ql 0 is exact. Push-out by i j ( id) is the extension 0 i j Sym k+1 H i j ( ψ Pol E/η ( 1) ) k+1 Ql 0. Proof. By definition of the cohomological polylog we have a commutative diagram (we forget about the index E/η and η) 0 π H Log(1) Pol coh Q l 0 = 0 π H Log(1) H Pol H H 0 We apply ψ to it and take the k+1-st component. We get a commutative diagram 0 H Sym k+1 H(1) ( ψ Pol coh) k+1 = Q l 0 0 H Sym k+1 H(1) H (ψ Pol) k+1 H H 0 0 Sym k+1 H (ψ Pol( 1)) k+1 H( 1) 0 We apply the functor i j to this diagram. The first line remains exact by assumption on the residue. The last line remains exact because Pol and ψ Pol have residue zero by B.1.4. The composition of the right vertical maps is the identity. Proof. (of theorem 2.3.1) Recall that by lemma 2.2.3 the map pr induces an isomorphism Ext 1 M (Q l,h e Log E/M (1)) pr Ext 1 M (Q l,e Log E/M (1)). 20

( k+1 Hence for ψ PolE/M) coh and its image under pr to have residue zero is equivalent. Application of i j to the formula in theorem 2.2.4 gives i j E k E/M ( kψ) = N k 1 i j (pr)i j ψ Pol coh E/M. It is easy to check that both i j (pr) and i j ( id) are sections of ) ( ) i j (µ ) : Q l (k+1) = i j (Sym k H η (1) i j Hη Symk+1 H η (1). But such a section is unique for weight reasons and hence i j (pr) = i j ( id). Hence we get i j E k ( kψ) ( ) E/M = N k 1 i j ( id)i k+1 j ψ Pol coh E/η 2.3.2 = N k 1 i j ( ψ Pol E/η ( 1) ) k+1 B.2.1 = N k 1( ψ i j Pol E/η ( 1) ) k+1 = N k 1 ψ(t,0) tt Pol Gm/B( 1) t Z/N k+1. The last equality follows from the known degeneration of the elliptic polylog (see B.1.4): if t is a torsion section of Ẽ meeting G m {v}, then t i j Pol E/η = i j t Pol E/η = t Pol Gm/B for v = 0, t i j Pol E/η = i j t Pol E/η is split for v 0. 2.4 End of proof Proof. (of theorem 1.4.3 a) and theorem 1.4.5) We have shown Dir l ( kψ) 2.1.4 = i j E k kψ 2.3.1 = N k 1 t Z/N ψ(t,0) tt Pol Gm/B( 1) k+1. 21

If t Z/N 0, then the section of G m associated to t is ζ t, and we have ( tt Pol ) k+1 ( 1) k Gm/B( 1) = N k k! ck (ζ t ) = ( 1)k N k [1 α] (α N ) k k! α lr =ζ t(1) r. This is [W] part II, chapter 4. Note that our N is d in loc. cit. whereas N in loc. cit. is 1 in our case. Remark: There are two possible strategies for the Hodge theoretic counterpart. Everything we have said about lisse l-adic sheaves works also for admissible variations of Q-Hodge structure. There is a Hodge theoretic version of H, Log and Pol and the theorems remain valid. The only new ingredient is the explicit computation of the cyclotomic polylog at a torsion section. For this see [W] Part II Theorem 3.11. Hence the arguments of this chapter give a valid proof of b). On the other hand, there is a direct computational proof of b), see [HuK] Theorem 8.1. A Elliptic and classical polylogarithm In this appendix we want to give a short review of the classical and the elliptic polylogarithm. We assemble the facts which are needed in the main text. Other important aspects are omitted. For example, we restrict to the l-adic setting. None of the material is new and it is only included to make our presentation as self-contained as possible. The classical polylogarithm was constructed by Deligne in [Del2]. The elliptic polylogarithm is due to Beilinson and Levin in [BeL] and we follow their presentation to a large extent. Another presentation of the material in this section can be found in Wildeshaus [W] IV, V. A.1 The logarithmic sheaf Let π : G S be an elliptic curve or a torus of relative dimension one and e : S G be the unit section. In this section we introduce and study the logarithm sheaf. 22

Definition A.1.1. Define H := (R 1 π Q l ) = Hom(R 1 π Q l,q l ) to be the dual of the relative first cohomology group on S. Hence, in every fibre, H is the Tate module. Lemma A.1.2. For every lisse sheaf F on S, there is a canonical isomorphism R q π π F = (R 2 q π! Q l (1)) F = (R q π Q l ) F. Proof. This is just the projection formula together with Poincaré duality: R q π π F = (R 2 q π! π (F )) ( 1) = (R 2 q π! Q l (1) (F )) = (R 2 q π! Q l (1)) F. Consider the exact sequence coming from the Leray spectral sequence for Rπ. With the above lemma it reads 0 Ext 1 S(Q l,h) Ext 1 G(Q l,π H) Hom S (Q l,h H) 0. This sequence is split by e. Definition A.1.3. Let Log (1) G/S be the unique extension 0 π H Log (1) G/S Q l 0 such that its image in Hom S (Q l,h H) is the standard morphism and e Log (1) G/S and Q l H H is split (the splitting is unique for weight reasons). Let Log (n) G/S := Symn Log (1) G/S Log G/S := lim Log (n) G/S where the limit is taken with respect to the transition maps Sym k+1 Log (1) G/S Symk+1 (Log (1) G/S Q l) Sym k Log (1) G/S Q l 23

(the first map is induced by the identity and Log (1) G/S Q l and the second map is the canonical projection in the symmetric algebra of a direct sum). Hence, there are exact sequences 0 π Sym n+1 H Log (n+1) G/S Log(n) G/S 0. The (pro-) sheaf Log G/S is called the logarithm sheaf. The splitting of e Log (1) induces e Log G/S = Sym k H. Very important for everything that follows, is the computation of the higher direct images of the logarithm sheaf. Consider the exact sequence k 0 0 π Sym k H Log (k) G/S Log(k 1) G/S 0. Lemma A.1.4. a) Let G/S be an elliptic curve. Then Rπ = Rπ!, π Log (k) = Sym k H, R 1 π Log (k) = Sym k+1 H( 1), R 2 π Log (k) = Q l ( 1). b) Let G/S be a torus. Then π Log (k) = Sym k H, π! Log (k) = 0, R 1 π Log (k) = Q l ( 1), R 1 π! Log (k) = Sym k+1 H( 1), R 2 π Log (k) = 0, R 2 π! Log (k) = Q l ( 1). c) In both cases, the boundary maps π Log (k 1) R 1 π Sym k H = H Sym k H, R 1 π! Log (k 1) R 2 π! Sym k H are induced by multiplication respectively they are isomorphisms. In particular, are zero. π Log (k) π Log (k 1), R 1 π! Log (k) R 1 π! Log (k 1) 24

Proof. Both cases are treated at the same time. First consider Rπ by induction on k: for k = 1, the assertions follows directly from the definition of Log (1). For k 1, consider the diagram G/S 0 π H π Sym k H Log (1) G/S π Sym k H π Sym k H 0 0 π Sym k+1 H Log (k+1) G/S Log (k) G/S 0, where the first two vertical maps are induced by the multiplication map and the last one is the canonical inclusion. Using lemma A.1.4, the boundary map for Rπ induces Sym k H H H Sym k H = π Log (k) G/S id mult γ H Sym k+1 H The left vertical arrow is an isomorphism by induction. This shows that γ is induced by the multiplication map and hence is injective. It follows that Sym k+1 H = π Log (k+1) G/S. If G/S is a torus, γ is even an isomorphism and R 2 π = 0. Now consider Rπ! by induction on k: For k = 1 the boundary map is given as the composition R 1 π! Q l H( 1) Q l R 1 π! Q l R 1 π π H R 1 π! Q l = Q l H( 1) = can id H H H( 1) R 2 π! π H = mult id H( 1) where the first map is induced by the canonical map Q l R 1 π π H. This shows that the boundary map is an isomorphism. For k 1 the next boundary morphism for Rπ! in the first diagram of this proof induces H( 1) Sym k H H( 1) Sym k H R 1 π! Log (k) G/S mult γ (Sym k+1 H)( 1). Hence γ is surjective, hence an isomorphism for dimension reasons. 25

A.2 The universal property of the logarithm The main result in this section is the equivalence between unipotent sheaves on G and sheaves on S with an action of a certain symmetric algebra (see theorem A.2.5). This is a formulation of the universal property of the logarithm sheaf. In order to explain the universal property of the logarithm sheaf, we need the notion of a unipotent sheaf. Definition A.2.1. A lisse sheaf F on G is unipotent of length n relative to π : G S, if there exists a filtration F = A 0 F... A n+1 F = 0 such that there are lisse sheaves G i on S with Gr i A F = π G i. Definition A.2.2. Let ÛH be the completion of the universal enveloping algebra of the abelian Lie algebra H at the augmentation ideal I := ker(ûh Q l ). As Q l -sheaves on S, we have ÛH = k 0 Symk H. Note that the morphism π H Log (1) induces maps π Sym k H Log (n) π Sym k H Log (n k) Log (n) which give an action of ÛH/I n+1 on Log (n). We want to define a Lie algebra action of the (abelian) Lie algebra H on e F for all unipotent F. Lemma A.2.3. (compare [BeL], proof of 1.2.6) Let F be a unipotent sheaf of length n. There is a canonical isomorphism for all k n π Hom(Log (k),f) e F induced by evaluation at Q l e Log (n). This induces an action of ÛH/In+1 on e F Proof. By induction on n we show that the canonical splitting of e Log (1) e Q l gives an isomorphism e F = π Hom(Log (k),f). 26

for all k n. For n = 0 we have for lisse G on S: π Hom(Log (k),π G) = π Hom(Log (k),π! G( 1)[ 2]) = Hom(R 2 π! Log (k),g( 1)) = G according to lemma A.1.4. Assume that the claim is proved for unipotent sheaves of length n 1. Then for F unipotent of length n we have an exact sequence: 0 A n F F F/A n F 0 and F/A n F is unipotent of length n 1. Then for k n 1 Hom(Log (k),f/a n F) = e F/A n F by induction. The same holds for A n F. Consider the commutative diagram: 0 π Hom(Log (k),a n F) π Hom(Log (k),f) π Hom(Log (k),f/a n α F) R 1 π Hom(Log (k),a n F) = = 0 e A n F e F e F/A n F 0 Itsufficestoshowthattheboundarymorphismα : π Hom(Log (k),f/a n F) R 1 π Hom(Log (k),a n F) is zero. For this consider π Hom(Log (k 1),F/A n F) R 1 π Hom(Log (k 1),A n F) = π Hom(Log (k),f/a n F) β α R 1 π Hom(Log (k),a n F) and it suffices to prove that β is zero. But A n F = π G = π! G( 1)[ 2] for some G on S, so that R 1 π RHom(Log (k),π! G( 1)[ 2]) = Hom(R 1 π! Log (k),g( 1)). It follows that β is zero, as the transition maps R 1 π! Log (k) R 1 π! Log (k 1) are zero according to lemma A.1.4 c). The natural pairing for Hom induces an action of ÛH on e F via e Log e F = π Hom(Log,Log) π Hom(Log,F) π Hom(Log,F) = e F. 27

Corollary A.2.4. The action of ÛH/I n+1 on e Log (n) n+1 G/S = ÛH/I is given by the algebra multiplication in ÛH. Theorem A.2.5. (compare: [BeL] 1.2.10 v)) The functor F e F induces an equivalence of the category of unipotent sheaves of length n relative π : G S and the category of ÛH/I n+1 -modules on S. Proof. The functor F 0 π F 0 ÛH /I n+1 Log (n) G/S provides a quasi-inverse. The isomorphism π e F ÛH /I n+1 Log (n) G/S = F is given by the evaluation map using the description in lemma A.2.3 of e F. That it is indeed an isomorphism can be checked after pull-back via e. Corollary A.2.6. Let f : G G be an isogeny, then H H is an isomorphism and Log (n) G/S = f Log (n) G /S. In particular, Log(n) G/S is invariant under translation by torsion sections t : S G and there is a canonical isomorphism t : t Log (n) G/S = e Log (n) G/S. Proof. The sheaf Log (n) G/S is characterized by the action of ÛH/I n+1 on e Log (n) G/S. As e f = e the claim follows. If f is an isogeny which maps t to e, then t is given by the composition t Log (n) G/S = e Log (n) G /S = e Log (n) G/S and is independent of f. Remark: The above action of H as a Lie algebra is related to the monodromy action along each fibre on e F as follows: The monodromy gives an action of H s on e F s, which is the composition of H ÛH and the above action of ÛH on e F. t expt = k 0 t i i! 28

A.3 The polylogarithm Let U = G\e(S) be the complement of the unit section of G. Lemma A.3.1 ([BeL] 1.3.3). Let Log U be the restriction of Log G/S to U and π U : U S the restriction of π. Then Hom S (H,R 1 π U Log U (1)) = Hom S (H,H). Proof. By purity there is an exact sequence 0 R 1 π Log(1) R 1 π U Log U (1) e Log k 0 Symk H and R 1 π Log(1) is isomorphic to Q l if G/S is a torus and equal to 0 if G/S is an elliptic curve (see lemma A.1.4). The lemma follows from this by weight considerations. This lemma together with lemma A.1.4 implies that the Leray spectral sequence for Rπ U induces an isomorphism: Definition A.3.2. Let Ext 1 U(π UH,Log U (1)) = Hom U (H,H). Pol G/S Ext 1 U ((π H) U,Log U (1)) be the preimage of the identity in Hom S (H,H). This class is called the (small) polylogarithm extension. By abuse of notation we also denote Pol the (pro)-sheaf representing the extension class (it is unique up to unique isomorphism). For an elliptic curve E/S, we call Pol E/S the elliptic polylogarithm. For G m /S, we call Pol Gm/S the classical or cyclotomic polylogarithm. By definition we have an exact sequence on U 0 Log U (1) Pol G/S π UH 0. It is clear that Pol is compatible with base change. To compare the polylogarithm to the Eisenstein classes (see C.2.2) we need also another version of the above extension. 29

Definition A.3.3. The cohomological polylogarithm Pol coh is the class in Pol coh Ext 1 U (Q l,π H Log U (1)) obtained by tensoring Pol with H and pull-back with the standard map Q l H H. The corresponding sheaf will be denoted by Pol coh. Remark: We call this class cohomological because it appears as an element of cohomology of appropriate varieties. B Degeneration in the local situation In this appendix we study the degeneration of the elliptic polylog into the classical polylog induced by the degeneration of an elliptic curve into a torus. The main results are given in theorem B.1.3. It is enough to consider the situation locally around a point of bad reduction. B.1 Degeneration of Log and Pol Let S be the spectrum of a complete discrete valuation ring with quotient field K and residue field κ. We put η := SpecK and s := Specκ. Let E/η be an elliptic curve with level-n-structure. Let Ẽ its Néron model. Denote by e : S Ẽ the identity section. We consider the cartesian diagram π E η j Ẽ Ẽs π j S i π i s Let Ẽ0 be the connected component of the identity section and assume that there is an isomorphism with Ẽ0 = G m,s {0}. We define and let Ẽ s = G m,s Z/NZ G (v) m := G m,s {v} e v : S Ẽ 30

be a global section which specialize to the identity section of G (v) m. We are going to study the behaviour of the logarithmic and the polylogarithmic sheaves under the functor i j. Remark: We can for example put S the completion of M at. Then E and Ẽ are the base changes of what was called E and Ẽ in section 1.1. By H η and H s we denote the sheaves H (see definition A.1.1) for E/η respectively Ẽ0 s /s. Lemma B.1.1. There is a canonical isomorphism Q l (1) = H s i j H η. Let be its adjoint. Let Q l (1) H η p(1) : Q l (1) H η id H η H η Q l (1) be given by the intersection pairing. We get a short exact sequence 0 Q l (1) H η p Ql 0. Proof. H η has non-trivial monodromy. Hence the monodromy filtration M has two non-trivial steps and we have the monodromy isomorphism(([del1] 1.6.14) Gr 1 H η (1) Gr 1 H η. M 1 H η extendstoalissesheafons. Itisenoughtoshowthati j M 1 H η = H s. We sketch a proof of this well-known fact: Let E be the compactification of Ẽ by a generalized elliptic curve. E s is the proper and singular Néron-N-gon. Consider the commutative diagram π E η j E π j S Note that R 1 π Q l (1) = R 1 π! Q l (1) = (R 1 π Q l ). It is isomorphic to H η and H s over η and s respectively. We consider the Leray spectral sequences for 31

the compositions π j and j π which converge to the same thing. The five term sequences give respectively 0 i R 1 π Q l (1) i R 1 (π j) Q l (1) i π Q l 0 i Ql i R 1 (j π η ) Q l (1) i j R 1 π η Q l (1) 0 But i R 1 π Q l (1) = Q l (1) and comparison of the two sequences gives the result. The consequences of this lemma for i R n j Sym n H η have already been drawn in 2.1.3. For reference we also note: Corollary B.1.2. There are canonical isomorphisms: a) b) i R 1 j i R 1 j e Log E/η (1) = k 0Q l, ( ) H e Log E/η (1) = l k 1Q Q l ( 1). k 0 Proof. We have e Log E/η (1) = k 0 Symk H η (1) and a canonical isomorphism Hη k 0Sym k H η (1) ) = (Sym k 1 H η (1) Sym k+1 H η. k 0 Theorem B.1.3 (Degeneration, cf. [BeL] 1.5). a) There is a canonical isomorphism i j Log E/η G (v) m = Log G (v) m /s b) Pol E/η Ext 1 E e(η) (π H η,log E/η (1)) has residue zero, i.e., the sequence 0 i j Log E/η (1) i j Pol E/η Q l (1) 0 32

is still exact. On Ẽ0 s e(s) = G(0) m e(s) there is a canonical isomorphism i j Pol E/η G (0) m = Pol Gm. On G (v) m for v 0 the extension i j Pol E/η G (v) m Ext 1 (Q G (v) l (1),i j Log E/η (1)) = 0. m The theorem will be proved in the next section. splits, more precisely Corollary B.1.4. Let t Ẽ(S) e(s). Then t Pol E/η Ext 1 η (H η,t Log E/η (1)) has residue zero, i.e., 0 i j t Log E/η (1) i j t Pol E/η Q l (1) 0 is still exact. For t Ẽ0 (S) e(s), there is a canonical isomorphism i j t Pol E/η = t Pol G (0) m and for t Ẽ(S) Ẽ0 (S) the extension splits. 0 i j t Log E/η (1) i j t Pol E/η i j H η 0 Proof. This follows immediately from part b) of the theorem using lemma B.2.1 below. Remark: One point of the theorem is that the the extensions Pol E/η and hence t Pol E/η have residue zero under i j. It is a key point that this is false for 0 Log E/η H η Polcoh E/η Q l 0. Indeed, the residue of this sequence will be computed at least after pull-back along torsion sections in theorem C.1.1. Taking certain linear combinations of pull-backs along torsion section this residue can again be zero and is then connected to the residue of the elliptic polylog (see 2.3.2) and hence to the classical polylog. 33

B.2 Proof of the degeneration theorem B.1.3 The following lemma allows us to compute the degeneration on the base: Lemma B.2.1. Let t : S Ẽ be a section, then for all q 0 and unipotent l-adic sheaves F on E i R q j t F = t i R q j F The same holds for open subschemes U Ẽ and sections t : S U. Proof. Adjunction for j induces a map from the right hand side to the left. By induction on the length of the filtration on F, it is enough to show the assertion for F = π G. In this case Rj t π G = t π Rj G = t Rj π G where the first equality follows from π t = id and the second is smooth base change. Lemma B.2.2. Let A be the canonical filtration on Log. a) The sheaf i j Log (n) E/η is unipotent with Grk i j A i j Log (n) E/η = Q l (k) for 0 k n. b) The sheaves i R 1 j Log (n) E/η are unipotent with (0 k n) Gr k i R 1 j A i R 1 j Log (n) E/η = Q l ( 1). Proof. It is enough to consider the case when κ is finitely generated over its prime field. The general case follows by base change. Hence we can assume that there are no non-trivial morphisms between Q l (k) s for different k. We prove a) and b) together by induction on n: for n = 0, Log (0) = Q l and there is nothing to prove. For n > 0 consider 0 π Sym n H η Log (n) E/η Log(n 1) E/η 0. By induction and 2.1.3 the boundary map i j Log (n 1) E/η i R 1 j Sym n H η = Ql ( 1) vanishes for weight reasons. As i j Sym n H η = Ql (n) the claim follows. 34

Let e v : S Ẽ be the section defined in B.1. By the characterization of unipotent sheaves in theorem A.2.5, it remains to prove that e vi j Log (n) is isomorphic to ÛH s /I n+1 with its canonical ÛH s -module structure. Lemma B.2.3. There is a canonical isomorphism of ÛH s -modules e vi j Log = ÛH s Proof. We have an isomorphism of ÛH s -modules e vi j Log = i j e vlog = i j Û H = Û Hs by B.2.1 for the first and 2.1.3 for the last isomorphism. Proof. (of theorem B.1.3). The lemma proves part a) of the theorem. To prove part b) for v 0 we remark that i j Log E/η (v) G m by a) and that = Log G (v) m π Log G (v) m = 0 and R 1 π Log G (v) m = Q l ( 1) by lemma A.1.4. The claim follows from the Leray spectral sequence. To prove part b) for v = 0, consider res : Ext 1 U η (Log E/η (1),π H η ) Hom U 0 s (i j H η,i R 1 j Log E/η (1))withU 0 s = Ẽ0 s e(s). Notethatres(Pol E/η ) vanishes by corollary B.2.2 for weight reasons. (As in the proof of B.2.2 we can assume without loss of generality that κ is finitely generated over its prime field.) Hence we have a short exact sequence 0 i j Log(1) E/η i j Pol E/η i j π H η 0. To identify this extension on G (0) m, consider the commutative diagram Ext 1 U η (π H η,log E/η (1)) res=0 Hom η (H η,e Log E/η ) i j i j Ext 1 Us 0(i j π H η,i j Log E/η (1)) Hom s (i j H η,i j e Log E/η ) = = Ext 1 U 0 s ( π s H s,log G (0) m (1)) Hom s (H s,e Log (0) G ) m Hence the class of i j Pol E/η is mapped to the identity. This proves part b) because the polylog was uniquely determined by its residue. 35

C The comparison theorem and values at torsion sections We are going to show that the pull-back of the elliptic polylog at torsion sections is given by the Eisenstein symbol. This is done by showing that the Eisenstein symbol and the pull-back of the polylogarithm at torsion sections both give a section of a certain residue map. As this section is uniquely determined for weight reasons, it is enough to compute the residues of the pull-backs of the polylogarithm and to see that this agrees with the residue of the Eisenstein symbol. C.1 Residue of the elliptic polylog at torsion sections In this section, we work in theuniversal situation of section 1.1. TheQ(µ N )- scheme M is the modular curve of elliptic curves with full level-n-structure, E is the universal elliptic curve over M and Ẽ is the Néron model over the compactification M. For further notation we refer to section 1.1. We are going to use the residue (in the sense of 0.0.1) Ext 1 M(Q l,h e Log E/M (1)) Hom Cusp (Q l,i R 1 j (H e Log E/M (1))) 2.2.3 Hom Cusp (Q l,i R 1 j (e Log E/M (1))) We compose this with the pull-back to Isom (see section 1.1) Hom Cusp (Q l,i R 1 j (e Log E/M (1))) Hom Isom (Q l,i R 1 j (e Log E/M (1))). By corollary B.1.2 (which applies because we have an isomorphism ẼIsom = G m Z/N Isom) the target space is isomorphic to Hom Isom (Q l,i R 1 j (e Log E/M (1))) = Hom Isom (Q l, k 1Q l ). IfweparameterizeIsomasinsection1.1, wecanidentifyhom Isom (Q l, k 1 Q l) with Q l ). All in all we consider res as a map g P(Z/N)\Gl 2 (Z/N)Hom Q (Q l, k 1 res : Ext 1 M (Q l,h e Log E/M (1)) 36 g P(Z/N)\Gl 2 (Z/N) k 1 Q l.

Finally recall that for a torsion section t E[N](M) with t 0 we have the isomorphism A.2.6 t : Ext 1 M (Q l,h t Log E/M (1)) Ext 1 M (Q l,h e Log E/M (1)). We now describe the residue of t(t Pol coh E/M ). Recall that B k(x) is the Bernoulli polynomial as in section 1.2. We identify x R/Z with its representative in [0, 1). Theorem C.1.1 (Residue of values at torsion sections). Let k 0, N 3 and let t : M Ẽ be a non zero N-torsion section. Then for g P(Z/N)\Gl 2 (Z/N) = Isom(Q) ( ) ( ) k+1(g) res t(t Pol coh E/M ) N = (k +2)k! B (gt)2 k+2 N where we have written gt = ((gt) 1,(gt) 2 ) E[N] = (Z/N) 2. This is due to Beilinson and Levin [BeL] prop. 2.2.3. A different proof can be found in [W] cor. III 3.26. The formula given there differs by a factor N from ours (i.e. the one in [BeL]). This seems to come from a different normalization of the residue. For the convenience of the reader and because we needed to fix the normalizations we give a third proof (also due to Beilinson and Levin from an earlier version of [BeL]) in the last section C.3. The reader is advised to skip it on a first reading. C.2 The polylog at torsion sections We continue in the modular situation of the last section. We want to relate t(t Pol coh E/M ) and the Eisenstein symbol. Recall (cf. section 1.2) that ψ Q[E[N]] is mapped to an element in Q[Isom] via the horospherical map k (1.2.3) and Eis k l ( kψ) H 1 et (M,Symk H(1)). For convenience, we make the following definition. Definition C.2.1. For ψ Q[E[N] 0] put ψ Pol coh E/M = ψ(t) t(t Pol coh E/M ) t E[N] as element of Ext 1 M (Q l,h e Log E/M (1)). 37