The Dirichlet Problem in a Two Dimensional Rectangle. Section 13.5

Similar documents
Wave Equation on a Two Dimensional Rectangle

1 2-D Second Order Equations: Separation of Variables

MA 201: Partial Differential Equations Lecture - 12

(PDE) u t k(u xx + u yy ) = 0 (x, y) in Ω, t > 0, (BC) u(x, y, t) = 0 (x, y) on Γ, t > 0, (IC) u(x, y, 0) = f(x, y) (x, y) in Ω.

Module 9: The Method of Green s Functions

Differential Equations 2 Homework 5 Solutions to the Assigned Exercises

10 Elliptic equations

Lecture 24: Laplace s Equation

1 1D heat and wave equations on a finite interval

u(x, y, t) = T(t)Φ(x, y) 0. (THE EQUATIONS FOR PRODUCT SOLUTIONS) Plugging u = T(t)Φ(x, y) in (PDE)-(BC) we see: There is a constant λ such that

Green function and Eigenfunctions

M344 - ADVANCED ENGINEERING MATHEMATICS

Math Fall 2006 Sample problems for the final exam: Solutions

Summary: Method of Separation of Variables

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions

Lecture 4 Notes, Electromagnetic Theory I Dr. Christopher S. Baird University of Massachusetts Lowell

STURM-LIOUVILLE BOUNDARY VALUE PROBLEMS

p-adic Egyptian Fractions

September 13 Homework Solutions

Lecture Solution of a System of Linear Equation

Review of Gaussian Quadrature method

Improper Integrals. The First Fundamental Theorem of Calculus, as we ve discussed in class, goes as follows:

Section 6.1 INTRO to LAPLACE TRANSFORMS

2.4 Linear Inequalities and Interval Notation

APM346H1 Differential Equations. = u x, u = u. y, and u x, y =?. = 2 u t and u xx= 2 u. x,t, where u t. x, y, z,t u zz. x, y, z,t u yy.

AMS 212A Applied Mathematical Methods I Lecture 06 Copyright by Hongyun Wang, UCSC. ( ), v (that is, 1 ( ) L i

Lecture 3. In this lecture, we will discuss algorithms for solving systems of linear equations.

Section 4: Integration ECO4112F 2011

(9) P (x)u + Q(x)u + R(x)u =0

dx dt dy = G(t, x, y), dt where the functions are defined on I Ω, and are locally Lipschitz w.r.t. variable (x, y) Ω.

Parse trees, ambiguity, and Chomsky normal form

Partial Differential Equations

g i fφdx dx = x i i=1 is a Hilbert space. We shall, henceforth, abuse notation and write g i f(x) = f

I1 = I2 I1 = I2 + I3 I1 + I2 = I3 + I4 I 3

Consequently, the temperature must be the same at each point in the cross section at x. Let:

1 E3102: a study guide and review, Version 1.0

Section 3.2 Maximum Principle and Uniqueness

Linear Systems with Constant Coefficients

Mathematics. Area under Curve.

Topics Covered AP Calculus AB

Polynomials and Division Theory

10 Vector Integral Calculus

Section 6.1 Definite Integral

DEFINITION The inner product of two functions f 1 and f 2 on an interval [a, b] is the number. ( f 1, f 2 ) b DEFINITION 11.1.

Suppose we want to find the area under the parabola and above the x axis, between the lines x = 2 and x = -2.

7. Indefinite Integrals

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1

Linear Inequalities. Work Sheet 1

Chapter 6 Techniques of Integration

Best Approximation in the 2-norm

Definite Integrals. The area under a curve can be approximated by adding up the areas of rectangles = 1 1 +

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique?

Improper Integrals, and Differential Equations

Sections 5.2: The Definite Integral

5: The Definite Integral

Best Approximation. Chapter The General Case

When a force f(t) is applied to a mass in a system, we recall that Newton s law says that. f(t) = ma = m d dt v,

u t = k 2 u x 2 (1) a n sin nπx sin 2 L e k(nπ/l) t f(x) = sin nπx f(x) sin nπx dx (6) 2 L f(x 0 ) sin nπx 0 2 L sin nπx 0 nπx

Variational Techniques for Sturm-Liouville Eigenvalue Problems

PROPERTIES OF AREAS In general, and for an irregular shape, the definition of the centroid at position ( x, y) is given by

Thomas Whitham Sixth Form

Anti-derivatives/Indefinite Integrals of Basic Functions

MA Handout 2: Notation and Background Concepts from Analysis

Note 16. Stokes theorem Differential Geometry, 2005

Chapter 0. What is the Lebesgue integral about?

The Evaluation Theorem

MA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp.

The area under the graph of f and above the x-axis between a and b is denoted by. f(x) dx. π O

Chapter 3 Polynomials

Further integration. x n nx n 1 sinh x cosh x log x 1/x cosh x sinh x e x e x tan x sec 2 x sin x cos x tan 1 x 1/(1 + x 2 ) cos x sin x

3 Mathematics of the Poisson Equation

MT Integral equations

New Expansion and Infinite Series

Review SOLUTIONS: Exam 2

Designing Information Devices and Systems I Spring 2018 Homework 7

1.1. Linear Constant Coefficient Equations. Remark: A differential equation is an equation

Chapter Five - Eigenvalues, Eigenfunctions, and All That

Bases for Vector Spaces

UNIFORM CONVERGENCE. Contents 1. Uniform Convergence 1 2. Properties of uniform convergence 3

Lecture 2: January 27

AQA Further Pure 2. Hyperbolic Functions. Section 2: The inverse hyperbolic functions

ODE: Existence and Uniqueness of a Solution

Section - 2 MORE PROPERTIES

Chapter 8.2: The Integral

1.2. Linear Variable Coefficient Equations. y + b "! = a y + b " Remark: The case b = 0 and a non-constant can be solved with the same idea as above.

expression simply by forming an OR of the ANDs of all input variables for which the output is

k and v = v 1 j + u 3 i + v 2

Taylor Polynomial Inequalities

x dx does exist, what does the answer look like? What does the answer to

Sturm-Liouville Theory

221B Lecture Notes WKB Method

Chapter 28. Fourier Series An Eigenvalue Problem.

Recitation 3: More Applications of the Derivative

A BRIEF INTRODUCTION TO UNIFORM CONVERGENCE. In the study of Fourier series, several questions arise naturally, such as: c n e int

MTH 505: Number Theory Spring 2017

8 Laplace s Method and Local Limit Theorems

Patch Antennas. Chapter Resonant Cavity Analysis

Elliptic Equations. Laplace equation on bounded domains Circular Domains

Calculus Module C21. Areas by Integration. Copyright This publication The Northern Alberta Institute of Technology All Rights Reserved.

1B40 Practical Skills

Transcription:

The Dirichlet Prolem in Two Dimensionl Rectngle Section 13.5 1 Dirichlet Prolem in Rectngle In these notes we will pply the method of seprtion of vriles to otin solutions to elliptic prolems in rectngle s n infinite sum involving Fourier coefficients, eigenvlues nd eigenvectors. These prolems represent the simplest cses consisting of the Dirichlet Prolem in -Dimensionl in rectngle. g y f 1 x Ω g 1 y f x As usul we will strt with simplest oundry conditions Dirichlet oundry conditions nd rectngulr region Ω. The most generl setup in this cse is to prescrie function on ech of the four sides of the rectngle s depicted in the figure. Thus we otin the prolem u xx x, y + u yy x, y =, x, y [, ] [, ], 1.1 u, y = g y, ux, = f x, u, y = g 1 y ux, = f 1 x Anlysis of this prolem would ecome rther messy ut the principle of superposition llows us to divide nd conquer. We cn write the solution to this prolem s sum of solutions to four simpler prolems The Principle of Superposition We note tht for liner prolem it is lwys possile to replce single hrd prolem y severl simpler prolems. More specificlly, we cn write the solution to hrd prolem s the sum of the solutions to severl simpler prolems. For exmple the solution u to 1.1 1

cn e otined s sum of the solutions to four simpler prolems u 1 xx x, y + u 1 yy x, y =, x, y [, ] [, ], 1. u 1, y = g y, u 1, y = u 1 x, =, u 1 x, = u xx x, y + u yy x, y =, x, y [, ] [, ], 1.3 u, y =, u, y = u x, =, u x, = f 1 x u 3 xx x, y + u 3 yy x, y =, x, y [, ] [, ], 1.4 u 3, y =, u 3, y = g 1 y u 3 x, =, u 3 x, = u 4 xx x, y + u 4 yy x, y =, x, y [, ] [, ], 1.5 u 4, y =, u 4, y = u 4 x, = f x, u 4 x, = Non-Zero Boundry Function of x To illustrte the method of seprtion of vriles pplied to these prolems let us consider the BVP in 1.3. In this cse the only non-zero oundry term occurs on the top of the ox when y = where we hve u x, = f 1 x. u = u = f 1 Ω u = µ n = u x, y = n = u =, λ n = µ n, ϕ n x = sinµ nx, n = 1,,, n sinh µ n y ϕ n x 1 sinh µ n f 1 xϕ n x dx.

As usul we look for simple solutions in the form u x, y = ϕxψy. Sustituting into 1.3 nd dividing oth sides y ϕxψy gives ψ y ψy = ϕ x ϕx Since the left side is independent of x nd the right side is independent of y, it follows tht the expression must e constnt: ψ y ψy = ϕ x ϕx Here ψ mens the derivtive of ψ with respect to y nd ϕ mens mens the derivtive of ϕ with respect to x. = λ. N.B. Notice tht we re using the negtive of the sign we used for λ in the het nd wve eqution. This is in keeping with stndrd prctice for the Dirichlet prolem. So in this cse our eigenvlues will e λ n = µ n insted of µ n. We seek to find ll possile constnts λ nd the corresponding nonzero functions ϕ nd ψ. We otin ϕ + λϕ =, ψ λψ =. Furthermore, the oundry conditions give ϕψy =, ϕψy = for ll y. Since ψy is not identiclly zero we otin the eigenvlue prolem ϕ x + λϕx =, ϕ =, ϕ =..1 We hve solved similr prolem mny times with the min difference eing tht now the eigenvlues re positive. µ n =, λ n = µ n, ϕ n x = sinµ nx, n = 1,,.. The generl solution of ψ y µ nψy = is then ψy = c 1 cosh µ n y + c sinh µ n y.3 where c 1 nd c re ritrry constnts. The oundry condition ψ = implies ψy = sinh µ n y. 3

So we look for u s n infinite sum ux, y = n sinh µ n y ϕ n x.4 The only thing remining is to somehow pick the constnts n so tht the initil condition ux, = f 1 x is stisfied. Setting y = in.4, we seek to otin { n } stisfying f 1 x = ux, = n sinh µ n ϕ n x. This is lmost Sine expnsion of the function f 1 x on the intervl,. In prticulr we otin or sinh µ n n = n = 1 sinh µ n f 1 xϕ n x dx f 1 xϕ n x dx..5 N.B. In order to otin the complete solution to the originl prolem 1.1 we would need to solve the three other similr prolems 1., 1.4, 1.5. Let us now consider n explicit exmple for f 1 x: Exmple.1. Consider the prolem 1.3 with { x x /, f 1 x = π x / x. For this exmple.4 ecomes ux, y = n sinh µ n y sinh µ n y ϕ n x, with ϕ n x = sinµ nx. In this cse we otin the following results for.5 The explicit integrtions re crried out elow [ / x ] x sinh n = x sin dx + x sin dx / [ = sin + = sin n π sin ] 4

Which implies n = sin. n π sinh µ n Then we rrive t the solution ux, y = 4 π sin sinh µ n y sin µ n π n x. sinh µ n To otin the ove formuls we needed to crryout two integrtion y prts. We do them seprtely in the following. nd / / x sin x sin Thus we hve x dx = = x / x x cos dx x / cos = / cos = cos = cos + + + / / x cos dx cos x / sin sin x dx = x x / cos dx = x x cos sinh µ n n = = / cos = cos = cos + [ sin / /. x dx x cos dx / x sin / sin 5 +. sin 1 x cos ] dx

or finlly, n = sin. n π sinh µ n 3 Non-Zero Boundry Function of y As nother exmple illustrting the method of seprtion of vriles pplied to these prolems let us consider the BVP in 1.4. In this cse the only non-zero oundry term occurs on the right hnd side of the ox when x = where we hve u 3, y = g 1 y. µ n = u 3 x, y = n =, λ n = µ n, ϕ n y = sinµ ny, n = 1,, n sinh µ n x sin µ n y 1 sinh µ n g 1 yϕ n y dy. To otin this formul we proceed s usul nd look for simple solutions in the form u 3 x, y = ϕyψx. The min difference here is tht in this cse we interchnge the roles of x nd y since we will wnt to do Fourier series in y this time insted of x. Sustituting into 1.4 nd dividing oth sides y ϕyψx gives ψ x ψx = ϕ y ϕy Since the left side is independent of y nd the right side is independent of x, it follows tht the expression must e constnt: ψ x ψx = ϕ y ϕy Here ψ mens the derivtive of ψ with respect to x nd ϕ mens mens the derivtive of ϕ with respect to y. We seek to find ll possile constnts λ nd the corresponding nonzero functions ϕ nd ψ. We otin Furthermore, the oundry conditions give = λ. ϕ y + λϕy =, ψ x λψx =. ϕψx =, ϕψx = for ll x. 6

Since ψx is not identiclly zero we otin the eigenvlue prolem ϕ y + λϕy =, ϕ =, ϕ =. 3.1 Once gin we note the min difference now is tht the eigenvlues λ n re positive. µ n =, λ n = µ n, ϕ n y = sinµ ny, n = 1,,. 3. The generl solution of ψ x µ nψx = is then ψy = c 1 cosh µ n x + c sinh µ n x 3.3 where c 1 nd c re ritrry constnts. The oundry condition ψ = implies ψx = sinh µ n x. So we look for u s n infinite sum ux, y = n sinh µ n x ϕ n y 3.4 The only remining prt is to find the n so tht the initil condition u, y = g 1 y is stisfied. Setting x = in.4, we seek to otin { n } stisfying g 1 y = u, y = n sinh µ n sin µ n y. This is lmost Sine expnsion of the function g 1 y on the intervl,. In prticulr we otin sinh µ n n = g 1 yϕ n y dy. 3.5 4 The Lplce Eqution with other Boundry Conditions Next we consider slightly different prolem involving mixture of Dirichlet nd Neumnn oundry conditions. To simplify the prolem it we set = π nd keep ny numer. 7

Nmely we consider u xx x, y + u yy x, y =, x, y [, π] [, ], 4.1 u, y =, u x π, y = u y x, =, ux, = f 1 x u = f 1 Ω u = u x = u x = π Look for simple solutions in the form ux, y = ϕxψy. Sustituting into 4.1 nd dividing oth sides y ϕxψy gives ψ y ψy = ϕ x ϕx Since the left side is independent of x nd the right side is independent of y, it follows tht the expression must e constnt: ψ y ψy = ϕ x ϕx Here ψ mens the derivtive of ψ with respect to y nd ϕ mens mens the derivtive of ϕ with respect to x. We seek to find ll possile constnts λ nd the corresponding nonzero functions ϕ nd ψ. We otin Furthermore, the oundry conditions give = λ. ϕ + λϕ =, ψ λψ =. ϕψy =, ϕ πψy = for ll y. Since ψy is not identiclly zero we otin the desired eigenvlue prolem ϕ x + λϕx =, ϕ =, ϕ π =. 4. µ n = n 1, λ n = µ n, ϕ n x = π sinµ nx, n = 1,,. 4.3 8

The generl solution of ψ µ nψ = is ψy = c 1 cosh µ n y + c sinh µ n y 4.4 where c 1 nd c re ritrry constnts. The oundry condition ψ = implies ψy = cosh µ n y. So we look for u s n infinite sum ux, y = n cosh µ n y ϕ n x. 4.5 Finlly we need to find the constnts n so tht f 1 x = ux, = n cosh µ n ϕ n x. As usul we otin n expnsion of the function f 1 x on the intervl, π in the form π cosh µ n n = f 1 x sinµ n x dx. 4.6 π 9