Similar documents
Structural Calculations For:

RETAINING WALL LOADS: Horizontal Equivalent Fluid Pressure = pcf. (Load Case = Soil)

8 ft. 5 k 5 k 5 k 5 k. F y = 36 ksi F t = 21 ksi F c = 10 ksi. 6 ft. 10 k 10 k

For sunshades using the Zee blades wind loads are reduced by 10 psf.

Huntly Christie 1/26/2018 Christie Lites 100 Carson Street Toronto, ON M8W3R9

Example: 5-panel parallel-chord truss. 8 ft. 5 k 5 k 5 k 5 k. F yield = 36 ksi F tension = 21 ksi F comp. = 10 ksi. 6 ft.

HELIODYNE SOLAR COLLECTOR RACK STRUCTURES FOR HELIODYNE, INC. Structural calculations. Gobi 410 at 45 degrees. for WCM HELIODYNE RACK

Platform. Platform. Platform. Platform. Lighthing Rod 5/8x4' 152 (12) DB874H 150. Pirod 15' Low Profile Rotable 107 Platform

2/23/ WIND PRESSURE FORMULA 2. PERCENT OF ALLOWABLE STRESS 3. FATIGUE DESIGN

WRAP-AROUND GUSSET PLATES

Chapter 7: Bending and Shear in Simple Beams

STRUCTURAL ANALYSIS REPORT. WHISPER ft GUYED WIND TURBINE TEP # Revision 0 November 6, 2006 PORTABLE DOCUMENT FORMAT.

Suspended high-rise. Suspended high-rise Copyright G G Schierle, press Esc to end, for next, for previous slide 1

A q u a b l u e a t t h e G o l d e n M i l e

8/11/14. Sheet 1. Colonial Flag 9390 So 300 West Sandy, UT

Stress Transformation Equations: u = +135 (Fig. a) s x = 80 MPa s y = 0 t xy = 45 MPa. we obtain, cos u + t xy sin 2u. s x = s x + s y.

ERRATA for PE Civil Structural Practice Exam ISBN Copyright 2014 (July 2016 Second Printing) Errata posted

Application nr. 7 (Connections) Strength of bolted connections to EN (Eurocode 3, Part 1.8)

ME325 EXAM I (Sample)

2.0 Introduction. F i. [Eq. 2.1] M i. [Eq. 2.2]

twenty one concrete construction: shear & deflection ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture

CHAPTER 5. T a = 0.03 (180) 0.75 = 1.47 sec 5.12 Steel moment frame. h n = = 260 ft. T a = (260) 0.80 = 2.39 sec. Question No.

Supplement: Statically Indeterminate Trusses and Frames

Failure in Flexure. Introduction to Steel Design, Tensile Steel Members Modes of Failure & Effective Areas

DESIGN OF BEAMS AND SHAFTS

Chapter 7: Internal Forces

UC Berkeley CE 123 Fall 2017 Instructor: Alan Kren

Chapter 1 Introduction- Concept of Stress

7.2 Design of minaret: Geometry:

Application nr. 3 (Ultimate Limit State) Resistance of member cross-section

5. What is the moment of inertia about the x - x axis of the rectangular beam shown?

Lecture 7 Two-Way Slabs

Shear Force and Bending Moment Diagrams

TORSION By Prof. Ahmed Amer

APPENDIX A DEFINITIONS, NOTATIONS, AND SI CONVERSION FACTORS

2. (a) Explain different types of wing structures. (b) Explain the advantages and disadvantages of different materials used for aircraft

Tension Members. ENCE 455 Design of Steel Structures. II. Tension Members. Introduction. Introduction (cont.)

Chapter 4 Seismic Design Requirements for Building Structures

Accordingly, the nominal section strength [resistance] for initiation of yielding is calculated by using Equation C-C3.1.

General Comparison between AISC LRFD and ASD

ME Final Exam. PROBLEM NO. 4 Part A (2 points max.) M (x) y. z (neutral axis) beam cross-sec+on. 20 kip ft. 0.2 ft. 10 ft. 0.1 ft.

CH. 4 BEAMS & COLUMNS

host structure (S.F.D.)

Torsion. Torsion is a moment that twists/deforms a member about its longitudinal axis

NICE-PACK ALCOHOL PREP ROOM PLATFORM CALCULATIONS

TORSION INCLUDING WARPING OF OPEN SECTIONS (I, C, Z, T AND L SHAPES)

The subject of this paper is the development of a design

GENERAL INFORMATION FOR COLUMN BASE REACTIONS

Simplified Base Isolation Design Procedure. Gordon Wray, P.E.

MECHANICS OF MATERIALS

my!wind Ltd 5 kw wind turbine Static Stability Specification

UNIT- I Thin plate theory, Structural Instability:

Supplement: Statically Indeterminate Frames

Stress Analysis Lecture 3 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy

Case Study in Reinforced Concrete adapted from Simplified Design of Concrete Structures, James Ambrose, 7 th ed.

Duke Schropp Duke Lake Rd. Whitehall

Chapter 2. Design for Shear. 2.1 Introduction. Neutral axis. Neutral axis. Fig. 4.1 Reinforced concrete beam in bending. By Richard W.

Timber and Steel Design. Lecture 11. Bolted Connections

Tower Data, and Dynamics of Combined System. S. von Hoerner National Radio Astronomy Observatory Green Bank, West Virginia

ENG1001 Engineering Design 1

Members Subjected to Combined Loads

my!wind Ltd 5 kw wind turbine Static Stability Specification

Virtual Work for Frames. Virtual Work for Frames. Virtual Work for Frames. Virtual Work for Frames. Virtual Work for Frames. Virtual Work for Frames

APPENDIX 4.4.A STRAWMAN STRUCTURAL DESIGN OF A 30-M GSMT

IVIL.COM, C. English - Arabic. Arrow Assume Assumption Available Average Axes Axial Axis

Example Stayed beam with two pylons

World Shelters. U-Dome 200. Dome Shelter. Engineering Report: Dome Structure ER October South G St., Suite 3 Arcata, CA USA

Palm Frond Calculations

db = 23.7 in B C D 96 k bf = 8.97 in tf = in k = 1.09 in 13 Fy = 50 ksi Fu = 65 ksi Member A-B, Interior column: A E

Section Downloads. Design Process. Design Principles Outline. Basic Design Principles. Design Process. Section 06: Design Principles.

Beam Design - Shed Roof Back Wall Beam-S

FINAL EXAMINATION. (CE130-2 Mechanics of Materials)

CH. 5 TRUSSES BASIC PRINCIPLES TRUSS ANALYSIS. Typical depth-to-span ratios range from 1:10 to 1:20. First: determine loads in various members

[7] Torsion. [7.1] Torsion. [7.2] Statically Indeterminate Torsion. [7] Torsion Page 1 of 21

Chapter 7 INTERNAL FORCES

DNV DESIGN. POU_Rect - Design Report Page 1 of 11

AISC LRFD Beam Design in the RAM Structural System

DESIGN EXAMPLES APPENDIX A

If the number of unknown reaction components are equal to the number of equations, the structure is known as statically determinate.

1 Exterior Wall Members & Accessories

New model for Shear Failure of R/C Beam-Column Joints. Hitoshi Shiohara

NAME: Given Formulae: Law of Cosines: Law of Sines:

Beam Design and Deflections

Design of RC Retaining Walls

Beam Design - FLOOR JOIST

TABLE OF CONTANINET 1. Design criteria. 2. Lateral loads. 3. 3D finite element model (SAP2000, Ver.16). 4. Design of vertical elements (CSI, Ver.9).

MECHANICS OF MATERIALS

1. For Cosine Rule of any triangle ABC, b² is equal to A. a² - c² 4bc cos A B. a² + c² - 2ac cos B C. a² - c² + 2ab cos A D. a³ + c³ - 3ab cos A

Mechanics of Materials Primer

APRIL Conquering the FE & PE exams Formulas, Examples & Applications. Topics covered in this month s column:

Lecture Example. Steel Deck (info from Vulcraft Steel Roof and Floor Deck Manual)

SSC-JE MAINS ONLINE TEST SERIES / CIVIL ENGINEERING SOM + TOS

APPENDIX A Thickness of Base Metal

2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at A and supported at B by rod (1). What is the axial force in rod (1)?

DEFLECTION CALCULATIONS (from Nilson and Nawy)

6.5 Cables: Concentrated Loads

MECHANICS OF STRUCTURES SCI 1105 COURSE MATERIAL UNIT - I

Name (Print) ME Mechanics of Materials Exam # 2 Date: March 29, 2017 Time: 8:00 10:00 PM - Location: WTHR 200

SEAoT State Conference Seminar Topics. Early knowledge needed. 11/5/2009. Wind Versus Seismic Which Controls? The Code

Chapter 8: Bending and Shear Stresses in Beams

Transcription:

20.0 L SR 3/4 2L /2x /2x3/6x3/8 L /2x /2x3/6 L /2x /2x3/6 L /2x /2x3/6 3.4666 5 @ 4 884.6 DESIGNED APPURTENANE LOADING TYPE ELEVATION TYPE ELEVATION (9) FV90-2 20 Pirod 3' Low Profile Platform 20 TOWER DESIGN NOTES. Tower designed for a 80 mph basic wind in accordance with the TIA/EIA-222-F Standard. 2. Tower is also designed for a 69 mph basic wind with 0.50 in ice. 3.4666 00.0 L /2x /2x3/6 4.9666 0 @ 4 T SR 2 80.0 T2 SR 2 /2 60.0 T3 SR 3 L 3/4x 3/4x3/6 N.A. N.A. N.A. 888.0 N.A. N.A. 376.8 N.A. 6.4666 7.9666 8 @ 5 953.4 40.0 T4 SR 3 /4 L2x2x/4 2462.0 MAX LEG FORES: DOWN: 89434 UPLIFT: -7474 SHEAR: 7220 T5 SR 3 /2 L2 /2x2 /2x/4 L 3/4x 3/4x3/6 0.967 9.4666 2 @ 0 0352.8 2788.0 20.0 0.0 SHEAR 660 69 mph WIND - 0.5000 in IE AXIAL 2827 SHEAR 456 AXIAL 833 MOMENT 788 kip- MOMENT 785 kip- REATIONS - 80 mph WIND Legs Diagonals Top Girts Mid Girts ottom Girts Horizontals Sec. Horzs Inner racing Face Width () # Panels @ Ht () () onsulting Engineers omputerized Structural Design 8989 N. Port Washington Rd. Milwaukee, WI 5327 Phone: (44) 35-5588 FAX: (44) 35-467 Job: Example - 20' Self-Supporting Tower Project: Training Seminar lient: -oncepts, Inc. Drawn by: Dan Horn App'd: ode: TIA/EIA-222-F Date: /5/0 Scale: NTS Path: H:\Engineer Stuff\DGH\SpectraSite\Handalcs\Falcon20.eri Dwg No. E-

ERITower omputerized Structural Design 8989 N. Port Washington Rd. Milwaukee, WI 5327 Phone: (44) 35-5588 FAX: (44) 35-467 Job Project lient Example - 20' Self-Supporting Tower Training Seminar -oncepts, Inc. Page of 4 Date 09:46:9 /5/0 Designed by Dan Horn Tower Input Data The main tower is a 3x free standing tower with an overall height of 20.00 above the ground line. The base of the tower is set at an elevation of 0.00 above the ground line. The face width of the tower is 3.42 at the top and 0.92 at the base. There is a 3 sided latticed pole with a face width of 3.42. This tower is designed using the TIA/EIA-222-F standard. The following design criteria apply: asic wind speed of 80 mph. Nominal ice thickness of 0.5000 in. Ice density of 56 pcf. A wind speed of 69 mph is used in combination with ice. Pressures are calculated at each section. Stress ratio used in latticed pole member design is.333. Stress ratio used in tower member design is.333 Wind 60 Leg A Wind 90 Face A Face Leg Leg Face Wind Normal Triangular Tower 3 Sided Latticed Pole Geometry Tower Tower Width Number of Length Diagonal Spacing racing Type Has K race Has Horizontals s End Panels L 20-00 3.42 20.00 4.00 K race Right No Yes

ERITower omputerized Structural Design 8989 N. Port Washington Rd. Milwaukee, WI 5327 Phone: (44) 35-5588 FAX: (44) 35-467 Job Project lient Example - 20' Self-Supporting Tower Training Seminar -oncepts, Inc. Page 2 of 4 Date 09:46:9 /5/0 Designed by Dan Horn 3 Sided Latticed Pole Geometry (cont d) Tower Leg Type Leg Size Leg F y ksi Diagonal Type Diagonal Size L 20-00 Solid Round 3/4 50 Double Angle 2L /2x /2x3/6x3/8 36 Diagonal F y ksi 3 Sided Latticed Pole Geometry (cont d) Tower Top Girt Type Top Girt Size Top Girt F y ksi ottom Girt Type ottom Girt Size ottom Girt F y ksi L 20-00 Single Angle L /2x /2x3/6 36 Single Angle L /2x /2x3/6 36 3 Sided Latticed Pole Geometry (cont d) Tower No. of Mid Girts Mid Girt Type Mid Girt Size Mid Girt F y ksi Horizontal Type Horizontal Size Horizontal F y ksi L 20-00 None Flat ar 36 Single Angle L /2x /2x3/6 36 3 Sided Latticed Pole Geometry (cont d) K Factors Tower Gusset Area (per face) Gusset Thickness Adjust. Factor A f Adjust. Factor A r Mult. Legs X race Diags X K race Diags X Single Diags X Girts X Horiz. X Inner race X Truss Leg X race Truss Leg Z race 2 in Y Y Y Y Y Y L 20-00 0.00 0 0.5 0.85 Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length. 3 Sided Latticed Pole Geometry (cont d) Tower Tension Area Factors onnection Offsets Legs Inner Members Diagonals K-racing Single Angle Double Angle U Net Width U Net Width U Vert. Horiz. Vert. Horiz. Vert. Horiz. Vert. Deduct Deduct Top Top ot. ot. Top Top ot. in in Net Width Deduct in in in in in in in in in L 20-00 0.5625 0.75 0 0.75 0.5625 0.75 0 0 0 0 0 0 0 0 Horiz. ot. Tower Geometry

ERITower omputerized Structural Design 8989 N. Port Washington Rd. Milwaukee, WI 5327 Phone: (44) 35-5588 FAX: (44) 35-467 Job Project lient Example - 20' Self-Supporting Tower Training Seminar -oncepts, Inc. Page 3 of 4 Date 09:46:9 /5/0 Designed by Dan Horn Tower Tower Width Number of s Length Diagonal Spacing racing Type Has K race End Panels Has Horizontals T 00-80 3.42 20.00 4.00 X race No No T2 80-60 4.92 20.00 4.00 X race No No T3 60-40 6.42 20.00 5.00 X race No No T4 40-20 7.92 20.00 5.00 X race No No T5 20-0 9.42 20.00 0.00 X race No Yes Tower Geometry (cont d) Tower Leg Type Leg Size Leg F y ksi Diagonal Type Diagonal Size T 00-80 Solid Round 2 50 Single Angle L /2x /2x3/6 36 T2 80-60 Solid Round 2 /2 50 Single Angle L /2x /2x3/6 36 T3 60-40 Solid Round 3 50 Single Angle L 3/4x 3/4x3/6 36 T4 40-20 Solid Round 3 /4 50 Single Angle L2x2x/4 36 T5 20-0 Solid Round 3 /2 50 Single Angle L2 /2x2 /2x/4 36 Diagonal F y ksi Tower Geometry (cont d) Tower Secondary Horizontal Type Secondary Horizontal Size Secondary Horizontal F y ksi Inner racing Type Inner racing Size Inner racing F y ksi T 00-80 Solid Round 36 Solid Round 36 T2 80-60 Solid Round 36 Solid Round 36 T3 60-40 Solid Round 36 Solid Round 36 T4 40-20 Solid Round 36 Solid Round 36 T5 20-0 Single Angle L 3/4x 3/4x3/6 36 Solid Round 36 Tower Geometry (cont d) Tower Gusset Area (per face) Gusset Thickness Adjust. Factor A f Adjust. Factor A r Mult. Legs X race Diags X 2 in Y T 00-80 0.00 0 T2 80-60 0.00 0 T3 60-40 0.00 0 T4 40-20 0.00 0 T5 20-0 0.00 0 K race Diags X Y K Factors Single Girts Horiz. Diags X Y X Y X Y Inner race X Y Truss Leg X race Truss Leg Z race 0.5 0.85 0.5 0.85 0.5 0.85 0.5 0.85 0.5 0.85

ERITower omputerized Structural Design 8989 N. Port Washington Rd. Milwaukee, WI 5327 Phone: (44) 35-5588 FAX: (44) 35-467 Job Project lient Example - 20' Self-Supporting Tower Training Seminar -oncepts, Inc. Page 4 of 4 Date 09:46:9 /5/0 Designed by Dan Horn Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length. Tower Geometry (cont d) Tower Tension Area Factors onnection Offsets Legs Inner Members Diagonals K-racing Single Angle Double Angle Net Width U Net Width U Net Width U Vert. Horiz. Vert. Horiz. Vert. Horiz. Vert. Deduct Deduct Deduct Top Top ot. ot. Top Top ot. in in in in in in in in in in in T 00-80 0.5625 0.75 0 0.75 0.5625 0.75 0 0 0 0 0 0 0 0 T2 80-60 0.5625 0.75 0 0.75 0.5625 0.75 0 0 0 0 0 0 0 0 T3 60-40 0.5625 0.75 0 0.75 0.5625 0.75 0 0 0 0 0 0 0 0 T4 40-20 0.5625 0.75 0 0.75 0.5625 0.75 0 0 0 0 0 0 0 0 T5 20-0 0.5625 0.75 0 0.75 0.5625 0.75 0 0 0 0 0 0 0 0 Horiz. ot. Feed Line/Linear Appurtenances - Non-Structural Description Face omponent Type Placement Total Number Nextel 5/8 aaa (In Face) 00.00-0.00 9 No Ice /2'' Ice '' Ice 2'' Ice 4'' Ice Nextel 5/8 aaa (In Face) 20.00-00.00 9 No Ice /2'' Ice '' Ice 2'' Ice 4'' Ice Feed Line/Linear Appurtenances Areas AA A 2 / 0.7 0.27 0.37 0.57 0.97 0.7 0.27 0.37 0.57 0.97 plf 0.80 2.0 3.40 6.00.20 0.80 2.0 3.40 6.00.20 Tower Tower Face L 20-00 A T 00-80 A T2 80-60 A T3 60-40 A T4 40-20 A T5 20-0 A A R 2 A F 2 AA A In Face 2 30.60 30.60 30.60 30.60 30.60 30.60 AA A Out Face 2 0.00 0.00 44.00 0.00 0.00 44.00 0.00 0.00 44.00 0.00 0.00 44.00 0.00 0.00 44.00 0.00 0.00 44.00

ERITower omputerized Structural Design 8989 N. Port Washington Rd. Milwaukee, WI 5327 Phone: (44) 35-5588 FAX: (44) 35-467 Job Project lient Example - 20' Self-Supporting Tower Training Seminar -oncepts, Inc. Page 5 of 4 Date 09:46:9 /5/0 Designed by Dan Horn Feed Line/Linear Appurtenances Areas - With Ice Tower Tower Face L 20-00 A T 00-80 A T2 80-60 A T3 60-40 A T4 40-20 A T5 20-0 A Ice A R Thickness in 2 0.500 0.500 0.500 0.500 0.500 0.500 A F 2 AA A In Face 2 48.600 48.600 48.600 48.600 48.600 48.600 AA A Out Face 2 0.00 0.00 378.00 0.00 0.00 378.00 0.00 0.00 378.00 0.00 0.00 378.00 0.00 0.00 378.00 0.00 0.00 378.00 Discrete Tower Loads Description Face or Leg Offset Type Offsets: Horz Lateral Vert Azimuth Adjustment Placement deg (9) FV90-2 None 0 20.00 No Ice /2'' Ice '' Ice 2'' Ice 4'' Ice Pirod 3' Low Profile Platform None 0 20.00 No Ice /2'' Ice '' Ice 2'' Ice 4'' Ice AA A Front 2 6.00 6.60 7.20 8.40 0.80 5.30 7.00 8.70 22.0 28.90 AA A Side 2 6.00 6.60 7.20 8.40 0.80 5.30 7.00 8.70 22.0 28.90 30.00 80.00 30.00 230.00 430.00 340.00 2080.00 2820.00 4300.00 7260.00 Tower Pressures - No Ice G H =.49 z K Z q z psf A G 2 F a c e A F 2 A R 2 A leg 2 Leg % AA A In Face 2 AA A Out Face 2 L 20-00 0.00.4 23 7.250 A 5.850 5.833 5.833 49.93 30.60

ERITower omputerized Structural Design 8989 N. Port Washington Rd. Milwaukee, WI 5327 Phone: (44) 35-5588 FAX: (44) 35-467 Job Project lient Example - 20' Self-Supporting Tower Training Seminar -oncepts, Inc. Page 6 of 4 Date 09:46:9 /5/0 Designed by Dan Horn z K Z q z psf A G 2 F a c e T 00-80 90.00.332 22 86.669 A T2 80-60 70.00.24 20 7.503 A T3 60-40 50.00.26 8 48.337 A T4 40-20 30.00 6 78.754 A T5 20-0 0.00 6 209.7 A A F 2 5.850 5.850 7.230 7.230 7.230 8.676 8.676 8.676 0.200 0.200 0.200 3.344 3.344 3.344 4.848 4.848 4.848 A R 2 5.833 5.833 6.673 6.673 6.673 8.34 8.34 8.34 0.009 0.009 0.009 0.843 0.843 0.843.678.678.678 A leg Leg % 2 49.93 49.93 6.673 48.00 48.00 48.00 8.34 49.02 49.02 49.02 0.009 49.53 49.53 49.53 0.843 44.83 44.83 44.83.678 44.02 44.02 44.02 AA A In Face 2 AA A Out Face 2 30.60 30.60 30.60 30.60 30.60 Tower Pressure - With Ice G H =.49 z K Z q z psf A G 2 F a c e L 20-00 0.00.4 7 72.97 A T 00-80 90.00.332 6 88.337 A T2 80-60 70.00.24 5 9.7 A T3 60-40 50.00.26 4 50.005 A T4 40-20 30.00 2 80.422 A T5 20-0 0.00 2 20.838 A A F 2 8.45 8.45 8.45 0.443 0.443 0.443 2.533 2.533 2.533 4.085 4.085 4.085 7.793 7.793 7.793 9.46 9.46 9.46 A R 2 9.67 9.67 9.67 0.009 0.009 0.009.678.678.678 3.346 3.346 3.346 4.80 4.80 4.80 5.04 5.04 5.04 A leg Leg % 2 9.67 52.03 52.03 52.03 0.009 48.94 48.94 48.94.678 48.23 48.23 48.23 3.346 48.65 48.65 48.65 4.80 44.35 44.35 44.35 5.04 43.95 43.95 43.95 AA A In Face 2 AA A Out Face 2 48.600 48.600 48.600 48.600 48.600 48.600 Tower Forces - No Ice - Wind Normal (80) Add Self F a c e L 20-00 44.00 884.63 A e F R R D F D R A E 0.64 0.64 0.64 2.72 2.72 2.72 0.584 0.584 0.584 2 9.255 9.255 9.255 F w trl. Face plf 48.8 74.06

ERITower omputerized Structural Design 8989 N. Port Washington Rd. Milwaukee, WI 5327 Phone: (44) 35-5588 FAX: (44) 35-467 Job Project lient Example - 20' Self-Supporting Tower Training Seminar -oncepts, Inc. Page 7 of 4 Date 09:46:9 /5/0 Designed by Dan Horn Add Self F a c e e F R R D F D R A E 2 T 00-80 44.00 953.38 A 0.6 2.734 0.583.2 0.6 2.734 0.583.2 0.6 2.734 0.583.2 T2 80-60 44.00 376.80 A 0.45 2.79 0.58 3.520 0.45 2.79 0.58 3.520 0.45 2.79 0.58 3.520 T3 60-40 44.00 887.96 A 0.36 2.823 0.579 6.000 0.36 2.823 0.579 6.000 0.36 2.823 0.579 6.000 T4 40-20 44.00 246.98 A 0.35 2.826 0.579 9.626 0.35 2.826 0.579 9.626 0.35 2.826 0.579 9.626 T5 20-0 44.00 2788.04 A 0.27 2.859 0.578 2.600 0.27 2.859 0.578 2.600 0.27 2.859 0.578 2.600 Sum : 864.00 0352.79 OTM 558.50 kip- F w trl. Face plf 529.5 76.48 594.57 79.73 606.00 80.30 620.23 8.0 738.40 86.92 9569.88 Tower Forces - No Ice - Wind 60 (0) Add Self F a c e e F R R D F D R A E 2 L 20-00 44.00 884.63 A 0.64 2.72 0.584 0.8 8.085 0.64 2.72 0.584 0.8 8.085 0.64 2.72 0.584 0.8 8.085 T 00-80 44.00 953.38 A 0.6 2.734 0.583 0.8 9.675 0.6 2.734 0.583 0.8 9.675 0.6 2.734 0.583 0.8 9.675 T2 80-60 44.00 376.80 A 0.45 2.79 0.58 0.8.785 0.45 2.79 0.58 0.8.785 0.45 2.79 0.58 0.8.785 T3 60-40 44.00 887.96 A 0.36 2.823 0.579 0.8 3.960 0.36 2.823 0.579 0.8 3.960 0.36 2.823 0.579 0.8 3.960 T4 40-20 44.00 246.98 A 0.35 2.826 0.579 0.8 6.958 0.35 2.826 0.579 0.8 6.958 0.35 2.826 0.579 0.8 6.958 T5 20-0 44.00 2788.04 A 0.27 2.859 0.578 0.8 8.63 0.27 2.859 0.578 0.8 8.63 0.27 2.859 0.578 0.8 8.63 Sum : 864.00 0352.79 OTM 520.4 kip- F w trl. Face plf 396.65 69.83 430.40 7.52 48.56 74.08 483.94 74.20 478.23 73.9 578.60 78.93 8849.38 Tower Forces - No Ice - Wind 90 Add Self F a c e e F R R D F D R A E 2 F w plf trl. Face

ERITower omputerized Structural Design 8989 N. Port Washington Rd. Milwaukee, WI 5327 Phone: (44) 35-5588 FAX: (44) 35-467 Job Project lient Example - 20' Self-Supporting Tower Training Seminar -oncepts, Inc. Page 8 of 4 Date 09:46:9 /5/0 Designed by Dan Horn Add Self F a c e e F R R D F D R A E 2 L 20-00 44.00 884.63 A 0.64 2.72 0.584 0.85 8.378 0.64 2.72 0.584 0.85 8.378 0.64 2.72 0.584 0.85 8.378 T 00-80 44.00 953.38 A 0.6 2.734 0.583 0.85 0.037 0.6 2.734 0.583 0.85 0.037 0.6 2.734 0.583 0.85 0.037 T2 80-60 44.00 376.80 A 0.45 2.79 0.58 0.85 2.29 0.45 2.79 0.58 0.85 2.29 0.45 2.79 0.58 0.85 2.29 T3 60-40 44.00 887.96 A 0.36 2.823 0.579 0.85 4.470 0.36 2.823 0.579 0.85 4.470 0.36 2.823 0.579 0.85 4.470 T4 40-20 44.00 246.98 A 0.35 2.826 0.579 0.85 7.625 0.35 2.826 0.579 0.85 7.625 0.35 2.826 0.579 0.85 7.625 T5 20-0 44.00 2788.04 A 0.27 2.859 0.578 0.85 9.373 0.27 2.859 0.578 0.85 9.373 0.27 2.859 0.578 0.85 9.373 Sum : 864.00 0352.79 OTM 529.93 kip- F w trl. Face plf 47.78 70.89 455.7 72.76 509.8 75.49 54.45 75.72 53.73 75.69 68.55 80.93 9029.50 Tower Forces - With Ice - Wind Normal (80) Add Self F a c e e F R R D F D R A E 2 L 20-00 378.00 253.83 A 0.242 2.463 0.6 3.948 0.242 2.463 0.6 3.948 0.242 2.463 0.6 3.948 T 00-80 378.00 33.79 A 0.232 2.494 0.597 6.422 0.232 2.494 0.597 6.422 0.232 2.494 0.597 6.422 T2 80-60 378.00 809.30 A 0.203 2.585 0.59 9.435 0.203 2.585 0.59 9.435 0.203 2.585 0.59 9.435 T3 60-40 378.00 2382.06 A 0.83 2.654 0.587 2.920 0.83 2.654 0.587 2.920 0.83 2.654 0.587 2.920 T4 40-20 378.00 3064.90 A 0.77 2.674 0.586 26.02 0.77 2.674 0.586 26.02 0.77 2.674 0.586 26.02 T5 20-0 378.00 3439.5 A 0.62 2.728 0.583 27.905 0.62 2.728 0.583 27.905 0.62 2.728 0.583 27.905 Sum : 2268.00 3263.02 OTM 602.0 kip- F w trl. Face plf 638.58 8.93 670.47 83.52 76.00 85.80 683.79 84.9 657.94 82.90 746.5 87.33 03.30 Tower Forces - With Ice - Wind 60 (0)

ERITower omputerized Structural Design 8989 N. Port Washington Rd. Milwaukee, WI 5327 Phone: (44) 35-5588 FAX: (44) 35-467 Job Project lient Example - 20' Self-Supporting Tower Training Seminar -oncepts, Inc. Page 9 of 4 Date 09:46:9 /5/0 Designed by Dan Horn Add Self F a c e e F R R D F D R A E 2 L 20-00 378.00 253.83 A 0.242 2.463 0.6 0.8 2.258 0.242 2.463 0.6 0.8 2.258 0.242 2.463 0.6 0.8 2.258 T 00-80 378.00 33.79 A 0.232 2.494 0.597 0.8 4.334 0.232 2.494 0.597 0.8 4.334 0.232 2.494 0.597 0.8 4.334 T2 80-60 378.00 809.30 A 0.203 2.585 0.59 0.8 6.928 0.203 2.585 0.59 0.8 6.928 0.203 2.585 0.59 0.8 6.928 T3 60-40 378.00 2382.06 A 0.83 2.654 0.587 0.8 9.03 0.83 2.654 0.587 0.8 9.03 0.83 2.654 0.587 0.8 9.03 T4 40-20 378.00 3064.90 A 0.77 2.674 0.586 0.8 22.544 0.77 2.674 0.586 0.8 22.544 0.77 2.674 0.586 0.8 22.544 T5 20-0 378.00 3439.5 A 0.62 2.728 0.583 0.8 24.076 0.62 2.728 0.583 0.8 24.076 0.62 2.728 0.583 0.8 24.076 Sum : 2268.00 3263.02 OTM 565.08 kip- F w trl. Face plf 556.36 77.82 573.3 78.67 603.49 80.7 565.89 78.29 524.70 76.23 600.24 80.0 9423.99 Tower Forces - With Ice - Wind 90 Add Self F a c e e F R R D F D R A E 2 L 20-00 378.00 253.83 A 0.242 2.463 0.6 0.85 2.68 0.242 2.463 0.6 0.85 2.68 0.242 2.463 0.6 0.85 2.68 T 00-80 378.00 33.79 A 0.232 2.494 0.597 0.85 4.856 0.232 2.494 0.597 0.85 4.856 0.232 2.494 0.597 0.85 4.856 T2 80-60 378.00 809.30 A 0.203 2.585 0.59 0.85 7.555 0.203 2.585 0.59 0.85 7.555 0.203 2.585 0.59 0.85 7.555 T3 60-40 378.00 2382.06 A 0.83 2.654 0.587 0.85 9.807 0.83 2.654 0.587 0.85 9.807 0.83 2.654 0.587 0.85 9.807 T4 40-20 378.00 3064.90 A 0.77 2.674 0.586 0.85 23.433 0.77 2.674 0.586 0.85 23.433 0.77 2.674 0.586 0.85 23.433 T5 20-0 378.00 3439.5 A 0.62 2.728 0.583 0.85 25.033 0.62 2.728 0.583 0.85 25.033 0.62 2.728 0.583 0.85 25.033 Sum : 2268.00 3263.02 OTM 574.33 kip- F w trl. Face plf 576.92 78.85 597.60 79.88 63.62 8.58 595.36 79.77 558.0 77.90 636.8 8.84 9596.3 Discrete Forces - No Ice

ERITower omputerized Structural Design 8989 N. Port Washington Rd. Milwaukee, WI 5327 Phone: (44) 35-5588 FAX: (44) 35-467 Job Project lient Example - 20' Self-Supporting Tower Training Seminar -oncepts, Inc. Page 0 of 4 Date 09:46:9 /5/0 Designed by Dan Horn Add z K z q z psf 2 in 20 270.00 20.00.446 24.49 54.00 469.96 20 340.00 20.00.446 24.49 5.30 46.49 Sum : 60.00 OTM 226.37 886.45 kip- G H AA t z F Discrete Forces - With Ice Add z K z q z psf 2 in 20 720.00 20.00.446 8.49 59.40 0.5000 202.86 20 2080.00 20.00.446 8.49 7.00 0.5000 344.25 Sum : 2800.00 OTM 85.65 547.2 kip- G H AA t z F Force Totals Load ase Sum of Forces Total Sum of Torques Sum of Offset Overturning Moments, M x kip- Sum of Offset Overturning Moments, M z kip- Sum of Wind Overturning Moments kip- kip- Leg 7242.2 racing 30.58 Total Member Self- 0352.79 Wind Normal 456.32 2826.79 0.00 0.00 0.00 784.87 Wind 60 0735.82 2826.79 0.00 0.00 0.00 746.78 Wind 90 095.95 2826.79 0.00 0.00 0.00 756.30 Member Ice 290.23 Wind Normal - Ice 660.4 833.02 0.00 0.00 0.00 787.75 Wind 60 - Ice 097.0 833.02 0.00 0.00 0.00 750.73 Wind 90 - Ice 43.43 833.02 0.00 0.00 0.00 759.99 Load ombinations omb. No. Dead Only 2 Dead+Wind Normal 3 Dead+Wind 60 4 Dead+Wind 90 5 Dead+Ice+Temp 6 Dead+Wind Normal+Ice+Temp 7 Dead+Wind 60+Ice+Temp 8 Dead+Wind 90+Ice+Temp Description Maximum Member Forces

ERITower omputerized Structural Design 8989 N. Port Washington Rd. Milwaukee, WI 5327 Phone: (44) 35-5588 FAX: (44) 35-467 Job Project lient Example - 20' Self-Supporting Tower Training Seminar -oncepts, Inc. Page of 4 Date 09:46:9 /5/0 Designed by Dan Horn No. omponent Type ondition Gov. Load omb. Axial Major Axis Moment kip- Minor Axis Moment kip- L 20-00 Leg Max Tension 3 4473.27-0.0-0.04 Max. ompression 2-6384.50-0.02 0.06 Max. Mx 4 3056.69-0.05-0.0 Max. My 6-533.05-0.02 0.06 Max. Vy 4-666.9 0.00 0.00 Max. Vx 2 667.97 0.00 0.00 Diagonal Max Tension 4 2957.94 0.00 0.00 Max. ompression 4-3250.62 0.00 0.00 Max. Mx 6-48. 0.0 0.00 Max. Vy 6 0.28 0.00 0.00 Horizontal Max Tension 7 38. 0.00 0.00 Max. ompression 6-39.25 0.00 0.00 Max. Vx 8-5.7 0.00 0.00 Top Girt Max Tension 3 768.08 0.00 0.00 Max. ompression 2-769.6 0.00 0.00 Max. Vx 8-5.7 0.00 0.00 ottom Girt Max Tension 4 967.6 0.00 0.00 Max. ompression 2-928.6 0.00 0.00 Max. Vx 8-5.7 0.00 0.00 T 00-80 Leg Max Tension 3 28383.47-0.05-0.00 Max. ompression 2-355.38 0.05-0.00 Max. Mx 6-2998.0 0.06 0.0 Max. My 4-09.27-0.00 0.07 Max. Vy 6-59.45 0.06 0.0 Max. Vx 8 6.03-0.0 0.07 Diagonal Max Tension 8 204.68 0.00 0.00 Max. ompression 8-203.5 0.00 0.00 Max. My 6 087.76-0.00-0.0 Max. Vy 7-0.89 0.00 0.00 Max. Vx 6 6.87 0.00-0.0 T2 80-60 Leg Max Tension 3 4049.6-0.06 0.00 Max. ompression 2-4525.6 0.09 0.00 Max. Mx 6-44922.30 0.09 0.00 Max. My 8-2733.8-0.00 0.08 Max. Vy 6-62.76 0.09 0.00 Max. Vx 8-59.53-0.00 0.07 Diagonal Max Tension 8 400.05 0.00 0.00 Max. ompression 8-405.32 0.00 0.00 Max. My 6 24.82 0.00-0.0 Max. Vy 6 0.43-0.00-0.0 Max. Vx 7-7.47 0.00-0.0 T3 60-40 Leg Max Tension 3 5548.8-0.09 0.00 Max. ompression 6-58867.5 0.3 0.00 Max. Mx 6-58867.5 0.3 0.00 Max. My 8-3633.04 0.00 0.2 Max. Vy 6-76.39 0.3 0.00 Max. Vx 8-7.97-0.00 0. Diagonal Max Tension 8 702.98 0.00 0.00 Max. ompression 8-720.68 0.00 0.00 Max. My 6 503.00 0.00-0.0 Max. Vy 6 0.54-0.00-0.0 Max. Vx 7-0.28 0.00-0.0 T4 40-20 Leg Max Tension 3 6259.20-0.3 0.00 Max. ompression 6-73262.34 0.02 0.00 Max. Mx 6-6239.62 0.3 0.00 Max. My 8-4764.80-0.0 0.4 Max. Vy 6 87.93 0.3-0.00 Max. Vx 8-69.90-0.0 0.4 Diagonal Max Tension 8 939.42 0.00 0.00 Max. ompression 8-955.99 0.00 0.00 Max. My 6 729.06 0.00-0.02

ERITower omputerized Structural Design 8989 N. Port Washington Rd. Milwaukee, WI 5327 Phone: (44) 35-5588 FAX: (44) 35-467 Job Project lient Example - 20' Self-Supporting Tower Training Seminar -oncepts, Inc. Page 2 of 4 Date 09:46:9 /5/0 Designed by Dan Horn No. omponent Type ondition Gov. Load omb. Axial Major Axis Moment kip- Minor Axis Moment kip- Max. Vy 6 0.80-0.00-0.02 Max. Vx 7-6.06 0.00-0.02 T5 20-0 Leg Max Tension 3 7900.4 0.6 0.00 Max. ompression 6-85627.28 0.00-0.00 Max. Mx 6-78336.60 0.42 0.00 Max. My 8-5320.95-0.05 0.45 Max. Vy 6-204.79 0.4 0.00 Max. Vx 8-68.6-0.05 0.45 Diagonal Max Tension 8 2707.52 0.0-0.04 Max. ompression 8-2869.97 0.00 0.00 Max. Mx 6 239.93-0.0-0.05 Max. My 6 240.0 0.0-0.05 Max. Vy 6 2.5-0.0-0.05 Max. Vx 8-23.34 0.0-0.04 Secondary Horiz Max Tension 6 205.3-0.00-0.0 Max. ompression 3-80.20 0.00 0.00 Max. My 8-32.25 0.00-0.02 Max. Vy 7-0.96 0.00 0.00 Max. Vx 8 3.27 0.00-0.02 Maximum Reactions Location ondition Gov. Load omb. Vertical Horizontal, X Horizontal, Z Leg Max. Vert 7 4584.45 2744.9-2427.90 Max. H x 7 4584.45 2744.9-2427.90 Max. H z 4-65004.04-4833.27 232.98 Min. Vert 4-65004.04-4833.27 232.98 Min. H x 8-63506.98-4833.98 2294.63 Min. H z 7 4584.45 2744.9-2427.90 Leg Max. Vert 8 75727.66-5449.94-2650.24 Max. H x 2-37233.84 2334.58 2227.05 Max. H z 2-37233.84 2334.58 2227.05 Min. Vert 2-37233.84 2334.58 2227.05 Min. H x 8 75727.66-5449.94-2650.24 Min. H z 8 75727.66-5449.94-2650.24 Leg A Max. Vert 6 89434.3 0.03 7220.38 Max. H x 6 89434.3 0.03 7220.38 Max. H z 6 89434.3 0.03 7220.38 Min. Vert 3-7474.43 0.0-603.68 Min. H x 8 60.34-859.50 355.6 Min. H z 7-73297.89 0.02-65.36 Tower Mast Reaction Summary Load ombination Torsion kip- Shear Vertical Overturning kip- Dead Only 0.00 0.00 2826.79 0.00 Dead+Wind Normal 0.00 456.32 2826.79 784.87 Dead+Wind 60 0.00 0735.82 2826.79 746.78 Dead+Wind 90 0.00 095.95 2826.79 756.30 Dead+Ice+Temp 0.00 0.00 833.02 0.00 Dead+Wind Normal+Ice+Temp 0.00 660.4 833.02 787.75

ERITower omputerized Structural Design 8989 N. Port Washington Rd. Milwaukee, WI 5327 Phone: (44) 35-5588 FAX: (44) 35-467 Job Project lient Example - 20' Self-Supporting Tower Training Seminar -oncepts, Inc. Page 3 of 4 Date 09:46:9 /5/0 Designed by Dan Horn Load ombination Torsion kip- Shear Vertical Overturning kip- Dead+Wind 60+Ice+Temp 0.00 097.0 833.02 750.73 Dead+Wind 90+Ice+Temp 0.00 43.43 833.02 759.99 Solution Summary Sum of Applied Forces Sum of Reactions Load PX PY PZ PX PY PZ % Error omb. 0.00-2826.79 0.00 0.00 2826.79 0.00 % 2 0.00-2826.79-456.32 0.00 2826.79 456.32 % 3 0.00-2826.79 0735.82 0.00 2826.79-0735.82 % 4 095.95-2826.79 0.00-095.95 2826.79 0.00 % 5 0.00-833.02 0.00 0.00 833.02 0.00 % 6 0.00-833.02-660.4 0.00 833.02 660.4 % 7 0.00-833.02 097.0 0.00 833.02-097.0 % 8 43.43-833.02 0.00-43.43 833.02 0.00 % Maximum Tower Deflections No. Horz. Deflection in Gov. Load omb. Tilt Twist deg deg L 20-00 5.504 2 0.4634 0.0048 T 00-80 3.606 2 0.3964 0 T2 80-60 2.64 2 0.270 0 T3 60-40.78 2 0.787 0 T4 40-20 0.526 6 0.7 0 T5 20-0 0.45 6 0.0523 0 ritical Deflections and Radius of urvature Appurtenance Gov. Load omb. Deflection Tilt Twist Radius of urvature in deg deg 20.00 (9) FV90-2 2 5.504 0.4634 0.0048 Inf 20.00 Pirod 3' Low Profile Platform 2 5.504 0.4634 0.0048 Inf apacity Table No. omponent Type Size ontrolling Element % apacity Pass Fail L 20-00 Leg 3/4 3 4.2 Pass Diagonal 2L /2x /2x3/6x3/8 0 33.5 Pass Horizontal L /2x /2x3/6 32 2.6 Pass Top Girt L /2x /2x3/6 6 4.3 Pass ottom Girt L /2x /2x3/6 9 7.3 Pass T 00-80 Leg 2 39 48.3 Pass Diagonal L /2x /2x3/6 4 9.8 Pass T2 80-60 Leg 2 /2 72 35.2 Pass

ERITower omputerized Structural Design 8989 N. Port Washington Rd. Milwaukee, WI 5327 Phone: (44) 35-5588 FAX: (44) 35-467 Job Project lient Example - 20' Self-Supporting Tower Training Seminar -oncepts, Inc. Page 4 of 4 Date 09:46:9 /5/0 Designed by Dan Horn No. omponent Type Size ontrolling Element % apacity Pass Fail Diagonal L /2x /2x3/6 74 32.5 Pass T3 60-40 Leg 3 05 32.9 Pass Diagonal L 3/4x 3/4x3/6 07 37.8 Pass T4 40-20 Leg 3 /4 32 32.8 Pass Diagonal L2x2x/4 34 28.3 Pass T5 20-0 Leg 3 /2 59 32.3 Pass Diagonal L2 /2x2 /2x/4 6 4.0 Pass Secondary Horiz L 3/4x 3/4x3/6 68 4.9 Pass Summary Latticed Pole 4.2 Pass Leg Latticed Pole 33.5 Pass Diagonal Latticed Pole 2.6 Pass Horizontal Latticed Pole 4.3 Pass Top Girt Latticed Pole 7.3 Pass ottom Girt Leg 48.3 Pass Diagonal 4.0 Pass Secondary 4.9 Pass Horiz RATING = 48.3 Pass Program Version.0.72.0 - /3/200 File:H:/Engineer Stuff/DGH/SpectraSite/Handalcs/Falcon20.eri