Journal of Inequalities in Pure and Applied Mathematics

Similar documents
Journal of Inequalities in Pure and Applied Mathematics

New Integral Inequalities for n-time Differentiable Functions with Applications for pdfs

Journal of Inequalities in Pure and Applied Mathematics

SOME INEQUALITIES FOR THE DISPERSION OF A RANDOM VARIABLE WHOSE PDF IS DEFINED ON A FINITE INTERVAL

Keywords : Generalized Ostrowski s inequality, generalized midpoint inequality, Taylor s formula.

AN INEQUALITY OF OSTROWSKI TYPE AND ITS APPLICATIONS FOR SIMPSON S RULE AND SPECIAL MEANS. I. Fedotov and S. S. Dragomir

ON PERTURBED TRAPEZOIDAL AND MIDPOINT RULES. f (t) dt

ON THE WEIGHTED OSTROWSKI INEQUALITY

TRAPEZOIDAL TYPE INEQUALITIES FOR n TIME DIFFERENTIABLE FUNCTIONS

ON THE INEQUALITY OF THE DIFFERENCE OF TWO INTEGRAL MEANS AND APPLICATIONS FOR PDFs

A unified generalization of perturbed mid-point and trapezoid inequalities and asymptotic expressions for its error term

GENERALIZATIONS OF WEIGHTED TRAPEZOIDAL INEQUALITY FOR MONOTONIC MAPPINGS AND ITS APPLICATIONS. (b a)3 [f(a) + f(b)] f x (a,b)

AN INTEGRAL INEQUALITY FOR CONVEX FUNCTIONS AND APPLICATIONS IN NUMERICAL INTEGRATION

Journal of Inequalities in Pure and Applied Mathematics

SOME INTEGRAL INEQUALITIES OF GRÜSS TYPE

Journal of Inequalities in Pure and Applied Mathematics

NEW INEQUALITIES OF SIMPSON S TYPE FOR s CONVEX FUNCTIONS WITH APPLICATIONS. := f (4) (x) <. The following inequality. 2 b a

A Generalized Inequality of Ostrowski Type for Twice Differentiable Bounded Mappings and Applications

Some estimates on the Hermite-Hadamard inequality through quasi-convex functions

RGMIA Research Report Collection, Vol. 1, No. 1, SOME OSTROWSKI TYPE INEQUALITIES FOR N-TIME DIFFERENTIA

S. S. Dragomir. 1. Introduction. In [1], Guessab and Schmeisser have proved among others, the following companion of Ostrowski s inequality:

ON AN INTEGRATION-BY-PARTS FORMULA FOR MEASURES

Improvements of some Integral Inequalities of H. Gauchman involving Taylor s Remainder

0 N. S. BARNETT AND S. S. DRAGOMIR Using Gruss' integrl inequlity, the following pertured trpezoid inequlity in terms of the upper nd lower ounds of t

f (a) + f (b) f (λx + (1 λ)y) max {f (x),f (y)}, x, y [a, b]. (1.1)

S. S. Dragomir. 2, we have the inequality. b a

Improvement of Ostrowski Integral Type Inequalities with Application

A Companion of Ostrowski Type Integral Inequality Using a 5-Step Kernel with Some Applications

Research Article On New Inequalities via Riemann-Liouville Fractional Integration

Journal of Inequalities in Pure and Applied Mathematics

An optimal 3-point quadrature formula of closed type and error bounds

New Integral Inequalities of the Type of Hermite-Hadamard Through Quasi Convexity

Revista Colombiana de Matemáticas Volumen 41 (2007), páginas 1 13

New general integral inequalities for quasiconvex functions

Communications inmathematicalanalysis Volume 6, Number 2, pp (2009) ISSN

Parametrized inequality of Hermite Hadamard type for functions whose third derivative absolute values are quasi convex

The Hadamard s inequality for quasi-convex functions via fractional integrals

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction

Ostrowski Grüss Čebyšev type inequalities for functions whose modulus of second derivatives are convex 1

INEQUALITIES FOR TWO SPECIFIC CLASSES OF FUNCTIONS USING CHEBYSHEV FUNCTIONAL. Mohammad Masjed-Jamei

Research Article On The Hadamard s Inequality for Log-Convex Functions on the Coordinates

Hermite-Hadamard type inequalities for harmonically convex functions

WENJUN LIU AND QUÔ C ANH NGÔ

Improvement of Grüss and Ostrowski Type Inequalities

DIFFERENCE BETWEEN TWO RIEMANN-STIELTJES INTEGRAL MEANS

Bulletin of the. Iranian Mathematical Society

ON COMPANION OF OSTROWSKI INEQUALITY FOR MAPPINGS WHOSE FIRST DERIVATIVES ABSOLUTE VALUE ARE CONVEX WITH APPLICATIONS

Hermite-Hadamard Type Inequalities for the Functions whose Second Derivatives in Absolute Value are Convex and Concave

WEIGHTED INTEGRAL INEQUALITIES OF OSTROWSKI, 1 (b a) 2. f(t)g(t)dt. provided that there exists the real numbers m; M; n; N such that

arxiv: v1 [math.ca] 28 Jan 2013

On the Generalized Weighted Quasi-Arithmetic Integral Mean 1

Some inequalities of Hermite-Hadamard type for n times differentiable (ρ, m) geometrically convex functions

INEQUALITIES FOR GENERALIZED WEIGHTED MEAN VALUES OF CONVEX FUNCTION

INEQUALITIES FOR BETA AND GAMMA FUNCTIONS VIA SOME CLASSICAL AND NEW INTEGRAL INEQUALITIES

NEW HERMITE HADAMARD INEQUALITIES VIA FRACTIONAL INTEGRALS, WHOSE ABSOLUTE VALUES OF SECOND DERIVATIVES IS P CONVEX

Advanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004

WHEN IS A FUNCTION NOT FLAT? 1. Introduction. {e 1 0, x = 0. f(x) =

A Note on Feng Qi Type Integral Inequalities

arxiv: v1 [math.ca] 11 Jul 2011

Math 554 Integration

LOGARITHMIC INEQUALITIES FOR TWO POSITIVE NUMBERS VIA TAYLOR S EXPANSION WITH INTEGRAL REMAINDER

A basic logarithmic inequality, and the logarithmic mean

An inequality related to η-convex functions (II)

Some new integral inequalities for n-times differentiable convex and concave functions

New Expansion and Infinite Series

Euler-Maclaurin Summation Formula 1

Exam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH-1105 Instructor: Attila Máté 1

Integral inequalities for n times differentiable mappings

Some Hermite-Hadamard type inequalities for functions whose exponentials are convex

ODE: Existence and Uniqueness of a Solution

RIEMANN-LIOUVILLE AND CAPUTO FRACTIONAL APPROXIMATION OF CSISZAR S f DIVERGENCE

GENERALIZED ABSTRACTED MEAN VALUES

Journal of Inequalities in Pure and Applied Mathematics

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1

Euler, Ioachimescu and the trapezium rule. G.J.O. Jameson (Math. Gazette 96 (2012), )

ON SOME NEW FRACTIONAL INTEGRAL INEQUALITIES

Bounds for the Riemann Stieltjes integral via s-convex integrand or integrator

Popoviciu type inequalities for n convex functions via extension of Montgomery identity

The Riemann Integral

Research Article On Hermite-Hadamard Type Inequalities for Functions Whose Second Derivatives Absolute Values Are s-convex

ON A CONVEXITY PROPERTY. 1. Introduction Most general class of convex functions is defined by the inequality

Properties of the Riemann Integral

Generalized Hermite-Hadamard-Fejer type inequalities for GA-convex functions via Fractional integral

On some refinements of companions of Fejér s inequality via superquadratic functions

Convex Sets and Functions

ON CLOSED CONVEX HULLS AND THEIR EXTREME POINTS. S. K. Lee and S. M. Khairnar

f(x)dx . Show that there 1, 0 < x 1 does not exist a differentiable function g : [ 1, 1] R such that g (x) = f(x) for all

Chapter 6. Riemann Integral

The logarithmic mean is a mean

Lecture 3 ( ) (translated and slightly adapted from lecture notes by Martin Klazar)

arxiv: v1 [math.ca] 7 Mar 2012

Hadamard-Type Inequalities for s Convex Functions I

The Hadamard s Inequality for s-convex Function

Convergence of Fourier Series and Fejer s Theorem. Lee Ricketson

ASYMPTOTIC BEHAVIOR OF INTERMEDIATE POINTS IN CERTAIN MEAN VALUE THEOREMS. II

Math& 152 Section Integration by Parts

A PROOF OF THE FUNDAMENTAL THEOREM OF CALCULUS USING HAUSDORFF MEASURES

The final exam will take place on Friday May 11th from 8am 11am in Evans room 60.

LYAPUNOV-TYPE INEQUALITIES FOR NONLINEAR SYSTEMS INVOLVING THE (p 1, p 2,..., p n )-LAPLACIAN

Integration Techniques

Transcription:

Journl of Inequlities in Pure nd Applied Mthemtics GENERALIZATIONS OF THE TRAPEZOID INEQUALITIES BASED ON A NEW MEAN VALUE THEOREM FOR THE REMAINDER IN TAYLOR S FORMULA volume 7, issue 3, rticle 90, 006. A.I. KECHRINIOTIS AND N.D. ASSIMAKIS Deprtment of Electronics Technologicl Eductionl Institute of Lmi Greece. EMil: kechrin@teilm.gr Deprtment of Electronics Technologicl Eductionl Institute of Lmi Greece. nd Deprtment of Informtics with Applictions to Biomedicine University of Centrl Greece Greece EMil: ssimkis@teilm.gr Received 01 April, 005; ccepted 10 My, 006. Communicted by: P. Cerone Abstrct Home Pge Go Bck c 000 Victori University ISSN electronic): 1443-5756 101-05

Abstrct Generliztions of the clssicl nd perturbed trpezoid inequlities re developed using new men vlue theorem for the reminder in Tylor s formul. The resulting inequlities for N-times differentible mppings re shrp. 000 Mthemtics Subject Clssifiction: 6D15. Key words: Clssicl trpezoid inequlity, Perturbed trpezoid inequlity, Men vlue theorem, Generliztions. We thnk Prof. P. Cerone for his constructive nd helpful suggestions. 1 Introduction......................................... 3 Men Vlue Theorem................................. 5 3 Generl Integrl Inequlities........................... 9 4 Generlized Clssicl Trpezoid Inequlities.............. 14 5 Generlized Perturbed Trpezoid Inequlities............. References Generliztions of the Trpezoid Inequlities Bsed on New Men Vlue Theorem for the Reminder in Tylor s Formul A.I. Kechriniotis nd N.D. Assimkis Title Pge Go Bck Pge of 7 J. Ineq. Pure nd Appl. Mth. 73) Art. 90, 006

1. Introduction In the literture on numericl integrtion, see for exmple [1], [13], the following estimtion is well known s the trpezoid inequlity: f b) + f ) 1 f x) dx b ) b sup f x), 1 x,b) where the mpping f : [, b] R is twice differentible on the intervl, b), with the second derivtive bounded on, b). In [3] N. Brnett nd S. Drgomir proved n inequlity for n time differentible functions which for n = 1 tkes the following form: f ) + f b) 1 b f x) dx b Γ γ), 8 where f : [, b] R is n bsolutely continuous mpping on [, b] such tht < γ f x) Γ <, x, b). In [15] N. Ujević reproved the bove result vi generliztion of Ostrowski s inequlity. For more results on the trpezoid inequlity nd their pplictions we refer to [4], [9], [11], [1]. In [10] S. Drgomir et l. obtined the following perturbed trpezoid inequlity involving the Grüss inequlity: 1 b f x) dx f b) + f ) + f b) f )) b ) 1 1 3 Γ γ ) b ), Generliztions of the Trpezoid Inequlities Bsed on New Men Vlue Theorem for the Reminder in Tylor s Formul A.I. Kechriniotis nd N.D. Assimkis Title Pge Go Bck Pge 3 of 7 J. Ineq. Pure nd Appl. Mth. 73) Art. 90, 006

where f is twice differentible on the intervl, b), with the second derivtive bounded on, b), nd γ := inf x,b) f x), Γ =: sup x,b) f x). In [6] P. Cerone nd S. Drgomir improved the bove inequlity replcing the constnt 1 by 1 3 4 nd in [8] X. Cheng nd J. Sun replced the constnt 1 5 4 by 1 5 36. 3 For more results concerning the perturbed trpezoid inequlity we refer to the ppers of N. Brnett nd S. Drgomir [1], [], s well s, to the pper of N. Ujević [14]. In [5] P. Cerone nd S. Drgomir obtined some generl three-point integrl inequlities for n times differentible functions, involving two functions α, β : [, b] [, b] such tht α x) x nd β x) x for ll x [, b]. As specil cses for α x) := x, β x) := x) trpezoid type inequlities for n times differentible functions result. For more trpezoid-type inequlities involving n times differentible functions we refer to [6], [7], [16]. In this pper we stte men vlue Theorem for the reminder in Tylor s formul. We then develop shrp generl integrl inequlity for n times differentible mppings involving rel prmeter. Three generliztions of the clssicl trpezoid inequlity nd two generliztions of the perturbed trpezoid inequlity re obtined. The resulting inequlities for n times differentible mppings re shrp. Generliztions of the Trpezoid Inequlities Bsed on New Men Vlue Theorem for the Reminder in Tylor s Formul A.I. Kechriniotis nd N.D. Assimkis Title Pge Go Bck Pge 4 of 7 J. Ineq. Pure nd Appl. Mth. 73) Art. 90, 006

. Men Vlue Theorem For convenience we set R n f;, b) := f b) n b ) i f i) ). i! We prove the following men vlue Theorem for the reminder in Tylor s formul: Theorem.1. Let f, g C n [, b] such tht f n+1), g n+1) re integrble nd bounded on, b). Assume tht g n+1) x) > 0 for ll x, b). Then for ny t [, b] nd ny positive vlued mppings α, β : [, b] R, the following estimtion holds:.1) m α t) R n f; t, b) + 1) n+1 β t) R n f; t, ) α t) R n g; t, b) + 1) n+1 β t) R n g; t, ) M, i=0 f where m := inf n+1) x) x,b), M := sup f n+1) x) g n+1) x) x,b). g n+1) x) Proof. Since g n+1), α, β re positive vlued functions on, b), we clerly hve tht for ll t [, b] the following inequlity holds: α t) t b x) n g n+1) x) dx + β t) t x ) n g n+1) x) dx > 0, which, by using the Tylor s formul with n integrl reminder, cn be rewritten in the following form:.) α t) R n g; t, b) + 1) n+1 β t) R n g; t, ) > 0. Generliztions of the Trpezoid Inequlities Bsed on New Men Vlue Theorem for the Reminder in Tylor s Formul A.I. Kechriniotis nd N.D. Assimkis Title Pge Go Bck Pge 5 of 7 J. Ineq. Pure nd Appl. Mth. 73) Art. 90, 006

Moreover, we hve ) f α t) b x) n g n+1) n+1) x) x) t g n+1) x) m dx t ) f + β t) x ) n g n+1) n+1) x) x) g n+1) x) m 0, or equivlently.3) α t) t b x) n f n+1) x) dx + 1) n+1 β t) x) n f n+1) x) dx t m α t) b x) n g n+1) x) dx t ) + 1) n+1 β t) x) n g n+1) x) dx. Using the Tylor s formul with n integrl reminder,.3) cn be rewritten in the following form:.4) α t) R n f; t, b) + 1) n+1 β t) R n f; t, ) Dividing.4) by.) we get t m α t) R n g; t, b) + 1) n+1 β t) R n g; t, ) )..5) m α t) R n f; t, b) + 1) n+1 β t) R n f; t, ) α t) R n g; t, b) + 1) n+1 β t) R n g; t, ). Generliztions of the Trpezoid Inequlities Bsed on New Men Vlue Theorem for the Reminder in Tylor s Formul A.I. Kechriniotis nd N.D. Assimkis Title Pge Go Bck Pge 6 of 7 J. Ineq. Pure nd Appl. Mth. 73) Art. 90, 006

On the other hnd, we hve α t) or equivlently t b x) n g n+1) x) M f n+1) x) g n+1) x) + β t) t ) dx x ) n g n+1) x) M f ) n+1) x) 0. g n+1) x).6) α t) R n f; t, b) + 1) n+1 β t) R n f; t, ) Dividing.6) by.) we get.7) M α t) R n g; t, b) + 1) n+1 β t) R n g; t, ) ). α t) R n f; t, b) + 1) n+1 β t) R n f; t, ) α t) R n g; t, b) + 1) n+1 β t) R n g; t, ) M. Combining.5) with.7) we get.1). Theorem.. Let f, g C n [, b] such tht f n+1), g n+1) re integrble nd bounded on, b). Assume tht g n+1) x) > 0 for ll x, b). Then for ny t [, b] nd ny integrble nd positive vluted mppings α, β : [, b] R +, the following estimtion holds: α t) Rn f; t, b) + 1) n+1 β t) R n f; t, ) ) dt.8) m where m, M re s in Theorem.1. α t) Rn g; t, b) + 1) n+1 β t) R n g; t, ) ) dt M, Generliztions of the Trpezoid Inequlities Bsed on New Men Vlue Theorem for the Reminder in Tylor s Formul A.I. Kechriniotis nd N.D. Assimkis Title Pge Go Bck Pge 7 of 7 J. Ineq. Pure nd Appl. Mth. 73) Art. 90, 006

Proof. Integrting.),.4),.6) in Theorem.1 over [, b] we get.9) α t) Rn g; t, b) + 1) n+1 β t) R n g; t, ) ) dt > 0, nd.10) m α t) Rn g; t, b) + 1) n+1 β t) R n g; t, ) ) dt M α t) Rn f; t, b) + 1) n+1 β t) R n f; t, ) ) dt α t) Rn g; t, b) + 1) n+1 β t) R n g; t, ) ) dt. Generliztions of the Trpezoid Inequlities Bsed on New Men Vlue Theorem for the Reminder in Tylor s Formul A.I. Kechriniotis nd N.D. Assimkis Dividing.10) by.9) we get.8). Title Pge Go Bck Pge 8 of 7 J. Ineq. Pure nd Appl. Mth. 73) Art. 90, 006

3. Generl Integrl Inequlities For convenience we denote γ n f) := inf f n) x), x,b) Γ n f) := sup f n) x). x,b) For our purpose we shll use Theorems.1 nd., s well s, n identity: Lemm 3.1. Let f : [, b] R be mpping such tht f n) is integrble on [, b]. Then for ny positive number ρ the following identity holds: 3.1) 1 b ) ρrn f; x, b) + 1) n+1 R n f; x, ) ) dx = n + 1) ρ + 1) n+1) f x) dx + ρf b) + 1) n+1 f ) b n 1 + n k) 1)n+k+1 f k) b) + ρf k) ) b ) k+1. k + 1)! k=0 Proof. Using the nlyticl form of the reminder in Tylor s formul we hve 3.) 1 b ) ρrn f; x, b) + 1) n+1 R n f; x, ) ) dx = ρf b) + 1) n+1 f ) 1 n b ) k=0 ρ b x) k + 1) n+1 x) k f k) x) dx k! Generliztions of the Trpezoid Inequlities Bsed on New Men Vlue Theorem for the Reminder in Tylor s Formul A.I. Kechriniotis nd N.D. Assimkis Title Pge Go Bck Pge 9 of 7 J. Ineq. Pure nd Appl. Mth. 73) Art. 90, 006

where I k := = ρf b) + 1) n+1 f ) 1 b ) n I k, k=0 ρ b x) k + 1) n+1 x) k f k) x) dx, k = 0, 1,..., n). k! For k 1, using integrtion by prts we obtin 3.3) I k I k 1 = 1)n+k f k 1) b) + ρf k 1) ) k! b ) k. Further, the following identity holds: n n 3.4) I k = n + 1) I 0 + n + 1 k) I k I k 1 ). k=0 k=1 Combining 3.) with 3.4) nd 3.3) we get 3.5) 1 b ) ρrn f; x, b) + 1) n+1 R n f; x, ) ) dt = ρf b) + 1) n+1 f ) n + 1) ρ + 1) n+1) + n k=1 b n + 1 k) 1)n+k f k 1) b) + ρf k 1) ) k! Replcing k by k + 1 in 3.5), we get 3.1). f x) dx b ) k. Generliztions of the Trpezoid Inequlities Bsed on New Men Vlue Theorem for the Reminder in Tylor s Formul A.I. Kechriniotis nd N.D. Assimkis Title Pge Go Bck Pge 10 of 7 J. Ineq. Pure nd Appl. Mth. 73) Art. 90, 006

Theorem 3.. Let f C n [, b] such tht f n+1) is integrble nd bounded on, b). Then for ny positive number ρ the following estimtion holds: 3.6) 1 + ρ) b ) n+1 n + )! n + 1) γ n+1 f) ρ + 1)n+1 b ) + n 1 k=0 f x) dx + ρf b) + 1)n+1 f ) n + 1) n k) 1) n+k+1 f k) b) + ρf k) ) b ) k n + 1) k + 1)! 1 + ρ) b )n+1 n + )! n + 1) Γ n+1 f), The inequlities in 3.6) re shrp. Proof. Choosing g x) = x n+1, α x) = ρ, β x) = 1 in.1) in Theorem.1, nd then using the identity R n g;, x) = x ) n+1 we get 3.7) ρ b t) n+1 + 1) n+1 t) n+1 γ n+1 f) n + 1)! ρr n f; t, b) + 1) n+1 R n f; t, ) ρ b t)n+1 + 1) n+1 t) n+1 Γ n+1 f), n + 1)! Generliztions of the Trpezoid Inequlities Bsed on New Men Vlue Theorem for the Reminder in Tylor s Formul A.I. Kechriniotis nd N.D. Assimkis Title Pge Go Bck Pge 11 of 7 J. Ineq. Pure nd Appl. Mth. 73) Art. 90, 006

for ll t [, b]. Integrting 3.7) with respect to t from to b we hve 3.8) 1 + ρ) b )n+1 γ n+1 f) n + )! 1 b ρrn f; t, b) + 1) n+1 R n f; t, ) ) dt 1 + ρ) b )n+1 Γ n+1 f). n + )! Setting 3.1) Lemm 3.1) in 3.8) nd dividing the resulting estimtion by n + 1), we get 3.6). Moreover, choosing f x) = x n+1 in 3.6), the equlity holds. Therefore the inequlities in 3.6) re shrp. Remrk 1. Applying Theorem 3. for n = 1 we get immeditely the clssicl trpezoid inequlity: 3.9) b ) γ f) 1 f b) + f ) b ) Γ f), 1 1 b f x) dx where f : [, b] R is continuously differentible on [, b] nd twice differentible on, b), with the second derivtive f integrble nd bounded on, b). Generliztions of the Trpezoid Inequlities Bsed on New Men Vlue Theorem for the Reminder in Tylor s Formul A.I. Kechriniotis nd N.D. Assimkis Title Pge Go Bck Pge 1 of 7 J. Ineq. Pure nd Appl. Mth. 73) Art. 90, 006

Remrk. Theorem 3. for n = becomes the following form: 1 + ρ) b ) 3 7 γ 3 f) 1 ρ b ) f x) dx + + f b) + ρf ) b ) 6 1 + ρ) b )3 Γ 3 f), 7 ρ 1) f ) ρ) f b) 3 where ρ R +, f C [, b] nd such tht f is bounded nd integrble on, b). Theorem 3.3. Let f, g be two mppings s in Theorem.. Then for ny ρ R + the following estimtion holds: 3.10) m I n f; ρ,, b) I n g; ρ,, b) M, f where m := inf n+1) x) x,b), M := sup f n+1) x) g n+1) x) x,b), nd g n+1) x) I n f; ρ,, b) := ρ + 1)n+1 b ) + n 1 k=0 f x) dx + ρf b) + 1)n+1 f ) n + 1) n k) 1) n+k+1 f k) b) + ρf k) ) b ) k. n + 1) k + 1)! Proof. Setting α x) = ρ, β x) = 1 in.1) of Theorem.1, nd using the identity 3.1) in Lemm 3.1 we get 3.9). Generliztions of the Trpezoid Inequlities Bsed on New Men Vlue Theorem for the Reminder in Tylor s Formul A.I. Kechriniotis nd N.D. Assimkis Title Pge Go Bck Pge 13 of 7 J. Ineq. Pure nd Appl. Mth. 73) Art. 90, 006

4. Generlized Clssicl Trpezoid Inequlities Using the inequlity 3.6) in Theorem 3. we obtin two generliztions of the clssicl trpezoid inequlity, which will be used in the lst section. Moreover, combining both generliztions we obtin third generliztion of the clssicl trpezoid inequlity. Theorem 4.1. Let f C n [, b] such tht f n+1) is integrble nd bounded on, b). Suppose n is odd. Then the following estimtion holds: 4.1) 1 n + )! n + 1) b )n+1 γ n+1 f) 1 b + n 1 k=1 n k) n + 1) The inequlities in 4.1) re shrp. f b) + f ) f x) dx + ) b ) k f k) ) + 1) k f k) b) k + 1)! 1 n + )! n + 1) b )n+1 Γ n+1 f). Proof. From 3.6) in Theorem 3. by ρ = 1, obviously we get 4.1). Theorem 4.. Let f C n [, b] such tht f n+1) is integrble nd bounded on Generliztions of the Trpezoid Inequlities Bsed on New Men Vlue Theorem for the Reminder in Tylor s Formul A.I. Kechriniotis nd N.D. Assimkis Title Pge Go Bck Pge 14 of 7 J. Ineq. Pure nd Appl. Mth. 73) Art. 90, 006

, b). Suppose n is odd. Then we hve 4.) b ) n+1 n n + 3)! γ n+1 f) 1 b + n 1 k=0 f x) dx n k) n b )n+1 n n + 3)! Γ n+1 f). The inequlities in 4.) re shrp. ) 1) k f k) b) + f k) ) b ) k k + )! Proof. Let m := n + 1. Then m is n even integer. Consider the mpping F : [, b] R, defined vi F x) := x f t) dt. Then we clerly hve tht F C m [, b] nd F m+1) is integrble nd bounded on, b). Now, pplying inequlity 3.6) in Theorem 3. to F by choosing ρ = 1, we redily get b ) m+1 m + )! m + 1) γ m+1 F ) m 1) F b) F )) m + 1) + m 1 k=1 m k) 1) k+1 F k) b) + F k) ) b ) k m + 1) k + 1)! Generliztions of the Trpezoid Inequlities Bsed on New Men Vlue Theorem for the Reminder in Tylor s Formul A.I. Kechriniotis nd N.D. Assimkis Title Pge Go Bck Pge 15 of 7 J. Ineq. Pure nd Appl. Mth. 73) Art. 90, 006

b )m+1 m + )! m + 1) Γ m+1 F ), or equivlently, b ) m+1 m + )! m 1) γ m f) m 1 m + 1 + m 1 k=1 f x) dx m k) m + 1 b )m+1 m + )! m + 1) Γ m f). 1) k+1 f k 1) b) + f k 1) ) m+1 Multiplying the previous inequlity by we hve b ) n+1 n + 3)!n γ n+1 f) 1 b + n k=1 f x) dx n + 1 k) n m 1)b ) k + 1)! ) b ) k, nd then using m = n + 1 ) 1) k+1 f k 1) b) + f k 1) ) b ) k 1 k + 1)! Generliztions of the Trpezoid Inequlities Bsed on New Men Vlue Theorem for the Reminder in Tylor s Formul A.I. Kechriniotis nd N.D. Assimkis Title Pge Go Bck Pge 16 of 7 J. Ineq. Pure nd Appl. Mth. 73) Art. 90, 006

b )n+1 n + 3)!n Γ n+1 f), nd replcing k by k + 1we get 4.). Moreover, choosing f x) = x n+1 in 4.), the equlity holds. So, the inequlities in 4.) re shrp. Remrk 3. Applying Theorem 4. for n = 1 we gin obtin the clssicl trpezoid inequlity 3.9) in Remrk 1. 1 Remrk 4. A simple clcultion yields < for ny n > 1. nn+3)! n+)!n+1) Thus inequlity 4.) in Theorem 4. is better thn 4.1) in Theorem 4.1. Nevertheless inequlity 4.1) is useful, becuse suitble combintions of 4.1), 4.) led to some interesting results, s for exmple in the following theorem. Theorem 4.3. Let n be n odd integer such tht n 3. Let f C n [, b] such tht f n 1) is integrble nd bounded on, b). Then the following inequlities hold 4.3) 1 b ) n n + 3)! n ) n 1) n + 1) γ n 1 f) n n + 3) Γ n 1 f)) 1n n + 1) f x) dx n ) n 1) n k ) n 3 k=0 1) k f k) b) + f k) ) n k + ) n n + 1) ) b ) k+1 k + 4)! 1 b ) n n + 3)! n ) n 1) n + 1) Γ n 1 f) n n + 3) γ n 1 f)). Generliztions of the Trpezoid Inequlities Bsed on New Men Vlue Theorem for the Reminder in Tylor s Formul A.I. Kechriniotis nd N.D. Assimkis Title Pge Go Bck Pge 17 of 7 J. Ineq. Pure nd Appl. Mth. 73) Art. 90, 006

The inequlities in 4.3) re shrp. Proof. We set the mpping F : [, b] R by 4.4) F x) := x t f s) dsdt. Then we hve tht F C n [, b] nd F n+1) is bounded nd integrble on, b). Applying the inequlities 4.) in Theorem 4. nd 4.1) in Theorem 4.1 to F we respectively get the following inequlities: 4.5) nd 4.6) b ) n+1 n + 3)!n γ n+1 F ) 1 b + n 1 k=1 F x) dx + n k) n b )n+1 n + 3)!n Γ n+1 F ), b ) n+1 n + )! n + 1) γ n+1 F ) 1 b F ) + F b) 1) k F k) b) + F k) ) F x) dx + k + )! F b) + F ) ) b ) k Generliztions of the Trpezoid Inequlities Bsed on New Men Vlue Theorem for the Reminder in Tylor s Formul A.I. Kechriniotis nd N.D. Assimkis Title Pge Go Bck Pge 18 of 7 J. Ineq. Pure nd Appl. Mth. 73) Art. 90, 006

+ n 1 k=1 n k) n + 1) b )n+1 n + )! n + 1) Γ n+1 F ). ) b ) k F k) ) + 1) k F k) b) k + 1)! Multiplying 4.6) by 1) nd dding the resulting estimtion with 4.5), we get b ) n+1 n + )! n n + 3) γ n+1 F ) 1 ) 4.7) n + 1 Γ n+1 F ) ) n 1 nk n k) 1) k F k) b) + F k) ) b ) k 1 n n + 1) k + )! k=1 b )n+1 n + )! n n + 3) Γ n+1 F ) 1 ) n + 1 γ n+1 F ). Dividing the lst estimtion with b ) nd splitting the first term of the sum we hve b ) n n + )! n n + 3) γ n+1 F ) 1 ) 4.8) n + 1 Γ n+1 F ) n ) n 1) F b) F )) n 1 k= 1n n + 1) nk n k) n n + 1) ) 1) k F k) b) + F k) ) b ) k 1 k + )! Generliztions of the Trpezoid Inequlities Bsed on New Men Vlue Theorem for the Reminder in Tylor s Formul A.I. Kechriniotis nd N.D. Assimkis Title Pge Go Bck Pge 19 of 7 J. Ineq. Pure nd Appl. Mth. 73) Art. 90, 006

b )n n + )! n n + 3) Γ n+1 F ) 1 ) n + 1 γ n+1 F ). Finlly, setting 4.4) in 4.7) nd multiplying the resulting estimtion by 1nn+1) n )n 1) we get 1 b ) n n + 3)! n ) n 1) n + 1) γ n 1 f) n n + 3) Γ n 1 f)) 1n n + 1) f x) dx n ) n 1) n 1 k= nk n k) n n + 1) 1) k f k ) b) + f k ) ) k + )! ) b ) k 1 1 b ) n n + 3)! n ) n 1) n + 1) Γ n 1 f) n n + 3) γ n 1 f)), nd replcing k by k + the inequlities in 4.3) re obtined. Moreover, choosing f x) = x n 1 in 4.3), the equlity holds. So, the inequlities in 4.3) re shrp. Applying Theorem 4.3 for n = 3 we immeditely obtin the following result: Corollry 4.4. Let f C 1 [, b] such tht f is integrble nd bounded on Generliztions of the Trpezoid Inequlities Bsed on New Men Vlue Theorem for the Reminder in Tylor s Formul A.I. Kechriniotis nd N.D. Assimkis Title Pge Go Bck Pge 0 of 7 J. Ineq. Pure nd Appl. Mth. 73) Art. 90, 006

, b). Then, 4.9) b ) 60 4γ f) 9Γ f)) 1 b b ) 60 f x) dx f ) + f b) 4Γ f) 9γ f)). Remrk 5. Let f be s in Corollry 4.4. If γ f) > 4 9 Γ f) then from 4.8) we get the following inequlity: 1 b f x) dx < f ) + f b). Generliztions of the Trpezoid Inequlities Bsed on New Men Vlue Theorem for the Reminder in Tylor s Formul A.I. Kechriniotis nd N.D. Assimkis Title Pge Go Bck Pge 1 of 7 J. Ineq. Pure nd Appl. Mth. 73) Art. 90, 006

5. Generlized Perturbed Trpezoid Inequlities In this section, using the results of the two previous sections, severl perturbed trpezoid inequlities re obtined involving n times differentible functions. Theorem 5.1. Let f C n [, b] such tht f n+1) is integrble nd bounded on, b). Then the following estimtions re vlid: 5.1) 5.) b ) n+1 n + )! n + 1) γ n+1 f) 1)n b ) + n 1 k=1 f x) dx + 1)n+1 f ) + nf b)) n + 1) n k) 1) n+k+1 f k) b) b ) k n + 1) k + 1)! b )n+1 n + )! n + 1) Γ n+1 f), b ) n+1 n + )! n + 1) γ n+1 f) 1 b ) + n 1 k=1 f x) dx + nf ) + f b) n + 1 n k) f k) ) b )k n + 1) k + 1)! b )n+1 n + )! n + 1) Γ n+1 f). Generliztions of the Trpezoid Inequlities Bsed on New Men Vlue Theorem for the Reminder in Tylor s Formul A.I. Kechriniotis nd N.D. Assimkis Title Pge Go Bck Pge of 7 J. Ineq. Pure nd Appl. Mth. 73) Art. 90, 006

Further, if n is n even positive integer, then 5.3) 1 b ) n 1 + k=1 f x) dx + f ) + f b) n k) f k) ) + 1) k f k) b) b ) k n + 1) k + 1)! The inequlities in 5.1) nd 5.) re shrp. b ) n+1 n + )! n + 1) Γ n+1 f) γ n+1 f)). Proof. Tking the limit of 3.6) in Theorem 3. s ρ 0 we obtin 5.1). Further for ρ > 1, dividing 3.6) by ρ + 1) n+1) nd then obtining the limit from the resulting estimtion s ρ we get 5.). Now, let n be n even integer. Then multiplying 5.) by 1), dding the resulting inequlity with 5.1) nd finlly multiplying the obtined estimtion by 1 ) we esily get 5.3). Remrk 6. Applying Theorem 5.1 for n = we obtin the following inequlities: b ) 3 γ 3 f) 7 1 b ) b )3 Γ 3 f), 7 f x) dx f ) + f b) 3 + f b) 6 b ) Generliztions of the Trpezoid Inequlities Bsed on New Men Vlue Theorem for the Reminder in Tylor s Formul A.I. Kechriniotis nd N.D. Assimkis Title Pge Go Bck Pge 3 of 7 J. Ineq. Pure nd Appl. Mth. 73) Art. 90, 006

b ) 3 7 γ 3 f) 1 b ) b )3 Γ 3 f), 7 f x) dx + f ) + f b) 3 + f ) 6 b ) 5.4) 1 b ) f x) dx f ) + f b) + f b) f ) 1 b )3 144 b ) Γ 3 f) γ 3 f)), where f C [, b] nd is such tht f is bounded nd integrble on [, b]. Therefore, inequlity 5.4) cn be regrded s Grüss type generliztion of the perturbed trpezoid inequlity. Theorem 5.. Let f C n [, b] such tht f n+1) is integrble nd bounded on, b). Suppose n is odd nd greter thn 1. Then the following estimtion holds: 5.5) b ) n+1 n + 3) γ n+1 f) n + 1) Γ n+1 f)) n + 3)! n + 1) n ) 1 b n k=1 f b) + f ) f x) dx n k) n 1 k) n ) n + 1) ) f k) ) + 1) k f k) b) b ) k k + )! Generliztions of the Trpezoid Inequlities Bsed on New Men Vlue Theorem for the Reminder in Tylor s Formul A.I. Kechriniotis nd N.D. Assimkis Title Pge Go Bck Pge 4 of 7 J. Ineq. Pure nd Appl. Mth. 73) Art. 90, 006

b )n+1 n + 3) Γ n+1 f) n + 1) γ n+1 f)). n + 3)! n + 1) n ) The inequlities in 5.5) re shrp. Proof. Multiplying 4.) in Theorem 4. by n nd 4.1) in Theorem 4.1 n by nd then dding the resulting estimtions we see tht the lst term n of the sum in the intermedite prt of the obtined inequlity is vnishing, nd so, fter some lgebr, we get 5.5). Finlly, choosing f x) := x n+1 in 5.5), simple clcultion verifies tht the equlities hold. Therefore, the inequlities in 5.5) re shrp. Applying Theorem 5. for n = 3 we get immeditely the following result. Corollry 5.3. Let f C 3 [, b] such tht f 4) is integrble nd bounded on, b). Then the following estimtion holds: 5.6) 1 70 b )4 3γ 4 f) Γ 4 f)) 1 b f x) dx f b) + f ) 1 70 b )4 3Γ 4 f) γ 4 f)). The inequlities in 5.6) re shrp. + f b) f )) b ) 1 Generliztions of the Trpezoid Inequlities Bsed on New Men Vlue Theorem for the Reminder in Tylor s Formul A.I. Kechriniotis nd N.D. Assimkis Title Pge Go Bck Pge 5 of 7 J. Ineq. Pure nd Appl. Mth. 73) Art. 90, 006

References [1] N.S. BARNETT AND S.S. DRAGOMIR, On the perturbed trpezoid formul, Tmkng J. Mth., 33) 00), 119 18. [] N.S. BARNETT AND S.S. DRAGOMIR, A perturbed trpezoid inequlity in terms of the third derivtive nd pplictions, RGMIA Reserch Report Collection, 4) 001), Art. 6. [3] N.S. BARNETT AND S.S. DRAGOMIR, Applictions of Ostrowski s version of the Grüss inequlity for trpezoid type rules, Tmkng J. Mth., 37) 006), 163 173. [4] C. BUSE, S.S. DRAGOMIR, J. ROUMELIOTIS AND A. SOFO, Generlized trpezoid type inequlities for vector-vlued functions nd pplictions, Mth. Ineq. & Appl., 53) 00), 435 450. [5] P. CERONE AND S.S. DRAGOMIR, Three point identities nd inequlities for n time differentible functions, SUT Journl of Mthemtics, 36) 000), 351 383. [6] P. CERONE AND S.S. DRAGOMIR, Trpezoidl type rules from n inequlities point of view, Anlytic Computtionl Methods in Applied Mthemtics, G. Anstssiou Ed.), CRC press, N.Y., 000, 65 134. [7] P. CERONE, S.S. DRAGOMIR, J. ROUMELIOTIS AND J. SUNDE, A new generliztion of the trpezoid formul for n time differentible mppings nd pplictions, Demonstrtio Mthemtic, 334) 000), 719 736. Generliztions of the Trpezoid Inequlities Bsed on New Men Vlue Theorem for the Reminder in Tylor s Formul A.I. Kechriniotis nd N.D. Assimkis Title Pge Go Bck Pge 6 of 7 J. Ineq. Pure nd Appl. Mth. 73) Art. 90, 006

[8] XIAO-LIANG CHENG AND JIE SUN, A note on the perturbed trpezoid inequlity, J. Inequl. Pure nd Appl. Mth., 3) 00), Art. 9. [ON- LINE: http://jipm.vu.edu.u/rticle.php?sid=181]. [9] S.S. DRAGOMIR, A generlised trpezoid type inequlity for convex functions, Est Asin J. Mth., 01) 004), 7 40. [10] S.S. DRAGOMIR, P. CERONE AND A. SOFO, Some remrks on the trpezoid rule in numericl integrtion, Indin J. Pure Appl. Mth., 315) 000), 475 494. [11] S.S. DRAGOMIR AND A. MCANDREW, On trpezoid inequlity vi Grüss type result nd pplictions, Tmkng J. Mth., 313) 000), 193 01. [1] S. S. DRAGOMIR AND Th.M. RASSIAS, Ostrowski Inequlities nd Applictions in Numericl Integrtion, Kluwer Acdemic, Dordrecht, 00. [13] D.S. MITRINOVIĆ, J.E. PEČARIĆ AND A.M. FINK, Inequlities for Functions nd their Integrls nd Derivtives, Kluwer Acdemic, Dordrecht, 1994. [14] N. UJEVIĆ, On perturbed mid-point nd trpezoid inequlities nd pplictions, Kyungpook Mth. J., 43 003), 37 334. [15] N. UJEVIĆ, A generliztion of Ostrowski s inequlity nd pplictions in numericl integrtion, Appl. Mth. Lett., 17 004), 133 137. [16] N. UJEVIĆ, Error inequlities for generlized trpezoid rule, Appl. Mth. Lett., 19 006), 3 37. Generliztions of the Trpezoid Inequlities Bsed on New Men Vlue Theorem for the Reminder in Tylor s Formul A.I. Kechriniotis nd N.D. Assimkis Title Pge Go Bck Pge 7 of 7 J. Ineq. Pure nd Appl. Mth. 73) Art. 90, 006