Skyrme Hartree-Fock Methods and the Saclay-Lyon Forces

Similar documents
Nuclear Matter Incompressibility and Giant Monopole Resonances

Compressibility of Nuclear Matter from Shell Effects in Nuclei

Some new developments in relativistic point-coupling models

Nuclear symmetry energy deduced from dipole excitations: comparison with other constraints

Nuclear Binding Energy in Terms of a Redefined (A)symmetry Energy

4 November Master 2 APIM. Le problème à N corps nucléaire: structure nucléaire

The effect of the tensor force on the predicted stability of superheavy

Strong interaction in the nuclear medium: new trends Effective interactions and energy functionals: applications to nuclear systems I

Nucelon self-energy in nuclear matter and how to probe ot with RIBs

Mean-field concept. (Ref: Isotope Science Facility at Michigan State University, MSUCL-1345, p. 41, Nov. 2006) 1/5/16 Volker Oberacker, Vanderbilt 1

Brief introduction Motivation and present situation: example GTR Propose new fitting protocols

Spin and Isospin excitations in Nuclei Some general comments on EDFs Motivation and present situation: example GTR Propose new fitting protocols

Motivation Density functional theory H(F) RPA Skyrme, Gogny or Relativistic

arxiv: v1 [nucl-th] 8 Dec 2017

Medium polarization effects and pairing interaction in finite nuclei

The Nuclear Equation of State

Symmetry Energy within the Brueckner-Hartree-Fock approximation

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 1

arxiv:nucl-th/ v1 27 May 2005

Fermi-Liquid Theory for Strong Interactions

Dipole Polarizability and the neutron skin thickness

Modern nuclear mass models

Observables predicted by HF theory

The tensor-kinetic field in nuclear collisions

Schiff Moments. J. Engel. May 9, 2017

Compact star crust: relativistic versus Skyrme nuclear models

Dipole Polarizability and the neutron skin thickness

Relativistic versus Non Relativistic Mean Field Models in Comparison

Isospin asymmetry in stable and exotic nuclei

Nuclear Landscape not fully known

Structure of Atomic Nuclei. Anthony W. Thomas

Volume and Surface Components of the Nuclear Symmetry Energy

Density dependence of the nuclear symmetry energy estimated from neutron skin thickness in finite nuclei

PARTICLE-NUMBER CONSERVING

Nuclear density functional theory from low energy constants: application to cold atoms and neutron matter. Denis Lacroix. Outline:

Parity-Violating Asymmetry for 208 Pb

Nuclear matter inspired Energy density functional for finite nuc

E. Fermi: Notes on Thermodynamics and Statistics (1953))

Neutrino Mean Free Path in Neutron Stars

Systematics of the first 2 + excitation in spherical nuclei with the Skryme quasiparticle random-phase approximation

Quantitative understanding nuclear structure and scattering processes, based on underlying NN interactions.

Self-consistent study of spin-isospin resonances and its application in astrophysics

Microscopic study of the isoscalar giant monopole resonance in Cd, Sn, and Pb isotopes

Schiff Moments. J. Engel. October 23, 2014

Investigation of Nuclear Ground State Properties of Fuel Materials of 232 Th and 238 U Using Skyrme- Extended-Thomas-Fermi Approach Method

Schiff Moments. J. Engel. November 4, 2016

Modeling the EOS. Christian Fuchs 1 & Hermann Wolter 2. 1 University of Tübingen/Germany. 2 University of München/Germany

The Nuclear Many-Body Problem

Density dependence of the nuclear symmetry energy estimated from neutron skin thickness in finite nuclei

RPA and QRPA calculations with Gaussian expansion method

E(5) and X(5) shape phase transitions within a Skyrme-Hartree-Fock + BCS approach

Neutron Rich Nuclei in Heaven and Earth

Halo Systems in Medium-Mass Nuclei : A New Analysis Method

Relativistic point-coupling models for finite nuclei

Functional Orsay

The role of isospin symmetry in collective nuclear structure. Symposium in honour of David Warner

Ecole normale supérieure (ENS) de Lyon. Institut de Physique Nucléaire d Orsay. Groupe de Physique Théorique

Peter Ring. ISTANBUL-06 New developments in covariant density functional theory. Saariselkä April 20, 2009

Introduction to nuclear structure

Constraining the nuclear EoS by combining nuclear data and GW observations

Ground-state properties of some N=Z medium mass heavy nuclei. Keywords: Nuclear properties, neutron skin thickness, HFB method, RMF model, N=Z nuclei

Nuclear Structure for the Crust of Neutron Stars

Symmetry energy, masses and T=0 np-pairing

Lisheng Geng. Ground state properties of finite nuclei in the relativistic mean field model

Temperature Dependence of the Symmetry Energy and Neutron Skins in Ni, Sn, and Pb Isotopic Chains

Shell structure of superheavy elements

Relativistic Hartree-Bogoliubov description of sizes and shapes of A = 20 isobars

Nuclear Mean Fields through Selfconsistent Semiclassical Calculations

Toward a unified description of equilibrium and dynamics of neutron star matter

Shape of Lambda Hypernuclei within the Relativistic Mean-Field Approach

Interpretation of the Wigner Energy as due to RPA Correlations

arxiv:nucl-th/ v1 27 Apr 2004

Microscopic study of the properties of identical bands in the A 150 mass region

Mean field studies of odd mass nuclei and quasiparticle excitations. Luis M. Robledo Universidad Autónoma de Madrid Spain

Pygmy dipole resonances in stable and unstable nuclei

What is available? HFB codes HFB schemes/basis selection

The Quest for a Microscopic Nuclear Mass Formula

AFDMC Method for Nuclear Physics and Nuclear Astrophysics

Nuclear symmetry energy and Neutron star cooling

Nuclear Energy Density Functional

Effects of n-p Mass Splitting on Symmetry Energy

Asymmetry dependence of Gogny-based optical potential

Localized form of Fock terms in nuclear covariant density functional theory

Evolution Of Shell Structure, Shapes & Collective Modes. Dario Vretenar

Fine structure of nuclear spin-dipole excitations in covariant density functional theory

Theory of neutron-rich nuclei and nuclear radii Witold Nazarewicz (with Paul-Gerhard Reinhard) PREX Workshop, JLab, August 17-19, 2008

arxiv:nucl-th/ v1 14 Nov 2002

Neutron Halo in Deformed Nuclei

Hartree-Fock Theory Variational Principle (Rayleigh-Ritz method)

Towards a universal nuclear structure model. Xavier Roca-Maza Congresso del Dipartimento di Fisica Milano, June 28 29, 2017

Microscopic Theories of Nuclear Masses

Isoscalar dipole mode in relativistic random phase approximation

Stability Peninsulas at the Neutron Drip Line

Collective excitations of Λ hypernuclei

Physics Letters B 695 (2011) Contents lists available at ScienceDirect. Physics Letters B.

Temperature Dependence of the Symmetry Energy and Neutron Skins in Ni, Sn, and Pb Isotopic Chains

arxiv: v1 [nucl-th] 26 May 2009

Nuclear Structure V: Application to Time-Reversal Violation (and Atomic Electric Dipole Moments)

Nature of low-energy dipole states in exotic nuclei

Gogny interactions with tensor terms

Transcription:

Skyrme Hartree-Fock Methods and the Saclay-Lyon Forces K. Bennaceur, IPNL UCB Lyon-1 / CEA ESNT The SLy force, quick overview Beyond the standard parameterization: new terms... Extended density dependence Tensor force... and new constraints Effective masses Instabilities

Zoology of the effective interactions Effective interactions Main ingredient for HF calculations (and beyond: HFB, RPA, GCM,...) Different flavors: Zero range (Skyrme forces), finite range (Gogny force), relativistic (effective lagrangians),... Different recipes: Density dependent term, spin-orbit term, isospin properties,... Very easy to construct a Skyrme force!... at most 10 Gogny forces about 20 relativistic lagrangians more than 100 Skyrme forces!

Effective interactions in mean field calculations H = T + V realistic NN interaction many body problem E = X i G = V V Q e G ki 2 2m + 1 X ij G E=ei +e 2 j ij ij<f e i = k2 i 2m + X ij G E=ei +e j ij j<f G matrix (Bethe-Goldstone equation) Effective phenomenological interaction V eff = V Skyrme, V Gogny,... Effective microscopic hamiltonian and mean field approximation Φ HF, δ Φ H eff Φ Φ Φ = 0,...

First benchmark: the symmetric infinite nuclear matter Infinite medium, no surface: N = Z with ρ = A V No Coulomb interaction = cste, I = N Z A = 0 No pairing correlations Binding energy liquid drop model E A = a v + a I I 2 + a s A 1/3 + a Is I 2 A 1/3 + a c Z 2 A 4/3 +... P. Möller, J.R. Nix, W.D. Myers and W.J. Swiatecki, 1995. E/A = 16.0 ± 0.2 MeV Density in the center of eavy nuclei electron scattering ρ 0 = 0.16 ± 0.002 fm 3 1654 known masses from 16 O to 263 106 J.B. Bellicard et al., 1981; H. de Vries, 1987.

BHF Calculations Coester lines E/A [MeV] ρ [fm 3 ] G = V V Q e G at lowest order misses the saturation point!

The standard Skyrme forces V (r 1,r 2 ) = t 0 (1 + x 0 ˆPσ )δ(r) central + 1 2 t 1(1 + x 1 ˆP σ ) [ P 2 δ(r) + δ(r)p 2] non local + t 2 (1 + x 2 ˆPσ )P δ(r)p non local + t 3 (1 + x 3 ˆP σ )ρ α (r)δ(r) density dependent + iw 0 σ [P δ(r)p] spin-orbit Beiner, Flocard, Giai, Quentin, 1975: SIII Krivine, Treiner, Bohigas, 1980: SkM Bartel et al., 1982: SkM* Giai, Sagawa, 1981: SGII Dobaczewski et al., 1984: SkP Rayet, Arnould, Tondeur, Paulus, 1982: RATP Chabanat et al., 1995: SLyxx

Density dependence 600 compression modulus (MeV) 500 400 300 200 Skyrme Gogny linear lagrangians non linear lagrangians Brink Boeker finite range 100 0.12 0.14 0.16 0.18 0.2 0.22 equilibrium density (fm** 3) Compression modulus K known to be 220 or 240 MeV

(local) Density functional Φ H Φ = H(r) dr H = K + H 0 + H 3 + H eff + H fin + H so + H sg + H coul H 0 = 1 4 t 0 ˆ(2 + x0 )ρ 2 (2x 0 + 1) `ρ 2 n + ρ 2 p H 3 = 1 24 t 3ρ α ˆ(2 + x 3 )ρ 2 (2x 3 + 1) `ρ 2 n + ρ 2 p H eff = 1 8 [t 1(2 + x 1 ) + t 2 (2 + x 2 )] τρ + 1 8 [t 2(2x 2 + 1) t 1 (2x 1 + 1)](τ n ρ n + τ p ρ p ) H fin = 1 32 [3t 1(2 + x 1 ) t 2 (2 + x 2 )]( ρ) 2 1 32 [3t 1(2x 1 + 1) + t 2 (2x 2 + 1)] ˆ( ρ n ) 2 + ( ρ p ) 2 H so = 1 2 W 0 [J ρ + J n ρ n + J p ρ p ] H sg = 1 16 (t 1x 1 + t 2 x 2 )J 2 + 1 16 (t 1 t 2 ) ˆJ 2 n + J 2 p ρ q = X i<f,σ J q = ϕ i (rσq) 2, τ q = X X i<f,σ ϕ i (rσq) 2, i<f,σσ ϕ i (rσ q) σ σ σ ϕ i (rσq)

(local) Density functional Correct description of the binding energies and radii of nuclei (Vautherin and Brink, 1972). Simple mathematical form of the functional Tractable calculations in r representation Simple form of the 1-body HF field Relation with realistic NN interactions (Negele and Vautherin, 1972-75).

Cooking recipe E A V Skyrme 10 parameters ρ 0 Saturation point of symmetric INM ρ 0, E/A ρ e 0 Compression modulus K = 9ρ 2 0 d 2 E dρ 2 A (ρ) ρ=ρ0 Giant breathing mode E0;T=0 K = 220 ± 20 MeV Isoscalar effective mass m m «1 s = 1 + 1 8 m 2 [3t 1 + t 2 (5 + 4x 2 )] ρ 0 (J.P. Blaizot) Giant mode E2;T=0 m m = 0.8 ± 0.1

Cooking recipe 1.0 0.9 T6 α = 1/6 α = 1/3 α = 1/2 α = 1 m*/m 0.8 SkM* SIII 0.7 RATP 0.6 150 200 250 300 350 400 K (MeV) K m m and α 1 6 to 1 3

Cooking recipe: asymmetric INM Y p = ρ p ρ E A Yp=0 Yp=0.5 E A = a v + a I I 2 + a s A 1/3 + a Is I 2 A 1/3 +... symmetry energy: a I = 1 d 2 E 2 dρ 2 A (ρ) I=0 a I 32 MeV (P.G. Reinhard, B.A. Li) ρ isovector effective mass: m 1 m v = 1 + m 4 2 [t 1 (2 + x 1 ) + t 2 (2 + x 2 )] ρ 0 = 1 + κ v κ v TRK enhancement factor for the m 1 sum rule κ v 0.4 to 0.5 neutron matter EOS (Wiringa et al., 1988; Akmal et al., 1998)

0.6 Ca Sn 0.4 r n - r p [fm] 0.2 0.0-0.2 a I = 38 37 36 35 34 33 32 31 30 29 28 r n r p (fm) 0.5 0.4 0.3 0.2 Hoffmann, 1980 Starodubsky, 1994 Krasznahorkay, 1994 Clark, 2003 Batty, 1989 HFB SLyxx -5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 N - Z 0.1 0 20 24 28 32 36 40 a (MeV) I

Cooking recipe: Surface energy The atomic nucleus is not a infinite system... especially near the surface. 30 1.0 E_surf (MeV) 25 20 SLy4 SIII SkM* peau de neutrons (fm) 0.8 0.6 0.4 0.2 SLy4 SIII SkM* 15 0.0 0.1 0.2 0.3 0.4 0.5 I = (N Z)/A 0.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 I = (N Z)/A

Cooking recipe: Ferromagnetic neutron matter Landau parameters 5 4 < x 2 1 ρ f (fm 3 ) 0.75 0.6 0.45 0.3 0.15 10 5 10 4 10 3 10 2 10 1 Y p SLy230a SLy230b SGII SkM* SIII D1S SKX

Cooking recipe: Summary ρ 0 E A K m m t i,x i,α a I neutron matter κ v t i,x i surface energy, Landau parameter t i,x i spherical magic nuclei: t i,x i,w 0 16 O, 40 48 Ca, 56 Ni, 132 Sn, 208 Pb (binding energies, charge radii, s.p.e.)

SLy force or forces? One force... with various realizations! Force J 2 terms 2-body c.m. Spin-orbit SLy4 no no standard SLy5 yes no standard SLy6 no yes standard SLy7 yes yes standard SLy10 yes yes extended Standard S.O. H so = W 0 2 2 4J ρ + X q 3 J q ρ q 5 Extended S.O. H so = W 1 2 J ρ + W 2 2 X J q ρ q q

The parameters can not reabsorb everything! 1.0 Isotopic shift in lead isotopes 0.5 SLy4 SLy5 r 2 (fm 2 ) 0.0-0.5-1.0 1.0 0.5 SLy6 SLy7 r 2 (fm 2 ) 0.0-0.5-1.0 110 115 120 125 130 135 N 110 115 120 125 130 135 N

Not so bad results E = E calc E exp 2.0 0.0-2.0 Z=50 16.0 14.0 12.0 SLy4 SkM* N=82 E (MeV) -4.0-6.0-8.0 SLy4 SkM* E (MeV) 10.0 8.0 6.0 4.0-10.0 2.0-12.0 50 55 60 65 70 75 80 85 90 N 0.0 50 55 60 65 70 Z E. Chabanat et al., Nucl. Phys. A 627, 710; ibid. 635, 231; ibid. 643, 441.

And not so good results p [MeV] n [MeV] 2 0-2 -4-6 -8-10 -12 0-2 -4-6 -8-10 -12 208 Pb 13/2 + 7/2-9/2-1/2 + 3/2 + 11/2-5/2 + 5/2 + 15/2-11/2 + 9/2 + 1/2-5/2-3/2-13/2 + 7/2-5/2 + Expt. Expt. FY FY SkP SkP SkM * SkM * SLy6 SLy6 SLy7 SLy7 SkI1 126 SkI1 82 SkI4 SkI4 SkI3 SkI3 NL3 NL3 NL-Z NL-Z 92 NL-Z2 NL-Z2 NL-VT1 NL-VT1 3p3/2-2f5/2-1i13/2 + 2f7/2-1h9/2-3s1/2 + 2d3/2 + 1h11/2-2d5/2 + 4s1/2 + 2g7/2 + 3d5/2 + 1i11/2 + 2g9/2 + 3p1/2-3p3/2-1i13/2 + 2f5/2-2f7/2 - Poor spectroscopic properties Shape description?... Beyond mean field correlations?... See M. Bender, et al., Rev. Mod. Phys. 75, 2003

We are far from the end of the story... Isospin evolution - a I is not enough - contraints on the neutron EOS seems to improve the results Surface properties - a s, a I s, fission barriers - crucial for SD and HD phenomena - isospin and surface properties should be adjusted together Dangerous simplifications: J 2 terms, 2-body c.m.,... Coulomb? Density dependence at the mean field level... and beyond - mean field (B. Cochet et al., Int. J. Mod. Phys. E13, 187, Nucl.Phys. A731, 34) - beyond (T. Duguet, P. Bonche, Phys. Rev. C67, 054308) Tensor terms (Fl. Stancu et al., Phys. Lett. 68B, 2, 108)

A simple extention: generalized density dependence Attemps made in the past: (with surprises along the way) V (r 1,r 2 ) = (1)... + 1 6 t 3(1 + x 3 P σ )ˆρ q1 (r 1 ) + ρ q2 (r 2 ) α = (2)... + h 1 2 t 4(1 + x 4 P σ ) k 2`ρ i q1 (r 1 ) + ρ q2 (r 2 ) α + cc. +... +... (1) e.g. M. Farine, J.M. Pearson, F. Tondeur, NPA 615 (1997) 137 (2) K.F. Liu, G.E. Brown, NPA 265 (1976) 385 General density dependence: V expansion in k F ρ 1/3 E/A = + V (r 1,r 2 ) = t 00 (1 + x 00 P σ )δ(r) h 3 80 3π 2 2 + t 01 (1 + x 01 P σ ) ρ 1/3 (R) δ(r) + t 02 (1 + x 02 P σ ) ρ 2/3 (R) δ(r)!... + t 03 (1 + x 03 P σ ) ρ(r) δ(r) + non local terms(ρ?) + spin-orbit term(ρ?) 2/3 Θs (m ) + 3 8 t 02i ρ 5/3 +... and m m (K )

Generalized density dependence E/A [ MeV ] 400 350 300 250 200 150 ρ 1/3 + ρ E/A = 16.0 MeV ρ 0 = 0.16 fm 3 K = 230 MeV fit of neutron matter 100 400 50 350 0 300-50 0.0 0.2 0.4 0.6 0.8 250 1.0 1.2 Density [ fm -3 ] E/A [ MeV ] 200 150 ρ 1/3 + ρ 2/3 m m remains free symmetric nuclear matter pure neutron matter symmetric nuclear matter A. Akmal et al., Phys. Rev. C 58 (1998) 1804 pure neutron matter 100 50 0 180 160-50 0.0 0.2 0.4 0.6 0.8 140 1.0 1.2 Density [ fm -3 ] 120 E/A [ MeV ] 220 200 100 80 60 40 20 0-20 ρ 2/3 + ρ -40 0.0 0.2 0.4 0.6 0.8 1.0 1.2 Density [ fm -3 ]

What for? Improvement and interesting results... (B. Cochet et al., Int. J. Mod. Phys. E13, 187, Nucl.Phys. A731, 34) But it allows to vary freely the effective mass! Spectroscopic properties should be improved with m /m closer to 1 Neutrons and protons have different effective masses in asymmetric matter this degree of freedom was never studied in the past... With SLy forces: m = m n m p m I=1 < 0

m from (D)BHF calculations Phenomenological approach (reaction): B.-A. Li, PRC (2004) 064602. BHF calculations: I. Bombaci et al., PRC 44 (1991) 1892, PRC 60 (1999) 024605. DBHF calculations: F. Hofmann et al., PRC 64 (2001) 034314, E.N.E Van Dalen et al., PRL 95 (2005) 022302. m > 0 wins the election! with m 015 to 0.2

SLy type forces with different effective mass splittings SLy force m depends on both κ v and m /m m /m can not be varied without changing K Use of a Skyrme force with two density dependent terms ρ 1/3 + ρ 2/3 instead of ρ 1/6 x 2 can be different of -1 (Cf. B. Cochet et al. NPA A731, 34) m /m and κ v can be freely varied But: Spin instabilities must be kept under control Surprise 1!

Spin instabilities 0.45 Neutron matter f [fm -3 ] 0.40 0.35 Symmetric matter m* m = 0.7 0.30 m* m = 0.9 m* m = 0.8 0.25 0.0 0.1 0.2 0.3 0.4 0.5 0.6 v

Single particle energies in 132 Sn 10 0 neutrons = 0.25 = 0.60 protons = 0.25 = 0.60 s.p.e. [MeV] -10-20 -30-40 -50

Single particle energies in 170 Sn 10 0 neutrons = 0.25 = 0.60 protons = 0.25 = 0.60 s.p.e. [MeV] -10-20 -30-40 -50

Asymmetric matter in nuclei: 100 Sn 1.0 0.8 0.6 0.4 0.2 0.0-0.2-0.4-0.6-0.8-1.0 10 x m * I 0 2 4 6 8 10 r [fm] m 0 0 100 Sn

Asymmetric matter in nuclei: 120 Sn 1.0 0.8 0.6 0.4 0.2 0.0-0.2-0.4-0.6-0.8-1.0 10 x m * 0 2 4 6 8 10 r [fm] 0 m 0.03 I 120 Sn

Asymmetric matter in nuclei: 170 Sn 1.0 0.8 0.6 0.4 0.2 0.0-0.2-0.4-0.6-0.8-1.0 10 x m * 0 2 4 6 8 10 r [fm] m 0.06 I 0 170 Sn

(local) Density functional Φ H Φ = H(r) dr H = K + H 0 + H 3 + H eff + H fin + H so + H sg + H coul H 0 = 1 4 t 0 ˆ(2 + x0 )ρ 2 (2x 0 + 1) `ρ 2 n + ρ 2 p H 3 = 1 24 t 3ρ α ˆ(2 + x 3 )ρ 2 (2x 3 + 1) `ρ 2 n + ρ 2 p H eff = 1 8 [t 1(2 + x 1 ) + t 2 (2 + x 2 )] τρ + 1 8 [t 2(2x 2 + 1) t 1 (2x 1 + 1)](τ n ρ n + τ p ρ p ) H fin = 1 32 [3t 1(2 + x 1 ) t 2 (2 + x 2 )]( ρ) 2 1 32 [3t 1(2x 1 + 1) + t 2 (2x 2 + 1)] ˆ( ρ n ) 2 + ( ρ p ) 2 H so = 1 2 W 0 [J ρ + J n ρ n + J p ρ p ] H sg = 1 16 (t 1x 1 + t 2 x 2 )J 2 + 1 16 (t 1 t 2 ) ˆJ 2 n + J 2 p ρ q = X i<f,σ J q = ϕ i (rσq) 2, τ q = X X i<f,σ ϕ i (rσq) 2, i<f,σσ ϕ i (rσ q) σ σ σ ϕ i (rσq)

(local) Density functional Φ H Φ = H(r) dr H = K + H 0 + H 3 + H eff + H fin + H so + H sg + H coul H 0 = 1 4 t 0 ˆ(2 + x0 )ρ 2 (2x 0 + 1) `ρ 2 n + ρ 2 p H 3 = 1 24 t 3ρ α ˆ(2 + x 3 )ρ 2 (2x 3 + 1) `ρ 2 n + ρ 2 p H eff = 1 8 [t 1(2 + x 1 ) + t 2 (2 + x 2 )] τρ + 1 8 [t 2(2x 2 + 1) t 1 (2x 1 + 1)](τ n ρ n + τ p ρ p ) H fin = 1 32 [3t 1(2 + x 1 ) t 2 (2 + x 2 )]( ρ) 2 1 32 [3t 1(2x 1 + 1) + t 2 (2x 2 + 1)] ˆ( ρ n ) 2 + ( ρ p ) 2 H so = 1 2 W 0 [J ρ + J n ρ n + J p ρ p ] H sg = 1 16 (t 1x 1 + t 2 x 2 )J 2 + 1 16 (t 1 t 2 ) ˆJ 2 n + J 2 p

(local) Density functional Φ H Φ = H(r) dr H = K + H 0 + H 3 + H eff + H fin + H so + H sg + H coul H 0 = 1 4 t 0 ˆ(2 + x0 )ρ 2 (2x 0 + 1) `ρ 2 n + ρ 2 p H 3 = 1 24 t 3ρ α ˆ(2 + x 3 )ρ 2 (2x 3 + 1) `ρ 2 n + ρ 2 p H eff = 1 8 [t 1(2 + x 1 ) + t 2 (2 + x 2 )] τρ + 1 8 [t 2(2x 2 + 1) t 1 (2x 1 + 1)](τ n ρ n + τ p ρ p ) H fin = 1 32 [3t 1(2 + x 1 ) t 2 (2 + x 2 )]( ρ) 2 ρ 0 = ρ n + ρ p ρ, 1 32 [3t 1(2x 1 + 1) + t 2 (2x 2 + 1)] ˆ( ρ n ) 2 + ( ρ p ) 2 H so Z = 1 2 W 0 [J Z ρ + J n ρ n + J p ρ p ] h H sg = 1 16 (t 1x 1 + t 2 x 2 )J 2 + 1 16 (t 1 t 2 ) ˆJ i dr H 2 n + J 2 fin = dr C ρ 0 ρ 0 ρ 0 + C ρ 1 ρ 1 ρ 1 p C ρ 1 = 3t 1(2x 1 + 1) + t 2 (2x 2 + 1) 32 ρ 1 = ρ n ρ p

Along the way... Surprise 2: Skyrme functionnal: H = Isospin instabilities With several forces... the nuclei seem to explode! dr {... + C ρ C ρ 1 = 3t 1 32 } 1 (ρ n ρ p ) (ρ n ρ p ) +... ( x 1 + 1 ) + t ( 2 x 2 + 1 ) 2 32 2 Large and positive C ρ 1 favors densities ρ n and ρ p with opposite curvatures C ρ 1 = C ρ 1 (t 1, x 1, t 2, x 2 ) correlated with m /m and κ v Empirically: C ρ 1 > 30 to 35 unstable nuclei

Isospin instabilities 10-2 [fm - 3 ] 0.10 0.05 1 / 3 + 2 / 3 ( 1 = -38,4 ) 10-4 0.00 0 2 4 6 8 r [fm] Force 4 ( 1 = -15,7 ) E / E 10-6 10-8 10-10 [fm - 3 ] 0.10 0.05 0.00 0 2 4 6 8 r [fm] [fm - 3 ] 0.10 0.05 0.00 0 2 4 6 8 r [fm] 0 50 100 150 200 250 300 350 Itérations

Isospin instabilities 0.00-5.00-10.00-15.00 C 1-20.00-25.00 m* m = 0.9 m* m = 0.7-30.00 m* m = 0.8-35.00 0.0 0.1 0.2 0.3 0.4 0.5 0.6 v

m : Masses, gaps, position of drip lines,...

Better criteria to characterize the instabilities? Several instabilities pollute the Skyrme forces... Landau parameters are not always sufficiant to controle it... Most of the time we do not see it because we do not look for it... Force SLy4 SIII SKM* SkP C ρ 1 15.7 17.0 17.1 33.0???

Linear response Several instabilities often experienced with the Skyrme forces Ferromagnetic instabilities spin: polarization n, p spin-isospin: polarization n, p Isospin instabilities: neutrons-protons separation Response of the system to a perturbation described by: Θ ss a = 1 a, Q (α) = a eiq r a Θ (α) a, Θ vs a = σ a, The response fonctions are defined by Θ sv a = τ a, Θ vv a = σ a τ a (Cf. C. Garcia Recio et al., Ann. of Phys. 214 (1992) 293 340) χ (α) (ω,q) = 1 Ω ( n Q (α) 0 2 n ) 1 ω E n0 + iη 1 ω + E n0 iη

Linear response 0.64 0.64 ρc [fm 3 ] ρc [fm 3 ] 0.48 0.32 0.16 0 0.12 0.08 0.04 scalar-isovector f3 f4 f5 SLY5 scalar-isoscalar vector-isovector vector-isoscalar 0.48 0.32 0.16 0 0.64 0.48 0.32 0.16 ρc [fm 3 ] ρc [fm 3 ] 0 0 0.5 1 1.5 2 2.5 3 3.5 0 0.5 1 1.5 2 2.5 3 3.5 4 0 q [fm -1 ] q [fm -1 ]

What about existing forces? 1.12 0.96 scalar-isovector ρ c [fm -3 ] 0.8 0.64 0.48 0.32 0.16 0 SLY4 SLY5 SIII SKM* SKP 0 0.5 1 1.5 2 2.5 3 3.5 4 q [fm -1 ]

What about existing forces? 1.12 0.96 scalar-isovector ρ c [fm -3 ] 0.8 0.64 0.48 0.32 0.16 0 SLY4 SLY5 SIII SKM* SKP 0 0.5 1 1.5 2 2.5 3 3.5 4 q [fm -1 ] J. Terasaki, J. Engel in nucl-th/0603062: For reasons we do not understand, we can not obtain solutions of the HFB equation with SkP for Ca and Ni isotopes.

What about existing forces? 1.12 0.96 scalar-isovector ρ c [fm -3 ] 0.8 0.64 0.48 0.32 0.16 0 SLY4 SLY5 SIII SKM* SKP 0 0.5 1 1.5 2 2.5 3 3.5 4 q [fm -1 ] J. Terasaki, J. Engel in nucl-th/0603062: For reasons we do not understand, we can not obtain solutions of the HFB equation with SkP for Ca and Ni isotopes. We do!

Tensor force Tensor force: V = 1 2 T [ (k σ 1 )(k σ 2 )δ 1 3 k 2 (σ 1 σ 2 )δ + h.c. ] +U [ (k σ 1 )δ(σ 2 k) 1 3 (k δk)(σ 1 σ 2 ) ] In the functional: Terms s T, s s, ( s) 2 Terms J 2 : (J (1) ) 2 = 1 2 J2

Tensor force: Preliminary results 0 2d 3/2 3s 1/2 1g 7/2 2d 5/2-5 1h 11/2 3s 1/2 2d 3/2-10 1g 9/2 SLTa 2d 5/2 1g 7/2 2p 1/2 2p 3/2 1f 5/2-15 1g 9/2 2p 1/2-20 1f 7/2 114 Sn 116 Sn 118 Sn 120 Sn 122 Sn 124 Sn 126 Sn 128 Sn 130 Sn 132 Sn 2p 3/2

Back to the roots: INM eq. of state E/A S,T=1,0, SNM [MeV] 20 10 0-10 -20-30 f3 f4 f5 SLY5 Baldo 5 0-5 -10 E/A S,T=1,1, SNM [MeV] Surprise 3! E/A S,T=0,0, SNM [MeV] 10 5 0-5 -10-15 -20-25 0 0.08 0.16 0.24 0.32 0 0.08 0.16 0.24 0.32 0.4-5 -10-15 -20-25 -30 E/A S,T=0,1, SNM [MeV] ρ [fm -3 ] ρ [fm -3 ] A non local density dependent term can act in the (0,0) and (1,1) channels... 1 but not the one used by Farine et al.: 2 t 4(1 + x 4 ˆP σ ) ˆP 2 ρ(r)δ(r) + cc. need for 1 2 t 4(1 + x 4 ˆPσ )P ρ(r)δ(r)p?

People M. Bender CEA - ESNT K. Bennaceur IPNL - UCB Lyon 1 / CEA - ESNT P. Bonche CEA - SPhT B. Cochet IPNL - UCB Lyon 1 T. Duguet NSCL - MSU T. Lesinski IPNL - UCB Lyon 1 J. Meyer IPNL - UCB Lyon 1