Lecture #4: The Classical Wave Equation and Separation of Variables

Similar documents
Lecture #5: Begin Quantum Mechanics: Free Particle and Particle in a 1D Box

Differential Equations

Vibrations and Waves Physics Year 1. Handout 1: Course Details

Solutions 2: Simple Harmonic Oscillator and General Oscillations

Waves 2006 Physics 23. Armen Kocharian Lecture 3: Sep

kg meter ii) Note the dimensions of ρ τ are kg 2 velocity 2 meter = 1 sec 2 We will interpret this velocity in upcoming slides.

Chapter 15 Mechanical Waves

1 (2n)! (-1)n (θ) 2n

Boundary value problems for partial differential equations

General Physics I. Lecture 14: Sinusoidal Waves. Prof. WAN, Xin ( 万歆 )

Chapter 13. Hooke s Law: F = - kx Periodic & Simple Harmonic Motion Springs & Pendula Waves Superposition. Next Week!

Lecture #8: Quantum Mechanical Harmonic Oscillator

Wave Equation With Homogeneous Boundary Conditions

Physics 142 Wave Optics 1 Page 1. Wave Optics 1. For every complex problem there is one solution that is simple, neat, and wrong. H.L.

!T = 2# T = 2! " The velocity and acceleration of the object are found by taking the first and second derivative of the position:

Differential Equations

16 SUPERPOSITION & STANDING WAVES

Chapter 15. Mechanical Waves

Chapter 1. Harmonic Oscillator. 1.1 Energy Analysis

PHYSICS 149: Lecture 24

Mechanical Energy and Simple Harmonic Oscillator

Understand the basic principles of spectroscopy using selection rules and the energy levels. Derive Hund s Rule from the symmetrization postulate.

Module 24: Outline. Expt. 8: Part 2:Undriven RLC Circuits

The Schrödinger Equation in One Dimension

Physics 142 Mechanical Waves Page 1. Mechanical Waves

CMPT 889: Lecture 2 Sinusoids, Complex Exponentials, Spectrum Representation

= k, (2) p = h λ. x o = f1/2 o a. +vt (4)

1 Review of simple harmonic oscillator

Lecture 6 Quantum Mechanical Systems and Measurements

MITOCW 6. Standing Waves Part I

Chapter. 5 Bound States: Simple Case

Formula Sheet. ( γ. 0 : X(t) = (A 1 + A 2 t) e 2 )t. + X p (t) (3) 2 γ Γ +t Γ 0 : X(t) = A 1 e + A 2 e + X p (t) (4) 2

Chapter 16 - Waves. I m surfing the giant life wave. -William Shatner. David J. Starling Penn State Hazleton PHYS 213. Chapter 16 - Waves

Modern Physics. Unit 1: Classical Models and the Birth of Modern Physics Lecture 1.2: Classical Concepts Review of Particles and Waves

CHAPTER 8 The Quantum Theory of Motion

Physics 380H - Wave Theory Homework #10 - Solutions Fall 2004 Due 12:01 PM, Monday 2004/11/29

Electron in a Box. A wave packet in a square well (an electron in a box) changing with time.

Updated 2013 (Mathematica Version) M1.1. Lab M1: The Simple Pendulum

Spectroscopy in frequency and time domains

Sinusoids. Amplitude and Magnitude. Phase and Period. CMPT 889: Lecture 2 Sinusoids, Complex Exponentials, Spectrum Representation

CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I

Partial Differential Equations

1. Types of Waves. There are three main types of waves:

Honors Differential Equations

Special Classical Physical Systems

Wave Mechanics in One Dimension

4. Complex Oscillations

MITOCW 11. Wavepacket Dynamics for Harmonic Oscillator and PIB

Chapter 2: Complex numbers

Waves Part 3A: Standing Waves

Introduction to Differential Equations

1 Pushing your Friend on a Swing

Physics 132 3/31/17. March 31, 2017 Physics 132 Prof. E. F. Redish Theme Music: Benny Goodman. Swing, Swing, Swing. Cartoon: Bill Watterson

Computer Problems for Methods of Solving Ordinary Differential Equations

Waves Part 3: Superposition

KEELE UNIVERSITY PHYSICS/ASTROPHYSICS MODULE PHY OSCILLATIONS AND WAVES PRACTICE EXAM

Wave Phenomena Physics 15c

Lecture 14: Superposition & Time-Dependent Quantum States

The Harmonic Oscillator

Wave Phenomena Physics 15c

d 2 2 A = [A, d 2 A = 1 2 [[A, H ], dt 2 Visualizing IVR. [Chem. Phys. Lett. 320, 553 (2000)] 5.74 RWF Lecture #

Seminar 6: COUPLED HARMONIC OSCILLATORS

u tt = a 2 u xx u tt = a 2 (u xx + u yy )

Section 1 Simple Harmonic Motion. Chapter 11. Preview. Objectives Hooke s Law Sample Problem Simple Harmonic Motion The Simple Pendulum

Complex Number Review:

Physics 121H Fall Homework #15 23-November-2015 Due Date : 2-December-2015

Semiconductor Physics and Devices

Mechanics IV: Oscillations

NORMAL MODES, WAVE MOTION AND THE WAVE EQUATION. Professor G.G.Ross. Oxford University Hilary Term 2009

MITOCW MITRES18_005S10_DiffEqnsMotion_300k_512kb-mp4

Wave Equation in One Dimension: Vibrating Strings and Pressure Waves

Wave Phenomena Physics 15c

MITOCW 5. Quantum Mechanics: Free Particle and Particle in 1D Box

Partial Differential Equations (PDEs)

Mass on a Horizontal Spring

Physics 8 Monday, December 4, 2017

Chapter 16 Waves. Types of waves Mechanical waves. Electromagnetic waves. Matter waves

Quantum Physics Lecture 8

Systems of Linear ODEs

x(t) = R cos (ω 0 t + θ) + x s (t)

1 Simple Harmonic Oscillator

* = 2 = Probability distribution function. probability of finding a particle near a given point x,y,z at a time t

The Photoelectric Effect

Wave Phenomena Physics 15c

Thursday, August 4, 2011

David J. Starling Penn State Hazleton PHYS 214

Chapter 16: Oscillations

THE WAVE EQUATION. F = T (x, t) j + T (x + x, t) j = T (sin(θ(x, t)) + sin(θ(x + x, t)))

Review of Classical Mechanics

Math 251 December 14, 2005 Answer Key to Final Exam. 1 18pt 2 16pt 3 12pt 4 14pt 5 12pt 6 14pt 7 14pt 8 16pt 9 20pt 10 14pt Total 150pt

I WAVES (ENGEL & REID, 13.2, 13.3 AND 12.6)

Lecture 7. 1 Wavepackets and Uncertainty 1. 2 Wavepacket Shape Changes 4. 3 Time evolution of a free wave packet 6. 1 Φ(k)e ikx dk. (1.

Selected Topics in Physics a lecture course for 1st year students by W.B. von Schlippe Spring Semester 2007

Exercises Lecture 15

Do not turn over until you are told to do so by the Invigilator.

Simple Harmonic Motion Concept Questions

Oscillations and Waves

C/CS/Phy191 Problem Set 6 Solutions 3/23/05

MATH 415, WEEKS 7 & 8: Conservative and Hamiltonian Systems, Non-linear Pendulum

Partial differential equations (ACM30220)

Transcription:

5.61 Fall 013 Lecture #4 page 1 Lecture #4: The Classical Wave Equation and Separation of Variables Last time: Two-slit experiment paths to same point on screen paths differ by nλ-constructive interference 1 photon interferes with itself get 1 dot on screen-collapse of state of system to a single dot to determine the state of the system, need many experiments, many dots. Probability amplitude distribution (encodes 10, 01, or 11 where 1 = open, 0 = closed) collapses to single dot due to the act of detection of a photon. Quantum Mechanics: information about the experimental setup (i.e. the system ) is encoded in results of a sequence of independent experiments. Musicians know that the sound produced by an instrument reveals * detailed physical structure of the instrument e.g. drum head shaped as OR OR * technique of musician Same as for Quantum Mechanics. Today: philosophy wave equation separation of variables boundary conditions normal modes superposition of normal modes: the pluck cartoons of motion What do we know so far? weirdness wave-particle duality interference experiment samples probability amplitude (i.e. + or ) distribution we can t see inside microscopic systems we do experiments that indirectly reveal structure and mechanism revised 9/16/13 :00 PM

5.61 Fall 013 Lecture #4 page patterns-like interference structure reveal structure and mechanism spectrum contains patterns 1st 1/ of 5.61 deals with exactly solved problems Particle in a Box Harmonic Oscillator Rigid Rotor Hydrogen Atom These are templates for our understanding of reality Perturbation Theory will show us how to use the patterns associated with these simple problems to represent and decode reality. I have been told many times that 5.61 is very difficult because it is very mathematical. This lecture might be the most mathematical of the entire 5.61 course. The goal is insight. For chemists, this is usually pictorial and qualitative. I intend to show the pictures and insights behind the equations. What are you expected to do when faced with one of the many differential equations in Quantum Mechanics? 1. Know where the differential equation comes from (not derive it). Know standard methods used (by others) to solve it. * a most common Ordinary Differential Equation d f = kf dx always linearly independent general solutions for a nd order equation. * find a way to rewrite your equation as one of the well-known solved equations * separation of variables What are we looking for? * general solutions nodes (adjacent node spacing is λ/) envelope (related to probability) phase velocity * specific physical system, specific solution Boundary conditions usually get some sort of quantization from nd boundary condition normal modes qualitative sketch: nodes, envelope, frequency for each normal mode revised 9/16/13 :00 PM

5.61 Fall 013 Lecture #4 page 3 * initial contition: the pluck superposition of normal modes localization, motion, dephasing, rephrasing Invert all of this into a description of the physical system. Wave Equation: where does it come from? Hooke s Law (for a spring) F = kx displacement force constant 1 0 1 chop string into small segments segment 1 pulls segment 0 down by force k [u(x 0 ) u(x 1 )] segment +1 pulls segment 0 up by force k [u(x 0 ) u(x 1 )] The net force is u u x t k[δ u 10 Δ u 0 1 ] d u This is dx F = ma (units conversion: contains tension and mass of string) u 1 u wave equation is = x v t u is displacement v is velocity (as you would discover later) revised 9/16/13 :00 PM

5.61 Fall 013 Lecture #4 page 4 How do we solve this second-order, linear, partial differential equation? * look for a similar, exactly slowed problem * employ bag of tricks most important trick is separation of variables try u(x,t) = X(x) T(t) does it work? If it does not, get u(x,t) = 0 1 [ X(x ) T (t)] = [ X (x) T (t)] x v t not operated on by x not operated on by t 1 Multiply on left by X(x)T (t) get 1 X 1 1 T = X(x) x v T (t) t only x only t x and t are independent variables. This equation can only be valid if both sides are equal to a constant. Called the separation constant. 1 d X 1 1 d T = K = K X dx v T dt Note we have total not partial derivatives: linear, nd-order, and ordinary differential equation. revised 9/16/13 :00 PM

5.61 Fall 013 Lecture #4 page 5 general solutions have the form +kx kx K > 0 e, e let K = k OR K < 0 sin kx, cos kx let K = k (always have linearly independent solutions for nd-order equation) K > 0 general solution X(x) = Ae kx + Be kx K < 0 X(x) = C sin kx + D cos kx also for T(t) equation K > 0 T(t) = Ee vkt + Fe vkt K < 0 T(t) = G sin vkt + H cos vkt Now look at Boundary Conditions For K > 0, try to satisfy boundary conditions X(0) = Ae 0 + Be 0 = 0 A + B = 0 A = B X(L) = 0 = Ae kl + Be kl = Ae kl e kl kl e e kl can never be 0 A = 0 u(x,t) = 0 d T = v KT dt 0 x L u(0,t) = 0 u(l,t) = 0 ( ) looks bad. What about K < 0 solutions? revised 9/16/13 :00 PM

5.61 Fall 013 Lecture #4 page 6 X(0) = C sin0 + Dcos0 = 0 D = 0 X(L) = C sin kl + 0 = 0 kl = nπ n = 0,1,, quantization nπ k n = L pictures are drawn without looking at equation or using a computer to plot them.......................... n = 1 0 L x...................... n = 0 L/....... L x........................................... n = 3 L/3........... L/3 x # nodes is n 1 nodes are equally spaced at x = L/n, λ n = (L/n). all lobes are the same, except for alternating sign Wonderful qualitative picture: cartoon Now look at T(t) equation for K < 0. T (t) = E sinvk n t + F cosvk n t ω n vkn T (t) = En sinω nt + Fn cosω nt revised 9/16/13 :00 PM

5.61 Fall 013 Lecture #4 page 7 Normal modes nπ u n (x,t) = A n sin L x (E n sinnωt + F n cosnωt) The time dependent factor of the n th normal mode can be rewritten in frequency, phase form as E n cos [nωt +φ n ] The next step is to consider the t = 0 pluck of the system. This pluck is expressed as a linear combination of the normal modes. nπ u pluck (x,t) = (A n E n )sin x cos (nωt +φ n ) n=1 L There is a further simplification based on the trigonometric formula which enables us to write u pluck as 1 sinacosb = [sin(a + b) + sin(a b)] A n E n nπ nπ u pluck (x,t) = sin x + nωt +φ n + sin x nωt φ n n=1 L L Something wonderful happens now. * A single normal mode is a standing wave. No left-right motion, no breathing * A superposition of or more normal modes with different values of n gives more complicated motion. For two normal modes, where one is even-n and the other is odd-n, the time-evolving wavepacket will exhibit left-right motion. For two normal modes where both are odd or both even, the wavepacket motion will be breathing rather than left-right motion. Here is a crude time lapse movie of a superposition of the n = 1 and n = (fundamental and first overtone) modes. revised 9/16/13 :00 PM

5.61 Fall 013 Lecture #4 page 8 π The period of the fundamental is T =. We are going to consider time-steps of T/8. ω T/4............ T/8.......................... time 0 + =............................... T/8.. T/4....................................................... -........................... The time-lapse movie of the sum of two normal modes can be viewed as moving to left at t = T/4, close to the left turning point at t = T/8, at the left turning point but dephased at t = 0, moving to the right at t = +T/8. It will reach the right turning point but dephased at t = T/. In Quantum Mechanics you will see wavepackets that exhibit motion, breathing, dephasing, and rephrasing. The center of the wavepacket will follow a trajectory that obeys Newton s laws of motion. If we generalize from waves on a string to waves on a rectangular drum head, b 0 a the separable solution to the wave equation will have the form u(x, y, t) = X(x)Y(y)T(t). There will be two separation constants, and we will find that the normal mode frequencies are n m 1/ ω nm = vπ + a b revised 9/16/13 :00 PM

5.61 Fall 013 Lecture #4 page 9 This is a more complicated quantization rule than for waves on a string, and it should be evident to an informed listener that these waves are on a rectangular drum head with edge lengths a and b. NON-Lecture The underlying unity of the e kx, e kx and sin kx, cos kx solutions to d y = k y dx Let s take a step back and look at the two simplest nd -order ordinary differential equations: d y =+k y y(x) = Ae kx + Be kx dx and d y = k y y(x) = C sin kx + D cos kx dx The solutions to these two equations are more similar than they look at first glance. Euler s formula ±iθ e = cosθ ± isinθ OR 1 (e iθ iθ + e ) = cosθ i iθ ( e iθ e ) = sinθ. So we can express the solution of the second differential equation in (complex) exponential form to bring out its similarity to the solution of the first differential equation: y(x) = C sin kx + D cos kx C e ikx ikx ikx ikx = i ( e ) 1 + De ( + e ) rearrange ikx ikx = 1 (D - ic)e + 1 (D + ic)e. revised 9/16/13 :00 PM

5.61 Fall 013 Lecture #4 page 10 The sin θ, cos θ and e iθ, e iθ forms are two sides of the same coin. Insight. Convenience. What do we notice? The general solutions to a nd -order differential equation consist of the sum of two linearly independent functions, each multiplied by an unknown constant. revised 9/16/13 :00 PM

MIT OpenCourseWare http://ocw.mit.edu 5.61 Physical Chemistry Fall 013 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.