DEVELOPMENT AND APPLICATION OF HIGH- RESOLUTION GIS-BASED ATLAS TO ENHANCE WATERSHED MANAGEMENT IN THE PHILIPPINES

Similar documents
Land Administration and Cadastre

GIS in Weather and Society

Vulnerability assessment of Sta.Rosa-Silang subwatershed using SWAT

GEOMATICS. Shaping our world. A company of

Applying Hazard Maps to Urban Planning

GENERAL. CHAPTER 1 BACKGROUND AND PURPOSE OF THE GUIDELINES Background of the Guidelines Purpose of the Guidelines...

Use of Geospatial data for disaster managements

MALDIVES. Regional Expert Workshop On Land Accounting For SDG Monitoring & Reporting (25-27 th Sept 2017) - Fathimath Shanna, Aishath Aniya -

Geo-hazard Potential Mapping Using GIS and Artificial Intelligence

Progress Report. Flood Hazard Mapping in Thailand

GIS = Geographic Information Systems;

The UN-GGIM: Europe core data initiative to encourage Geographic information supporting Sustainable Development Goals Dominique Laurent, France

GEOGRAPHIC INFORMATION SYSTEMS Session 8

Integrating Geographical Information Systems (GIS) with Hydrological Modelling Applicability and Limitations

Land Use in the context of sustainable, smart and inclusive growth

THE 3D SIMULATION INFORMATION SYSTEM FOR ASSESSING THE FLOODING LOST IN KEELUNG RIVER BASIN

UNITED NATIONS E/CONF.96/CRP. 5

a system for input, storage, manipulation, and output of geographic information. GIS combines software with hardware,

Transactions on Information and Communications Technologies vol 18, 1998 WIT Press, ISSN

Eyes in the Sky & Data Analysis.

ABSTRACT The first chapter Chapter two Chapter three Chapter four

USING 3D GIS TO ASSESS ENVIRONMENTAL FLOOD HAZARDS IN MINA

Exploring the boundaries of your built and natural world. Geomatics

Department of Geography: Vivekananda College for Women. Barisha, Kolkata-8. Syllabus of Post graduate Course in Geography

STEREO ANALYST FOR ERDAS IMAGINE Stereo Feature Collection for the GIS Professional

MANAGEMENT OF SPATIAL DATA IN MULTIDISCIPLINARY PROJECTS

Combining Geospatial and Statistical Data for Analysis & Dissemination

Geography General Course Year 12. Selected Unit 3 syllabus content for the. Externally set task 2019

GIS FOR MAZOWSZE REGION - GENERAL OUTLINE

SPATIAL AND TEMPORAL MODELLING OF ECOSYSTEM SERVICES

GTZ Partner for the Future. Worldwide.

Sustainable and Harmonised Development for Smart Cities The Role of Geospatial Reference Data. Peter Creuzer

Investigation, assessment and warning zonation for landslides in the mountainous regions of Vietnam

Regional Flash Flood Guidance and Early Warning System

Application of GIS Technology in Watershed-based Management and Decision Making

DRRM in the Philippines: DRRM Projects, Geoportals and Socio-Economic Integration

Preparation of Database for Urban Development

Georeferencing and Satellite Image Support: Lessons learned, Challenges and Opportunities

Pierce Cedar Creek Institute GIS Development Final Report. Grand Valley State University

Geospatial SDI Portal for effective Governance of Pune METROPOLIS region

16540/14 EE/cm 1 DG E 1A

RETA 6422: Mainstreaming Environment for Poverty Reduction Category 2 Subproject

Display data in a map-like format so that geographic patterns and interrelationships are visible

An overview of the applications for early warning and mapping of the flood events in New Brunswick

Geographic Information Systems (GIS) in Environmental Studies ENVS Winter 2003 Session III

Static risk mapping using a Geographic Information System

CLIMATE RESILIENT ALTITUDINAL GRADIENTS (CRAGs)

Watershed Classification with GIS as an Instrument of Conflict Management in Tropical Highlands of the Lower Mekong Basin

Calculating Land Values by Using Advanced Statistical Approaches in Pendik

Planning Road Networks in New Cities Using GIS: The Case of New Sohag, Egypt

Utilization and Provision of Geographical Name Information on the Basic Map of Japan*

SRJC Applied Technology 54A Introduction to GIS

STATUS OF HAZARD MAPS VULNERABILITY ASSESSMENTS AND DIGITAL MAPS

Conservation Planning evaluate land management alternatives to reduce soil erosion to acceptable levels. Resource Inventories estimate current and

Country Report on SDI Activities in Singapore *

Roles of NGII in successful disaster management

Classification of Erosion Susceptibility

Summary of Available Datasets that are Relevant to Flood Risk Characterization

GIS BASED ANALYSIS ON ENVIRONMENTAL SENSITIVE AREAS AND IDENTIFICATION OF THE POTENTIAL DISASTER HAZARDOUS LOCATIONS IN SOUTHERN SRI LANKA

Interpretive Map Series 24

Assessing Hazards and Risk

Environmental Management Information System (EMIS)

)UDQFR54XHQWLQ(DQG'tD]'HOJDGR&

SDI DEVELOPMENT UPDATES OF INDONESIA

The Coastal Change Analysis Program and the Land Cover Atlas. Rebecca Love NOAA Office for Coastal Management

Enhancing Weather Information with Probability Forecasts. An Information Statement of the American Meteorological Society

The Use of Geographic Information Systems (GIS) by Local Governments. Giving municipal decision-makers the power to make better decisions

Landslide Hazard Assessment Methodologies in Romania

Lessons learnt using GIS to map geological hazards following the Christchurch earthquake

International Symposium on Natural Disaster Mitigation. Local vulnerability assessment of landslides and debris flows

Land Accounts - The Canadian Experience

DATA SOURCES AND INPUT IN GIS. By Prof. A. Balasubramanian Centre for Advanced Studies in Earth Science, University of Mysore, Mysore

World Geography. WG.1.1 Explain Earth s grid system and be able to locate places using degrees of latitude and longitude.

CENSUS MAPPING WITH GIS IN NAMIBIA. BY Mrs. Ottilie Mwazi Central Bureau of Statistics Tel: October 2007

An Internet-Based Integrated Resource Management System (IRMS)

USING GIS CARTOGRAPHIC MODELING TO ANALYSIS SPATIAL DISTRIBUTION OF LANDSLIDE SENSITIVE AREAS IN YANGMINGSHAN NATIONAL PARK, TAIWAN

REGIONAL SDI DEVELOPMENT

Spatial Analysis of Natural Hazard and Climate Change Risks in Peri-Urban Expansion Areas of Dakar, Senegal

Sediment yield estimation from a hydrographic survey: A case study for the Kremasta reservoir, Western Greece

Geospatial natural disaster management

Chapter 5. GIS The Global Information System

GOAL 7 AREAS SUBJECT TO NATURAL DISASTERS AND HAZARDS. To protect life and property from natural disasters and hazards.

Application of GIS for Natural Resource Management. Atesmachew, Girma, Yasin

Submitted to: Central Coalfields Limited Ranchi, Jharkhand. Ashoka & Piparwar OCPs, CCL

What is GIS? Introduction to data. Introduction to data modeling

1.1 What is Site Fingerprinting?

DEVELOPMENT OF FLOOD HAZARD VULNERABILITY MAP FOR ALAPPUZHA DISTRICT

CLICK HERE TO KNOW MORE

GIS Geographical Information Systems. GIS Management

Physical Geography: Patterns, Processes, and Interactions, Grade 11, University/College Expectations

Applications of GIS in Electrical Power System

DOWNLOAD OR READ : GIS BASED FLOOD LOSS ESTIMATION MODELING IN JAPAN PDF EBOOK EPUB MOBI

Determination of flood risks in the yeniçiftlik stream basin by using remote sensing and GIS techniques

VIDEO: The World In A Box: Geographic Information Systems

Assessment and valuation of Ecosystem Services for decision-makers

Practical reliability approach to urban slope stability

Looking at Communities: Comparing Urban and Rural Neighborhoods

Geographic Information Systems

Update ecosystem services analysis in SEEA Experimental Ecosystem Accounting

Identifying Audit, Evidence Methodology and Audit Design Matrix (ADM)

Transcription:

DEVELOPMENT AND APPLICATION OF HIGH- RESOLUTION GIS-BASED ATLAS TO ENHANCE WATERSHED MANAGEMENT IN THE PHILIPPINES Nathaniel C. Bantayan Institute of Renewable Natural Resources College of Forestry and Natural Resources University of the Philippines at Los Banos, College, Laguna, Philippines ABSTRACT This Bulletin uses GIS and modeling to enhance the management of four important watersheds in the Philippines. The analyzed data was combined into an Atlas showing important features of the watersheds, including their susceptibility to fire, floods and erosion. It is proposed to develop similar Atlases for the remaining important watersheds of the Philippines. Knowledge of their characteristics, and changes in these over time because of changes in land use, will enable the government to take a preventative rather than proactive response to environmental damage, and thus safeguard the country s water resources. INTRODUCTION Our watershed resources provide the "engine" for the economic development of the Philippines. Why is this so? Just take the basic and vital watershed resource called Water. Everyone should know how important water is. However, for many, the importance of water may not go beyond the provision of their basic domestic needs for drinking, cooking, bathing and washing. They may not realize the strategic role of water in developing the country. For example, water from the watersheds supports irrigation systems all over the Philippines. These irrigation systems sustain the country's food production program. In addition, many people may not know the role of water in generating electricity. President Gloria Macapagal-Arroyo recently approved the Power Reform Law. This Law included the privatization of the National Power Corporation. This corporation manages the country's watersheds which support strategic hydroelectric dams. The Power Reform Law will significantly influence the stability of the watersheds which supply water to these key hydroelectric structures. Whether or not there will be a sustainable supply of usable water will depend on the way in which the watersheds are managed. The importance of effective management of watersheds to ensure their sustainability as a source of usable water for hydroelectric generation and irrigation cannot be overemphasized. Effective watershed management requires updated, reliable and easy-to-access information about the watersheds. It has been said that "Information is power". Information about our watersheds, including the bio-physical aspects, is indispensable. Key watershed information can be obtained from various sources. A watershed Atlas should provide much of the available information for overall effective watershed management and development. Hence, we have developed an Atlas of selected watersheds for the Philippines. Keywords: GPS, information level, Philippines, precision farming, rural development, soil sensing, watersheds 1

THE GIS-BASED ATLAS: HISTORICAL BACKGROUND The idea of a watershed Atlas for the Philippines began as early as 1989. Initial key watersheds were selected where a prototype watershed Atlas would be prepared. Consequently, a project proposal to develop this Atlas was prepared and submitted. The project was approved in principle in 1991, but unfortunately, the project was shelved after a key official left the government service. Effects to pursue the project continued, because of several concerns. Among these were the need to have readily accessible, standardized maps of key watersheds with a uniform scale, and the need to have fully characterized watersheds, including both biophysical and climatic data. All these data should be included in a watershed Atlas. It was not until 1998 that the project to prepare an Atlas of selected watersheds in the Philippines finally began, funded by the Government. It had two components, namely: research and institutional development. The research component included hazard estimation and the forecasting of soil erosion, fire and flood in the study watersheds. As important, if not more so, was the institutional development. Through the project, the University of the Philippines at Los Banos (UPLB) established the Environmental Remote Sensing and Geo- Information (ERSG) Laboratory under the Institute of Renewable Natural Resources (IRNR). The ERSG Laboratory was equipped with the latest hardware and software, to enable it to become a world-class GIS laboratory. This laboratory is presently used, not only for research, but also for teaching and extension. As well as training students, both from the Philippines and abroad, the ERSG Laboratory provides technical services (particularly land use planning) to the entire University of the Philippines system. Local government units also make use of the facilities and expertise of the ERSG Laboratory in their planning and development. However, the key output of this project has been a printed Atlas, plus a CD-ROM, of four key watersheds: Makiling, Angat, Ambuklao-Binga and Pantabangan-Carranglan. DEVELOPMENT OF A GIS INFRASTRUCTURE The development of a GIS infrastructure highlights the importance of information technology in national development. GIS is an important tool in the management of the environment and natural resources, and more specifically watershed management. It is estimated that more than 80% of all issues and problems related to the environment are geographic in nature. The following sections provide a brief outline of the important steps in the development of a GIS infrastructure. These can be summarized into three phases: encoding and processing, analysis and modeling, and composition and display. Phase 1: GIS encoding and processing GIS encoding involves compiling all relevant data, and converting them into GIS format. In other words, a digital database should be established by scanning maps and transforming them into digital images. GIS encoding involves georeferencing (the process of locating features within a model of the surface of the earth), geocoding (the process of assigning a geographic reference to nongeographic data), and the creation of topology (the branch of mathematics that defines the relationships between features). As a result of these, it become possible to associate systematically the different geographical features with their corresponding attributes. The project gathered data from all possible sources. All these secondary data were encoded into GIS format. Maps were digitized, tables were entered into spreadsheets, and the written reports were made into standard computer files. Phase II: GIS analysis and modeling Once the data have been processed, thematic overlays can be generated according to the requirements of the analysis. Analytical procedures may include distance and proximity analysis, buffering, connectivity analysis, optimal paths, neighborhood characteristics, variability, shape and pattern assessment, overlay analysis, prescribing 2

mitigation measures based on vulnerabilities, suitability and capability assessments, etc. As a modeling tool, GIS facilitates the development of integrative models that are able to address in a more or less hierarchical manner resource allocation and location problems. Such models must be able to deal with the complexity of the decision to be made, considering the three (spatial) dimensions, multiple objectives, multiple alternatives and multiple social interests and preferences. Phase III: GIS display and output This phase includes presentations to policy makers and other interested parties. As much as possible, members of the public should have access to Phase III, to generate the necessary response and debate over the results of the analysis. APPLICATION The project was applied in three ways; modeling of erosion, modeling of fire hazards, and modeling of liability to floods. Modeling of susceptibility to erosion There are basically three types of erosion models: empirical, conceptual and those based on physical data. Physically-based models are intended to represent a synthesis of the individual components which affect erosion, including the complex interactions between various factors and their spatial and temporal variabilities. Empirical models are based on inductive logic, and are generally applied to conditions for which the parameters have been calibrated, while conceptual models lie somewhere between the two. Conceptual models are based on equations dealing with spatially lumped forms of water and sediment continuity. Some of these models include Zingg's model, the Musgrave equation, and the USLE (universal soil loss equation). The USLE is an empirically-derived equation that estimates soil loss on the basis of four groups of physical factors, namely: climatic erosivity; soil erodibility; topography; and land use, management and conservation practices. It evolved out of the modeling work of Zingg, Musgrave and others. In our project, we adjusted the equation to represent the circumstances occurring in the selected watersheds. The popularity of the USLE probably lies in its simplicity and ease of use. Most process-based erosion models require the collection of substantial amounts of complex data, in addition to their complex mechanics. The USLE gives an approximation of the extent of soil erosion. However, users should not try to extend the use of the equation in order to estimate soil loss from drainage basins, because it is not intended to estimate gully and streambank erosion. Moderate 7% 0.13% 0.85% Moderate 7.32% 31% 62% 57.94% 33.76% Fig. 1. Soil erosion susceptibility from land use at Makiling Watershed in 1992 Fig. 2. Soil erosion susceptibility from land use at Makiling Watershed in 1997 3

34% Moderate 3% 71% 29% 63% Moderate Fig. 3. Soil erosion susceptibility of the Ambuklao-Binga watershed Fig. 4. Soil erosion susceptibility of the Angat watershed 67% 28% Fig. 5. Soil erosion susceptibility of the Pantabanan-gan-Carranglan watershed Moderate 6% What is perhaps more important is that the basic principles of the equation can be applied in countries which do not have a vast accumulation of research data. The important thing is to use whatever information is already available, while leaving room for the system to be improved or modified as new information comes in from research. In equation form, soil loss is: A = R K LS C P (4.1) where A - Average soil loss per unit area R - Rainfall erosivity factor K - Soil erodibility factor LS - Topographic factor C - Cropping management factor P - Erosion control practices factor For all the watersheds, the modified Universal Soil Loss Equation (USLE) was used to assess susceptibility to soil erosion. The factors used were soil, slope, landuse and rainfall. Five soil erosion susceptibility classes were used, namely: very low, low, moderate, high and very high. The susceptibility to soil erosion of Makiling Watershed was generally higher in 1997 compared to 1992, because of changes in land use (Fig. 1 and Fig. 2). In 1997, there was an increase in the areas associated with low, moderate and high soil erosion susceptibility. In addition, fewer areas (58%) had very low susceptibility to soil erosion in 1997, compared to 61.50% in 1992. However, the areas with very high susceptibility to soil erosion remained the same. In the Ambuklao-Binga, Watershed, about 54,022 ha (63%) of the total land area had very low susceptibility to soil erosion, while an additional 28,975 ha (34%) of the total land area ha had low susceptibility. Approximately 33 ha (less than 1%) of the total area is highly susceptible to soil erosion (Fig. 3). In the Angat Watershed (Fig. 4) about 4

Table 2. Susceptibility to fire of the study watersheds Risk of fire Based on proximity Based on availability to human beings of fuel Makiling watershed 68% 53% Moderate 28% Moderate 37% 4% 10% Angat watershed 92% 53% Moderate 5% Moderate 38% 3% 9% Ambuklao-Binga 97% 28% watershed Moderate 2% Moderate 47% 1% 25% Pantabanangan- 83% 83% Carranglan watershed Moderate 15% Moderate 15% 2% 2% 39,791 ha, or 71% of the total land area, had very low susceptibility to erosion, while about 16,122 ha or 29% of the total land area had low susceptibility. Less than 1% of the total land area of the watershed was moderately or very susceptible to soil erosion. In the Pantabangan-Carranglan Watershed, a total of 66% of the total land area had very little soil erosion. Just under 6% of the total land area was associated with moderate susceptibility to soil erosion. The class of very high soil susceptibility to erosion included less than 1% of the watershed. Modeling of susceptibility to fire Susceptibility to fire of the four watersheds was assessed in terms of the availability of fuel and proximity to human activities. Variables associated with fuel are land use, drainage, aspect and slope. The variables associated with proximity to human activities are landuse (including residential use), drainage, elevation, and the presence of roads. Three fire susceptibility classes were used: low, moderate and high. In terms of availability of fuel, using the 1997 landuse of Makiling watershed, about 53.59% of the total land area of the reserve had a low level of susceptibility to fire. About 37% of the total land area was moderately susceptible, while only about 9% of the total land area was highly susceptible to fire. In terms of proximity to human activities, about 84% of the total land area of the reserve had low susceptibility in 1992. In 1997, this area with low susceptibility to fire fell to 68%. The area with moderate susceptibility to fire rose from 14% to 68% of the total watershed area over the same period (Table 2). Table 2 shows the susceptibilities of the other study watersheds. Modeling of susceptibility to flood Key information was used to assess potential flooding on low-lying areas and flood plains of the four watersheds. This information included GIS-based elevation and drainage maps of the watersheds. Rainfall data were also used. For the Makiling Forest Reserve, prolonged heavy rainfall could cause various levels of flooding in low-lying areas and flood plains. The same was true of the other three watersheds. By identifying these areas, we hope to help the authorities to take preventative action to avoid future problems. 5

CONCLUSION It is clear that an Atlas of this kind for the most important watersheds in any country is indispensable for the overall effective management and development of the watersheds. This first Atlas is a valuable basis for the development of similar Atlases for other watersheds in the Philippines. REFERENCES Bantayan, N.C. 1996. Participatory Decision Support System: Case Study of mt. Makiling Forest Reserve, Philippines. Department of Geomatics, The University of Melbourne, Australia. Saplaco, S.R., N.C. Bantayan and R.V.O. Cruz. 2001. GIS-Based Atlas of Selected Watersheds in the Philippines. DOST- PCARRD, Philippiens 6