Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x.

Similar documents
(A) 1 (B) 1 + (sin 1) (C) 1 (sin 1) (D) (sin 1) 1 (C) and g be the inverse of f. Then the value of g'(0) is. (C) a. dx (a > 0) is

A Study of the Solutions of the Lotka Volterra. Prey Predator System Using Perturbation. Technique

Revisiting what you have learned in Advanced Mathematical Analysis

EXERCISE - 01 CHECK YOUR GRASP

Inverse Fourier Transform. Properties of Continuous time Fourier Transform. Review. Linearity. Reading Assignment Oppenheim Sec pp.289.

16.512, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 3: Ideal Nozzle Fluid Mechanics

Elementary Differential Equations and Boundary Value Problems

LINEAR 2 nd ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS

Lecture 4: Laplace Transforms

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

EXERCISE - 01 CHECK YOUR GRASP

More on FT. Lecture 10 4CT.5 3CT.3-5,7,8. BME 333 Biomedical Signals and Systems - J.Schesser

Fourier Series and Parseval s Relation Çağatay Candan Dec. 22, 2013

3.4 Repeated Roots; Reduction of Order

Fourier. Continuous time. Review. with period T, x t. Inverse Fourier F Transform. x t. Transform. j t

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors

Name:... Batch:... TOPIC: II (C) 1 sec 3 2x - 3 sec 2x. 6 é ë. logtan x (A) log (tan x) (B) cot (log x) (C) log log (tan x) (D) tan (log x) cos x (C)

Math 266, Practice Midterm Exam 2

1 Finite Automata and Regular Expressions

3+<6,&6([DP. September 29, SID (last 5 digits): --

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15]

MATHEMATICS PAPER IIB COORDINATE GEOMETRY AND CALCULUS. Note: This question paper consists of three sections A, B and C.

Jonathan Turner Exam 2-10/28/03

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues

TOPIC 5: INTEGRATION

2008 AP Calculus BC Multiple Choice Exam

Instructions for Section 1

Chapter 3. The Fourier Series

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

( ) Differential Equations. Unit-7. Exact Differential Equations: M d x + N d y = 0. Verify the condition

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument

CS 541 Algorithms and Programs. Exam 2 Solutions. Jonathan Turner 11/8/01

Derivation of the differential equation of motion

Equations and Boundary Value Problems

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS

Week 06 Discussion Suppose a discrete random variable X has the following probability distribution: f ( 0 ) = 8

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1

Midterm. Answer Key. 1. Give a short explanation of the following terms.

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule

Copyright 2012 Pearson Education, Inc. Publishing as Prentice Hall.

a dt a dt a dt dt If 1, then the poles in the transfer function are complex conjugates. Let s look at f t H t f s / s. So, for a 2 nd order system:

Calculus II Solutions review final problems

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero.

Appendix. In the absence of default risk, the benefit of the tax shield due to debt financing by the firm is 1 C E C

Systems of First Order Linear Differential Equations

Prelim 2 Math Please show your reasoning and all your work. This is a 90 minute exam. Calculators are not needed or permitted. Good luck!

( ) ( ) ( ) ( ) ( ) ( y )

2.1. Differential Equations and Solutions #3, 4, 17, 20, 24, 35

Relation between Fourier Series and Transform

Midterm exam 2, April 7, 2009 (solutions)

Practice papers A and B, produced by Edexcel in 2009, with mark schemes. Practice Paper A. 5 cosh x 2 sinh x = 11,

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S.

Things I Should Know Before I Get to Calculus Class

MAXIMA-MINIMA EXERCISE - 01 CHECK YOUR GRASP

The Laplace Transform

Functions and Graphs 1. (a) (b) (c) (f) (e) (d) 2. (a) (b) (c) (d)

MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS SEMESTER TWO 2014 WEEK 11 WRITTEN EXAMINATION 1 SOLUTIONS

FL/VAL ~RA1::1. Professor INTERVI of. Professor It Fr recru. sor Social,, first of all, was. Sys SDC? Yes, as a. was a. assumee.

Polygons POLYGONS.

HIGHER ORDER DIFFERENTIAL EQUATIONS

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

08 - DIFFERENTIAL CALCULUS Page 1 ( Answers at the end of all questions ) ( d ) it is at a constant distance from the o igin [ AIEEE 2005 ]

The Procedure Abstraction Part II: Symbol Tables and Activation Records

1 Introduction to Modulo 7 Arithmetic

1- I. M. ALGHROUZ: A New Approach To Fractional Derivatives, J. AOU, V. 10, (2007), pp

Lecture 21 : Graphene Bandstructure

1997 AP Calculus AB: Section I, Part A

Section 4.3 Logarithmic Functions

Suggested Solution for Pure Mathematics 2011 By Y.K. Ng (last update: 8/4/2011) Paper I. (b) (c)

Laplace Transform. National Chiao Tung University Chun-Jen Tsai 10/19/2011

CONTINUITY AND DIFFERENTIABILITY

ASSERTION AND REASON

Systems of First Order Linear Differential Equations

Let s look again at the first order linear differential equation we are attempting to solve, in its standard form:


SOLUTIONS. 1. Consider two continuous random variables X and Y with joint p.d.f. f ( x, y ) = = = 15. Stepanov Dalpiaz

Decline Curves. Exponential decline (constant fractional decline) Harmonic decline, and Hyperbolic decline.

The Mathematics of Harmonic Oscillators

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, *

u r du = ur+1 r + 1 du = ln u + C u sin u du = cos u + C cos u du = sin u + C sec u tan u du = sec u + C e u du = e u + C

Walk Like a Mathematician Learning Task:

Math 102 Spring 2008: Solutions: HW #3 Instructor: Fei Xu

MATHEMATICS (B) 2 log (D) ( 1) = where z =

INTERQUARTILE RANGE. I can calculate variabilityinterquartile Range and Mean. Absolute Deviation

Calculus II (MAC )

Inventory Management Model with Quadratic Demand, Variable Holding Cost with Salvage value

ENJOY MATHEMATICS WITH SUHAAG SIR

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7

IIT JEE MATHS MATRICES AND DETERMINANTS

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

x, x, e are not periodic. Properties of periodic function: 1. For any integer n,

EE1000 Project 4 Digital Volt Meter

Differentiation of Exponential Functions

On the Existence and uniqueness for solution of system Fractional Differential Equations

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

CSE 245: Computer Aided Circuit Simulation and Verification

10. Limits involving infinity

Transcription:

IIT JEE/AIEEE MATHS y SUHAAG SIR Bhopl, Ph. (755)3 www.kolsss.om Qusion. & Soluion. In. Cl. Pg: of 6 TOPIC = INTEGRAL CALCULUS Singl Corr Typ 3 3 3 Qu.. L f () = sin + sin + + sin + hn h primiiv of f() w.r.. is 3 3 3sin 3 3os 3 () + C () + C () sin 3 + C (d) os3 + C whr C is n rirry onsn. (od-vt3paq5) Qu.. If h dpndn vril y is hngd o z y h susiuion y = n z hn h diffrnil quion + = + + is hngd o d z d = dz os z + k, hn h vlu of k quls d d y ( y) dy d y d () () () (d) (od-vt3paq) l n d is qul o (od-vt5paq) Qu. 3. () + C (). n Qu.. Th vlu of h dfini ingrl l () ( l ) 8 8 (8) + n + C (d) Non f '() + f '( ) d quls (od-vt5paq3) () f (8) + f ( 8) () f (8) f ( 8) () (d) f ( 8) f (8) Qu. 5. ln + d ln quls (od-vt5paq) () () () (d) Qu. 6. If g() os d, = hn g () g() + g( ) () g() g( ) () g()g + quls (od-vt5paq5) (d) [ g() g ] Qu. 7. L f posiiv funion. L = ( ) = ( ) I Thn is I k I f d; I f d, k k () k () / () (d) k whr k >. (od-vt5paq7) Qu. 8. d 6 hs h vlu qul o (od-vt5paq8) () C r s () r s + C () C 6 6 (d) 6 6 + C

IIT JEE/AIEEE MATHS y SUHAAG SIR Bhopl, Ph. (755)3 www.kolsss.om Qusion. & Soluion. In. Cl. Pg: of 6. d = + + + d, hn (od-vt5paq) Qu. 9. If () =, =, = () =, =, = () =, =, = (d) =, =, = Qu.. If n - d= - ln hn h vlu of h dfini ingrl ( + ) n d quls () l n () +l n () l n (d) l n (od-vt5paq) Qu.. n d n n lim n quls (od-vt5paq) () () () (d) Qu.. If f is oninuous funion nd F() = ( + 3). f (u)du d hn F"() is qul o () 7f () () 7f '() () 3f '() (d) 7f () (od-vt5paq5) os l n sin d is qul o (od-vt5paq6) sin Qu. 3. ( + + ) () / () () (d) Qu.. L f :[, ) R oninuous srily inrsing funion, suh h (od-vt5paq7) 3 f () =.f ()d for vry. Th vlu of f (6) is () () 6 () (d) 36 Qu. 5. If h vlu of dfini ingrl / + o d, is qul o / 6 / + hn ( + ) quls sin / 6 () () + () (d) 3 (od-vt5paq8) n Qu. 6. L J = l ln d 3 nd K = d + hn + () J + K = () J K = () J + K < (d) non (od-vt5paq)

IIT JEE/AIEEE MATHS y SUHAAG SIR Bhopl, Ph. (755)3 www.kolsss.om Qusion. & Soluion. In. Cl. Pg: 3 of 6 Qu. 7. Th vlu of > sisfying h quion l n d =, is (od-vt5paq) () () () (d) Qu. 8. If + u F() = f ()d whr f() = du hn h vlu of F"() quls (od-vt5paq3) u () 7 7 () 5 7 () 57 (d) 5 7 68 Qu. 9. L f oninuous funion on [, ]. If F() = f ()d f ()d ( ( + ) ) som (,) hn hr is suh h (od-vt8paq6) () f ()d = f ()d () f ()d f ()d = f ()( + ) () f ()d f ()d = f ()( ( + ) ) (d) f ()d + f ()d = f ()( ( + ) ) Qu.. Th vlu of h dfini ingrl = + os sin / I os sin os sin sin sin d, / () ( + ) () ( os sin) os / () os sin is / / (d) [ os+ sin ] / () ( + ) () ( os+ sin) os / () / / (d) [ os+ sin ] + (odvtpaq) Qu.. A nk wih piy of lirs originlly onins gms of sl dissolvd in lirs of wr. Bginning im = nd nding im = minus, wr onining gm of sl pr lirs nrs h nk h of lirs pr minu, nd h wll mid soluion is drind from h nk r of lir/minu. Th diffrnil quion for h moun of sl y in h nk im is () dy = y d + dy = () d ( ) () dy = y d + y + (d) dy = y d 5 + (od-vtpaq)

Qu.. L y IIT JEE/AIEEE MATHS y SUHAAG SIR Bhopl, Ph. (755)3 www.kolsss.om Qusion. & Soluion. In. Cl. Pg: of 6 y = y() soluion o h diffrnil quion y' + y =, hn lim is (od-vtpaq) () zro () () (d) Non isn. Qu. 3. Th r of h rgion oundd low y y = sin, ov y y = os nd on h lf y y-is, is () () () + (d) (od-vtpaq7) Qu.. d is qul o (od-vt3paq) () () () (d) Qu. 5. If. d hs h vlu qul o k hn h vlu of k quls (od-vtpaq) Qu. 6. L () () () 8 (d) d + p + q = n + C 8 r N nd nd no disin, hn h vlu of ( p + q + r) quls (od-vtpaq5) () 6 () 6 () 6 (d) 6 / sin l n(sin ) o d is (od-vt7paq7) Qu. 7. ( + ) () () () (d) Indrminn Qu. 8. L () y = l n + os hn h vlu of d () + os d y () + quls (od-vt7paq8) y / ( + os ) (d) ( + os ) d Qu. 9. Th vlu of dfini ingrl is (od-vt8paq) ( + )( + ) () / () / () / 8 (d) /6 Qu. 3. Th prssion 3 d y y on h llips 3 + y = is qul o (od-vt9paq5) d () 9 () 9 () 9 (d) 9 Qu. 3. Th vlu of h dfini ingrl ( N ) sin d n is qul (od-vt9paq6) + os n () n l n () n l n () nl n (d) n ln

IIT JEE/AIEEE MATHS y SUHAAG SIR Bhopl, Ph. (755)3 www.kolsss.om Qusion. & Soluion. In. Cl. Pg: 5 of 6 Comprhsion Typ # Prgrph for Q. o Q. 3 A urv in rprsnd prmrilly y h quions = os nd y = sin is prmr. Thn. Th rlion wn h prmr nd h ngl α wn h ngn o h givn urv nd h -is is givn y, quls (od-vtpaq,,3) () α () + α () α d y (d) α. Th vlu of h poin whr = is d () () () (d) 3 F() y d h poin h vlu of F F() is 3. If = ( + ) / () () () (d) # Prgrph for Q. o Q. 6 L f () is drivl funion sisfying f() f() d = + n( + ) l wih f () =l n. L g() = f '() hn (od-vtpaq,5,6,). Rng of g () is () [, ) () [, ) () [, ) (d) [, ) 5. For h funion f whih on of h following is orr? () f is nihr odd nor vn () f is rnsndnl () f is injiv (d) f is symmri w.r.. origin. 6. f () d quls () l n ( 3+ ) () l n ( + ) () l n + (d) # 3 Prgrph for Q. 7 o Q. 9 Suppos nd r posiiv rl numrs suh h =. L for ny rl prmr, h disn from h origin h lin + y = dnod y D() hn (od-vt6paq.5.6) 7. Th vlu of h dfini ingrl d I = is qul o ( D() ) + () + () + 8. Th vlu of whih I is minimum, is () 9. Minimum vlu of I is () () () () + (d) (d) () () (d) + r + +

IIT JEE/AIEEE MATHS y SUHAAG SIR Bhopl, Ph. (755)3 www.kolsss.om Qusion. & Soluion. In. Cl. Pg: 6 of 6 Assrion & Rson Typ In his sion h qu. onins STATEMENT- (Assrion) & STATEMENT-(Rson).Eh qusion hs hois (A), (B), (C) nd (D), ou of whih only on is orr. Bul (A) STATEMENT- is ru, STATEMENT- is Tru; STATEMENT- is orr plnion for STATEMENT-. Bul (B) STATEMENT- is Tru, STATEMENT- is Tru; STATEMENT- is NOT orr plnion for STATEMENT-. Bul (C) STATEMENT- is Tru, STATEMENT- is Fls. Bul (D) STATEMENT- is Fls, STATEMENT- is Tru. Qu.. Smn : L f () = + d is odd funion nd g() = f '() is n vn funion. us (od-vtpaq8) Smn : For diffrnil funion f () if f '() is n vn funion hn f() is n odd funion. Qu.. Smn : Th soluion of ( y d dy) o = ny d n is sin y = y us Smn : Suh yp of diffrnil quions n only solvd y h susiuion = vy. Qu. 3. Considr h following smns (od-vt6paq) (od-vtpaq) ) Smn : us 3 3 d = = = 3 3 Smn : If f is oninuous on [,] hn f ()d = F() F() whr F is ny nidriviv of f, h is F' = f. Mor hn On My Corr Typ Qu.. Whih of h following dfini ingrl(s) hs/hv hir vlu qul o h vlu of ls on of h rmining hr? (od-vtpaq3) () / 6 + sin.os d sin () / 6 + os / sin / os / sin / os d () / 6 os + sin d Qu.. Whih of h following dfini ingrl vnishs? (d) 3/ d 3 (od-vtpaq6) n () ( n+ ) / d n N + () log ( log ) ln d () \ sin d (d) os m.sin n d, whr ( m, n I) nd ( m n) is vn ingr.

IIT JEE/AIEEE MATHS y SUHAAG SIR Bhopl, Ph. (755)3 www.kolsss.om Qusion. & Soluion. In. Cl. Pg: 7 of 6 Qu. 3. Th funion f is oninuous nd hs h propry f ( f ()) = for ll [,] hn nd J = f ()d () 3 f + f = () h vlu of J qul o (od-vt8paq) () f.f = 3 3 (d) / sin d 3 hs h sm vlu s J. ( sin + os ) Qu.. Th diffrnil quion orrsponding o h fmily of urvs y = A os( B + D ), is () of ordr 3 () of ordr () dgr (d) dgr (od-vtpaq3) d Qu. 5. quls (od-vt7paq3) + + () + n + C 3 3 () + 3 3 3 n n + C () + n + C 3 3 (d) + 3 3 3 n + n + C whr C is n rirry onsn. Qu. 6. If h indpndn vril is hngd o y hn h diffrnil quion d y dy dy d d d + = is hngd o d dy d = k dy whr k quls (od-vt7paq6) () () () (d) d dy n d Qu. 7. L L = lim n whr R hn L n (od-vt9paq9) n + () () () (d) Sujiv Typ ( Up o digi) 7 Qu.. If h vlu of h dfini ingrl ( ) (od-vt8pdq) 7 C7. d is qul o k whr k N. Find k.

Qu.. D. No h IIT JEE/AIEEE MATHS y SUHAAG SIR Bhopl, Ph. (755)3 www.kolsss.om Qusion. & Soluion. In. Cl. Pg: 8 of 6 [SOLUTION] Singl Corr Typ 3 3 3 3 3 3 3 sin + sin + + sin + = sin + sin + + sin + = sin 3 ( + + = 3 + 3 + 3 = 3) 3 os 3 sin 3 d C. = + Qu.. D. Givn y = n z dy dz s z. d = d... () Now d y d z dz d = s z. +. (s z) [using produ rul] d d d d d z dz d dz = s z. +. (s z). d d dz d s z. d y d z dz = +.s z.n z d d d...() Now ( ) ( + ) y n z + = +.s z. = + + n z.s z. + y d s z d d dy dz dz dz dz = + s z + n z.s z d d From () nd (3) w hv RHS of() = (3)...(3) d z dz s z. = + s z d d d z dz os z k. = + = d d d n d d n Qu. 3. A. I = ( ln ) d = ( + ln ) d L = = l = ( + l ) = = + = + I d C C Qu.. B. f '() + f '( ) I = d; us King nd dd Rsul + Qu. 5. C. I = + ln d ln d n = n + d = d I = = pu l ( l ) Qu. 6. A. + + g( + ) = os d = os d + os d = g() + os d = g() + g. k Qu. 7. D. = ( ) = ( ) I f d;i f d k k k Using King k k k I = ( k)f ( ) d I = f ( ) d I = f ( ) d = I =. I k k k I

IIT JEE/AIEEE MATHS y SUHAAG SIR Bhopl, Ph. (755)3 www.kolsss.om Qusion. & Soluion. In. Cl. Pg: 9 of 6 Qu. 8. C. d d d pu = d = = 6 6 6 L 6 = u ; 3 du du; d = du 6 u Qu. 9. A. u du u 6 = C C. 6 = + = + u 6 6. d = + + + d diffrniing oh sids, w g. = + + + + = ( + ( ) + ) =,( ) =, = =, =, =. Qu.. A. I = n ( + )d = o d n d = + + + = n d n d = + ( ) = n d n ( ) d n d n n. + = = = l l Qu.. B. Qu.. A. n+ n+ n n lim. = lim. lim. =. n + n + + / n n n n n n F'() = ( + 3) f (u)du f ''() = ( + 3)f () + f (u)du. F''() = 7f () + 7f (). sin Qu. 3. C. Ingrnd is (.)' = = = = sin sin..... / Qu.. B. Givn 3 f () =.f ()d diffrniing, 3f ()f '() = f () f () f '() = ; 3 f () = + C Bu f () = C = f (6) = 6. 6 / os o os d; pu = ; d = d Qu. 5. A. ( + ) / 6 / / ( + ) = ( ) os () o().os () d os () o().os () d / 6 / 6 / 6 6 / 6 = os () = + + =.

IIT JEE/AIEEE MATHS y SUHAAG SIR Bhopl, Ph. (755)3 www.kolsss.om Qusion. & Soluion. In. Cl. Pg: of 6 ( + ) ln ln d Qu. 6. A. J + K = d = 3 + sr = J + K = ( J + K) J + K =. + Qu. 7. A. l n I = ln d = ln.. d n = l = = ` ln = [ ln ] = ( s > ) ln = =. Qu. 8. C. Now 8 8 +.. + f '() = =... () F() = f ()du F'() = f () F''() = f ''() F''() = f '() Form () f '() = 56 + = 57. Qu. 9. B. Givn F() = f ()d f () d ( d ( + ) )... () s f is oninuous hn F() is lso oninuous. Also pu =. F() = f () d = f () d nd pu = hn F () = F() hn Roll s horm is pplil o F () som (, ) suh h F'() = F'() = f ()d f () d + ( ( + )) f () + f () = Now [ ] F'() f () d f () d = f () ( + ) [ ] F = f () d ( ) Qu.. A. / + os os I = os(sin ) + sin(sin ) d / = + + / [{ os(sin ) sin(sin ) } os { os(sin ) sin(sin ) }] d f () f '() = os + sin. Qu.. B. Qu.. B. dy y y ()() = = d + + dy y y ()() = = d + +

IIT JEE/AIEEE MATHS y SUHAAG SIR Bhopl, Ph. (755)3 www.kolsss.om Qusion. & Soluion. In. Cl. Pg: of 6 Qu. 3. (B) / / os y dy + / = sin y] os y] sin y dy / / / = =. Qu.. D. = sin θ d = 8sin θ.os θ dθ / sin θ I = 8sin θ.os θdθ = 8 os θ / sin θdθ / sin θdθ = / θ sin θ = =. Qu. 5. D. / Us Wlli s formul o g. I =. d pu = sin θ 8 sin θos θd θ. Qu. 6. C. 7 7 6 d + I = = d = d ( + ) + 7 ( ) 7 k 7 7 + 7 7 7 ln ln + = ln l + = = ln + C p + q + r = 6. 7 7 7 7 + Qu. 7. C. / / d I = sin d = sin = lim sin = = d Qu. 8. A. l ( + os ) os sin ( sin ) sin y = n + os y y = + os + os n( os ) os l + + y / =. y = = = + =. y / ( + os ) ( + os ) ( + os ) Qu. 9. B. ( + )( + ) d I =...() = d. + + (using King) d I =...() dding () nd () ( + )( + ) ( + ) d d d ( + )( + ) ( + ) ( + ) I = = = d I = = n = / ( + ) [onvr i ino vlu of dfini ingrl T is sm s]

Qu. 3. B. IIT JEE/AIEEE MATHS y SUHAAG SIR Bhopl, Ph. (755)3 www.kolsss.om Qusion. & Soluion. In. Cl. Pg: of 6 Diffrniing impliiy w hv 6 + 8yy' = nd hn y' = 3 ; yy'' + ( y' ) = 3 y diffrniing gin nd susiu for y w hv 3+ ( y' ) + yy'' = nd hn 9 3+ + yy'' = y muliplying y y, 9 3 d y 3y + + y = d 3y 9 6 3 3 + y + y y '' = 6 3 3 + + y y'' = u 3 + y = nd hn n Qu. 3. A. I = d... sin + os y y''' = vry poin on h llips] 3 9 or ( n ) n sin I = d... + os dd () nd () n n sin sin I = n d I = n d U sin g f d n f d + os = + os / / / n sin d sin d os d I =. = n = n + os + os + sin = n.ln + sin ] = n ln Ans. / Comprhsion Typ # Prgrph for Q. o Q. 3. - C.. - B. 3. - C. (i) dy d y = sin = [os + sin ] = os = [os sin ] d d dy os + sin = = n α d os sin n + = n α + α = α. (ii) (iii) s d y + d y = =. d (os sin ) d = / / F() = (os + sin ) d = sin + C F F() = + C =.

. - B. 5. - B. 6. - A. IIT JEE/AIEEE MATHS y SUHAAG SIR Bhopl, Ph. (755)3 www.kolsss.om Qusion. & Soluion. In. Cl. Pg: 3 of 6 # Prgrph for Q. o Q. 6 (I) f () f ()d = + n ( + ) l diffrniing f '() f () = + + ( + ) f '() = + rng of g() = f '() is [,). + f '() = + f '() is odd f() is vn. Ingring (), i.. d d f '() = f () = f () n () I, + = l + d whr I = ; pu = n θ d = s dθ + s θdθ + I = = os θdθ = n ( os θ o θ ) = n + C n θs θ l l + f () ln ln + C f () = ln ln + C + + l f () = lm + + + C; pu =,f () ln f () = ln C = f () = n + +. Now f ()d =. ln d + II I ingring y prs f ().] f '()d f () d = + = ln + ln + + = ln + ln + + { } = ln + n + {} = n + = n + l l l.

IIT JEE/AIEEE MATHS y SUHAAG SIR Bhopl, Ph. (755)3 www.kolsss.om Qusion. & Soluion. In. Cl. Pg: of 6 # 3 Prgrph for Q. 7 o Q. 9 7. C. 8. D. 9. B. (i) D() = = = + ( ) + ( ) + ( D() ) I = ( + ) d = = ( ) ( ) ( ) + ( ) = = = +. (ii) Now pu I = I = + = + I is minimum if = =. = = (iii) nd Imin = =. Qu.. C. If f () is odd f '() Qu.. C. Qu. 3. D. Assrion & Rson Typ is vn u onvrs is no ru.g. If f '() = sin hn f () = sin os + C ; f ( ) = sin + os + C f () + f ( ) = onsn whih nd no o zro For S-: f () = + d; g() = + f ( ) = + d; = y f ( ) + y dy f () + f ( ) = f is odd nd g is oviously vn. 3 d dos no is. Mor hn On My Corr Typ Qu.. A,B,C,D. No h h ingrnd in A,B nd C ll rdus o (+sin ) 3 I = ( sin ) d os ] + = = ( ) os = + + 6 6 6 6 / 6 Now, D = d 3 Pu = os θ + 3sin θ d = sin θos θ dθ 3/

whn IIT JEE/AIEEE MATHS y SUHAAG SIR Bhopl, Ph. (755)3 www.kolsss.om Qusion. & Soluion. In. Cl. Pg: 5 of 6 3 = hn sin θ = θ = 6 whn = hn sin θ = θ = / / sin θ I =.sin θ os θ dθ = os θ dθ = θ sin θ = θ sin θ os θ Qu.. A,B,C,D. / 6 / 6 3 3 = = + 3 A,B,C, D. 6 (A). Pu = / nd dd o g rsul / ] / 6 / / 6 (B). n n l l d if f () = f '() = l l l l n n n n I = ln = ln = n n n l l l (C). = d = d / / I = sin d = sin d = sin d = I I = I =. / ln Alrnivly for (C); pu ( ) = I sin d = (odd funion) ln (D). sin n.os m d sin(n m) sin(n m) d = + + os(n + m) os(n m) = + = + = n + m n m n + m n m n + m n m Qu. 3. A,B,D. Givn f ( f ()) = + rpling f () ( ) f ( ) = f () + Now = = ( ) J f ()d f d f f f () = f () + f () + f =... () (A) (Using King) J = ( f () + f ( ) ) d; J = d = J =. Qu.. A,D. y = A[ os B os D sin B sin D] y = C os B + C sin B... () ( A os D C ; A sin D C ) = = = + = + y BC sin B BC os B y BC sin B BC os B y = B ( C os B + C sin B ) y = B y = B y d y dy d y yy3 yy = y =. 3 d d d

IIT JEE/AIEEE MATHS y SUHAAG SIR Bhopl, Ph. (755)3 www.kolsss.om Qusion. & Soluion. In. Cl. Pg: 6 of 6 d d + / + Qu. 5. B,C. I =. n n = = = + + / 3/ + + 3 3 / 3 3 + = n + C. 3 3 Alrnivly : ( ) d d ( + + ) ( + ) ( + + ) ( + + )( + ) ( + + )( + ) I = = = d d d d + + + = / 3 / + / 3 / ( ) d + + = = + 3 3 3 3 3 3 3 Qu. 6. A,C,D. n n n n C. Qu. 7. A, B, C Considr nd I = =.n ( n n) = n n n n + n if < = = = if > L lim n n / if A, B, C 7 Qu.. 8 L = ( ) 7 7 I C d II Sujiv Typ ( Up o digi) I I = C. +. d = C.. d 7 7 7 6 7 7 6 7 7 zro I.B.P. gin 6 mor ims 7 7 7 ( 7 )! 7! 7! = C. d =....3..5.6.7 7!!...7 8 7! 7! =. = = k = 8 7!7! 8 8 k Ans. ]