Carbonylative Coupling of Allylic Acetates with. Arylboronic Acids

Similar documents
Supporting Information

Hualong Ding, Songlin Bai, Ping Lu,* Yanguang Wang*

Supporting Information

Supporting Information. DBU-Mediated Metal-Free Oxidative Cyanation of α-amino. Carbonyl Compounds: Using Molecular Oxygen as the Oxidant

Supporting Information

Palladium-Catalyzed Oxidative Cyclization of Tertiary Enamines for Synthesis of 1,3,4-Trisubstituted Pyrroles and 1,3-Disubstituted Indoles

Domino reactions of 2-methyl chromones containing an electron withdrawing group with chromone-fused dienes

Efficient Pd-Catalyzed Amination of Heteroaryl Halides

Synthesis of Trifluoromethylated Naphthoquinones via Copper-Catalyzed. Cascade Trifluoromethylation/Cyclization of. 2-(3-Arylpropioloyl)benzaldehydes

Supporting Information

Silver-catalyzed decarboxylative acylfluorination of styrenes in aqueous media

SUPPORTING INFORMATION. Fathi Elwrfalli, Yannick J. Esvan, Craig M. Robertson and Christophe Aïssa

Supporting Information

Supporting Information. Rhodium(III)-Catalyzed Synthesis of Naphthols via C-H Activation. of Sulfoxonium Ylides. Xingwei Li*, Table of Contents

Supporting Information

Supporting Information

Supporting information for A simple copper-catalyzed two-step one-pot synthesis of indolo[1,2-a]quinazoline

Supporting Information

Poly(4-vinylimidazolium)s: A Highly Recyclable Organocatalyst Precursor for. Benzoin Condensation Reaction

Iridium-catalyzed regioselective decarboxylative allylation of. β-ketoacids: efficient construction of γ, δ-unsaturated ketones

C(sp)-C(sp 3 ) Bond Formation through Cu-Catalyzed Cross-Coupling of N-Tosylhydrazones and Trialkylsilylethyne

The First Asymmetric Total Syntheses and. Determination of Absolute Configurations of. Xestodecalactones B and C

Supporting Information

Suzuki-Miyaura Coupling of Heteroaryl Boronic Acids and Vinyl Chlorides

Supporting Information

Supporting Information

Pd(II) Catalyzed C3-selective arylation of pyridine with (hetero)arenes SUPPORTING INFORMATION

Supporting Information

Brønsted Base-Catalyzed Reductive Cyclization of Alkynyl. α-iminoesters through Auto-Tandem Catalysis

Supporting Information

for Brønsted Base-Mediated Aziridination of 2- Alkyl Substituted-1,3-Dicarbonyl Compounds and 2-Acyl-1,4-Dicarbonyl Compounds by Iminoiodanes

Divergent Synthesis of CF 3 -Substituted Polycyclic Skeletons Based on Control of Activation Site of Acid Catalysts

Supporting Information: procedures and characterization of compounds. Table of Contents

Pd-Catalyzed Hydroborylation of Alkynes: A Ligand Controlled Regioselectivity Switch for the Synthesis of α- or β-vinylboronates

Supporting Information. Cu(I)-Catalyzed Three-Component Reaction of Diazo. Compound with Terminal Alkyne and Nitrosobenzene for

Supporting Information. Sandmeyer Cyanation of Arenediazonium Tetrafluoroborate Using Acetonitrile as Cyanide Source

Supporting Information

Supporting Information for Exploration of C H and N H-bond functionalization towards 1-(1,2-diarylindol-3-yl)- tetrahydroisoquinolines

Supporting Information

Amide Directed Cross-Coupling between Alkenes and Alkynes: A Regio- and Stereoselective Approach to Substituted (2Z,4Z)-Dienamides

Supporting Information. Table of Contents. 1. General Notes Experimental Details 3-12

Supporting Information

SUPPORTING INFORMATION

Efficient Mono- and Bis-Functionalization of 3,6-Dichloropyridazine using (tmp) 2 Zn 2MgCl 2 2LiCl ** Stefan H. Wunderlich and Paul Knochel*

Supporting Information

Supporting Information. Enantioselective Organocatalyzed Henry Reaction with Fluoromethyl Ketones

Supporting Information for. An Approach to Tetraphenylenes via Pd-Catalyzed C H Functionalization

Solvent-controlled selective synthesis of biphenols and quinones via oxidative coupling of phenols

Supporting Text Synthesis of (2 S ,3 S )-2,3-bis(3-bromophenoxy)butane (3). Synthesis of (2 S ,3 S

Supporting Information

Supporting Information. Cells. Mian Wang, Yanglei Yuan, Hongmei Wang* and Zhaohai Qin*

Nanocrystalline Magnesium Oxide-Stabilized Palladium(0): An Efficient and Reusable Catalyst for the Synthesis of N-(2- pyridyl)indoles

Water-Compatible Highly Active Reusable PEG-Coated Mesoporous Silica. Supported Palladium Complex and Its Application in Organic Synthesis

Supporting Information. A rapid and efficient synthetic route to terminal. arylacetylenes by tetrabutylammonium hydroxide- and

Supporting Information:

How to build and race a fast nanocar Synthesis Information

Supporting Information for

Solvent-Controlled Pd(II)-Catalyzed Aerobic Chemoselective. Intermolecular 1,2-Aminooxygenation and 1,2-Oxyamination of

Ring-Opening / Fragmentation of Dihydropyrones for the Synthesis of Homopropargyl Alcohols

Block: Synthesis, Aggregation-Induced Emission, Two-Photon. Absorption, Light Refraction, and Explosive Detection

Photooxidations of 2-(γ,ε-dihydroxyalkyl) furans in Water: Synthesis of DE-Bicycles of the Pectenotoxins

Tetrahydrofuran (THF) was distilled from benzophenone ketyl radical under an argon

Synergistic Cu/Ir Catalysis. Table of Contents

Supporting Information. Indole Synthesis via Cobalt(III)-Catalyzed Oxidative Coupling of N-Arylureas and Internal Alkynes

Supporting Information

Supporting Information

SYNTHESIS OF A 3-THIOMANNOSIDE

SUPPORTING INFORMATION

Hai-Bin Yang, Xing Fan, Yin Wei,* Min Shi*

Fast and Flexible Synthesis of Pantothenic Acid and CJ-15,801.

Supporting Information

Synthesis of Glaucogenin D, a Structurally Unique. Disecopregnane Steroid with Potential Antiviral Activity

Supporting Information:

hydroxyanthraquinones related to proisocrinins

Identifying Lead Hits in Catalyst Discovery by Screening and Deconvoluting Complex Mixtures of Catalyst Components. Supporting Information

Palladium(0)-Catalyzed C(sp 3 )-Si Bond Formation via Formal Carbene Insertion into Si-H Bond

Iron Catalyzed Cross Couplings of Azetidines: Application to an Improved Formal Synthesis of a Pharmacologically Active Molecule

Supporting Information

N-Heterocyclic Carbene-Catalyzed Conjugate Additions of Alcohols

Supplementary Information. Direct difunctionalization of alkynes with sulfinic acids and

Supporting Information

Supporting Information

Supplementary Information

An Efficient Total Synthesis and Absolute Configuration. Determination of Varitriol

Synthesis of borinic acids and borinate adducts using diisopropylaminoborane

Electronic Supplementary Information

Supporting Information

Supplementary Note 1 : Chemical synthesis of (E/Z)-4,8-dimethylnona-2,7-dien-4-ol (4)

Highly Regioselective Lithiation of Pyridines Bearing an Oxetane Unit by n-buthyllithium

Supporting Information for Synthesis of C(3) Benzofuran Derived Bis-Aryl Quaternary Centers: Approaches to Diazonamide A

Supporting Information. Expeditious Construction of the DEF Ring System of Thiersinine B

Formal Carbon Insertion of N-Tosylhydrazone into B-B and B-Si Bonds: gem-diborylation and gem-silylborylation of sp 3 Carbon

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry Supplementary data

1. Reagents: All commercial materials were used as received unless otherwise noted. The following solvents were obtained from a JC Meyer solvent dispe

Reactions. James C. Anderson,* Rachel H. Munday. School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, UK

Synthesis of Secondary and Tertiary Amine- Containing MOFs: C-N Bond Cleavage during MOF Synthesis

Supplementary Information

Supporting Information

SUPPORTING INFORMATION

Supporting Information. Contents

Transcription:

Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Carbonylative Coupling of Allylic Acetates with Arylboronic Acids Wei Ma, a Ting Yu, Dong Xue,* a Chao Wang a and Jianliang Xiao* a,b a Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi an, 710062, China b Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK Contents 1. General information S2 2. Optimization of reaction conditions S2 3. Typical procedure for allylic carbonylation of aryl boronic acids with allyl acetate S5 4. Typical reaction procedure for the synthesis of α, β-unsaturated ketones S6 5. Procedures for study of reaction mechanism. S7 6. Data for products S8 7. References S17 8. Copies of the 1 H NMR and 13 C NMR spectra of products S19 S1

1. General information NMR spectra were recorded on a 400 MHz spectrometer with TMS as the internal standard. All coupling constants (J values) were reported in Hertz (Hz). Data are presented as follows: chemical shift in ppm and multiplicity as s = singlet, d = doublet, t = triplet, q = quartet and m = multiplet. Thin layer chromatography (TLC) was performed on glass backed silica gel plates. Column chromatography was performed on silica gel 200-300 mesh. Flash chromatography was performed with freshly distilled solvents. HRMS (ESI) were performed on a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer. 2. Optimization of reaction conditions 2.1 The purification of aryl boronic acids Aryl boronic acids were purified by the following method: 10 mmol of arylboronic acid was dissolved in 15 ml of 1 M NaOH solution and stirred for 20 min. 1 M HCl solution was added dropwise and a white precipitate formed instantly when ph value was adjusted to 7. The white solid was filtered and recrystallised from H 2 O/CH 3 CN. The solid was filtered, dried under reduced pressure and used directly. 2.2 Typical reaction procedure for the optimization of reaction conditions The reaction was carried out in an autoclave containing a 10 ml Teflon reaction tube. Pd source (0.02 mmol), ligand (0.05 mmol) and a magnetic stir bar were placed in the tube, which was then capped with a stopper. Then, aryl boronic (0.5 mmol), allyl acetate (1mmol), solvent (3 ml) were added to the tube. The tube was placed in the autoclave. Once sealed, the autoclave was purged several times with CO at room temperature and heated in an oil bath at 120 C for 12 hours. The autoclave was then cooled to room temperature and vented to discharge the excess CO. Water (10 ml) was added, and the product was extracted with EA (3 3 ml). The organic layers were washed with brine, dried over Na 2 SO 4, and evaporated. The crude product was purified by column chromatography on silica gel using a mixture of ethyl acetate and petroleum ether as eluent to give the desired product. Structures of ligands screened in S2

this paper are shown in Scheme S1. Table S1 Screening of ligands and Pd sources Entry cat ligand Base solvent Yield 1 Pd(PPh 3 ) 4 0 KOH PhCH 3 7.5% 2 Pd(PPh 3 ) 4 0 0 PhCH 3 trace 3 No 0 KOH PhCH 3 0 4 Pd(OAc) 2 0 KOH PhCH 3 0 5 Pd(dba) 3 0 KOH PhCH 3 0 6 Pd(PPh 3 ) 4 PPh 3 (2%) KOH PhCH 3 10% 7 Pd(OTFA) 2 PPh 3 (8%) KOH PhCH 3 0 8 Pd(OAc) 2 PPh 3 (8%) KOH PhCH 3 15% 9 PdCl 2 PPh 3 (8%) KOH PhCH 3 0 10 Pd(OAc) 2 [HP(t-Bu) 3 ]BF 4 KOH PhCH 3 9% 11 Pd(OAc) 2 DPPF KOH PhCH 3 trace 12 Pd(OAc) 2 DPPE KOH PhCH 3 0 13 Pd(OAc) 2 DPPP KOH PhCH 3 0 14 Pd(OAc) 2 BINAP KOH PhCH 3 0 15 Pd(OAc) 2 A KOH PhCH 3 16 Pd(OAc) 2 B KOH PhCH 3 0 0 17 Pd(OAc) 2 C KOH PhCH 3 16% 18 Pd(OAc) 2 PCy 3 KOH PhCH 3 30% S3

Scheme S1 Structures of ligands. Table S2 Screening of base and additive Entry cat ligand Base solvent additive Yield 1 Pd(OAc) 2 PCy 3 KF 2H 2 O PhCH 3 23% 2 Pd(OAc) 2 PCy 3 NaHCO 3 PhCH 3 0 3 Pd(OAc) 2 PCy 3 NEt 3 PhCH 3 trace 4 Pd(OAc) 2 PCy 3 HCOONa 2H 2 O PhCH 3 trace 5 Pd(OAc) 2 PCy 3 NaOH PhCH 3 35% 6 Pd(OAc) 2 PCy 3 NaOH PhCH 3 H 2 O (2eq) 70% 7 Pd(OAc) 2 PCy 3 K 3 PO 4 PhCH 3 30% 8 Pd(OAc) 2 PCy 3 K 3 PO 4 3H 2 O PhCH 3 60% 9 Pd(OAc) 2 PCy 3 K 3 PO 4 3H 2 O PhCH 3 H 2 O (2eq) 64 % 10 Pd(OAc) 2 PCy 3 K 3 PO 4 3H 2 O PhCH 3 H 2 O (4eq) 72% 11 Pd(OAc) 2 PCy 3 K 3 PO 4 3H 2 O PhCH 3 / dioxane H 2 O (2eq) 81% S4

Scheme S2 Effect of water In the case of aryl boroxine (0.17 mmol), a dramatically decreased yield (29%) of 3a was observed. Therefore, water was added to reduce aryl boroxiane produced. The yield of 3a increased to 70% (Sheme S2, eq 4), when p-tolylboronic acid (0.5 mmol) was used as substrate and 2 equiv of water as additive. General reaction conditions for Scheme S2: Allylic acetoxy (1mol, 2eq), Pd(OAc) 2 (4% mol), PCy 3 (10% mol), NaOH (0.5 mmol), toluene (3 ml), under 5 bar of CO. The reaction was stirred at 120 o C for 12 h. The yield of 3a was detected by NMR. 3. Typical procedure for allylic carbonylation of aryl boronic acids with allyl acetate The reaction was carried out in an autoclave containing a 10 ml Teflon reaction tube. Pd(OAc) 2 (4% mol), PCy 3 (10% mol), and a magnetic stir bar were placed in the tube, which was then capped with a stopper. Then, aryl boronic acid (0.5 mmol), allyl acetate (1.0 mmol), solvent (toluene/dioxane = 1 : 1, 3 ml), K 3 PO 4 3H 2 O (0.5 mmol) S5

and H 2 O (18mg, 2 eq) were added to the tube. The tube was placed in the autoclave. Once sealed, the autoclave was purged several times and then pressurized to 5 atm with CO at room temperature and heated in an oil bath at 120 C for 12 hours (for substrates 1a, 1b, 1c, 1d, 1e, 1f, 1i, 1k, 1l, 1o, 1p) or 24 hours (for substrates 1g, 1h, 1j, 1m, 1n). The autoclave was then cooled to room temperature and vented to discharge the excess CO. Water (10 ml) was added, and the product was extracted with EA (3 3 ml). The organic layers were washed with brine, dried over Na 2 SO 4, and evaporated. The crude product was purified by column chromatography on silica gel using a mixture of ethyl acetate and petroleum ether as eluent to give α, β-unsaturated aryl ketones. 4. Typical procedure for carbonylation of allyl acetates with p-tolylboronic acid Method A: The reaction was carried out in an autoclave containing a 10 ml Teflon reaction tube. Pd(OAc) 2 (4% mol), PCy 3 (10% mol), and a magnetic stir bar were placed in the tube, which was then capped with a stopper. Then, aryl boronic acid (0.5 mmol), allyl acetate (1.0 mmol), solvent (toluene, 3 ml) and K 3 PO 4 (0.5 mmol) were added to the tube. The tube was placed in the autoclave. Once sealed, the autoclave was purged several times and then pressurized to 5 atm with CO at room temperature and heated in an oil bath at 120 C for 24 hours. The autoclave was then cooled to room temperature and vented to discharge the excess CO. Water (10 ml) was added, and the product was extracted with EA (3 3 ml). The organic layers were washed with brine, dried over Na 2 SO 4, and evaporated. The crude product was purified by column chromatography on silica gel using a mixture of ethyl acetate and petroleum ether as eluent to give the desired products 4b-e. Method B: The reaction was carried out in an autoclave containing a 10 ml Teflon reaction tube. Pd(OAc) 2 (4% mol), PCy 3 (10% mol), and a magnetic stir bar were placed in the tube, which was then capped with a stopper. Then, aryl boronic acid (0.5 mmol), allyl acetate (1.0 mmol), solvent (toluene / dioxane = 1:1, 3 ml), K 3 PO 4 3H 2 O (0.5 mol) and H 2 O (18 mg, 2 eq) were added to the tube. The tube was then placed in the autoclave. Once sealed, the autoclave was purged several times and S6

then pressurized to 5 atm with CO at room temperature and heated in an oil bath at 120 C for 24 hours (for substrates 2f, 2g, 2h, 2l, 2m, 2n) or 12 hours (for substrates 2i, 2j, 2k). The autoclave was then cooled to room temperature and vented to discharge the excess CO. Water (10 ml) was added, and the product was extracted with EA (3 3 ml). The organic layers were washed with brine, dried over Na 2 SO 4, and evaporated. The crude product was purified by column chromatography on silica gel using a mixture of ethyl acetate and petroleum ether as eluent to give the desired products. 5. Procedures for study of reaction mechanism An autoclave containing a 10 ml Teflon reaction tube was charged with a magnetic stir bar. p-tolylboronic acid (68 mg, 0.5 mmol, 1eq), 2f (114 mg, 2eq), Pd(OAc) 2 (4 mg, 4% mol), PCy 3 (14 mg, 10% mol), K 3 PO 4 3H 2 O (133 mg, 1 eq), toluene / dioxane = (1 : 1) (3 ml) and water (18 mg, 2 eq.) were added to the tube with a syringe. The tube was placed in the autoclave. Once sealed, the autoclave was pressurized with CO (5 bar) and heated in an oil bath at 120 C for 1 h or 24 h. The yields of 4f and 4f-a were determined by NMR. 6. Data for products 3a. (E)-1-(p-tolyl)but-2-en-1-one: Yield: 81% (12 h, 65 mg); pale yellow oil. δ (ppm): 7.83 (d, J = 8.1 Hz, 2 H), 7.24 (d, J = 2.8 Hz, 2 H), 7.09 7.00 (m, 1H), 6.9 (d, J = 15.3 Hz, 1 H), 2.40 (s, 3 H); δ (ppm): 190.2, 144.4, 143.3, 135.3, 129.2, 128.6, 127.5, 21.6, 18.5; IR (KBr): 3082, 1671, 1621, 1443, 966, 799, 742 cm -1 ; HRMS (ESI) Calcd for C 11 H 12 O [M] + Na + = 183.0782, Found = 183.0775. 3b. (E)-1-phenylbut-2-en-1-one: S7

Yield: 71% (52 mg); pale yellow oil. δ (ppm): 7.92 (d, J = 7.8 Hz, 2 H), 7.54 (t, J = 6.6 Hz, 1 H), 7.46 (t, J = 7.5 Hz, 2 H), 7.11 7.01 (m, 1 H), 6.91 (d, J = 15.3 Hz, 1 H), 2.00 (d, J = 6.8 Hz, 3 H); δ (ppm): 190.8 145.0, 137.9, 132.6, 128.5, 127.6, 18.6; IR (KBr): 3059, 1671, 1624, 1443, 966, 691 cm -1 ; HRMS (ESI) Calcd for C 10 H 10 O [M] + Na + = 169.0629, Found = 169.0666. 3c. (E)-1-(4-ethylphenyl)but-2-en-1-one: Yield: 73% (63.5 mg); pale yellow oil. δ (ppm): 7.87 (d, J = 8.3 Hz, 2 H), 7.28 (d, J = 8.3 Hz, 2 H), 7.11-7.02 (m, 1 H), 6.91 (dd, J = 15.3 Hz, J = 1.5 Hz, 1 H), 2.70 (dd, J = 15.2 Hz, J = 7.6 Hz, 2 H), 1.99 (dd, J = 6.8 Hz, J = 1.5 Hz, 3H); δ (ppm): 190.3, 149.6, 144.4, 135.6, 128.7, 128.0, 127.5, 28.9, 18.5, 15.1. IR (KBr): 3031, 1671, 1607, 1413, 969, 810 cm -1 ; HRMS (ESI) Calcd for C 12 H 14 O [M] + Na + = 197.0942, Found = 197.0940. 3d. (E)-1-(4-propylphenyl)but-2-en-1-one: Yield: 71% (66 mg); pale yellow oil. δ (ppm): 7.86 (d, J = 8.2 Hz, 2 H), 7.26 (d, J = 8.1 Hz, 2 H), 7.11-7.02 (m, 1 H), 6.91 (dd, J = 15.3 Hz, J = 1.4 Hz, 1 H), 2.64 (t, J = 7.5 Hz, 2 H), 1.98 (dd, J = 6.8 Hz, J = 1.3Hz, 3H), 1.66 (m, 2 H), 0.94 (t, J = 7.3 Hz, 3H); δ (ppm): 190.3, 148.0, 144.4, 135.6, 128.7, 128.6, 127.5 38.0, 24.2, 18.5, 13.7. IR (KBr): 3036, 1668, 1618, 1440, 1299, 969 cm -1 ; HRMS (ESI) Calcd for C 13 H 16 O [M] + Na + = 211.1094, Found = 211.1087. 3e. (E)-1-(4-(tert-butyl)phenyl)but-2-en-1-one: Yield: 85% (86 mg); pale yellow oil. δ (ppm) 7.88 (d, J = 8.2 Hz, 2 H), 7.48 (d, J = 8.2 Hz, 2 H), 7.11-7.02 (m, 1 H), 6.91 (d, J = 15.3 Hz, 1 S8

H), 1.99 (d, J = 6.8 Hz, 3H), 1.34 (s, 9 H); δ (ppm): 190.3, 156.3, 144.5, 135.3, 128.5, 127.5, 125.5, 35.1, 31.1, 18.6; IR (KBr): 3042, 1671, 1621, 1440, 966, 810 cm -1 ; HRMS (ESI) Calcd for C 14 H 18 O [M]+Na + = 225.1251, Found = 225.1240. 3f. (E)-1-([1, 1 -biphenyl]-4-yl)but-2-en-1-one: Yield: 60% (67 mg); white solid, Mp (91-92 C ). δ (ppm): 8.01 (d, J = 8.4 Hz, 2 H), 7.68 (d, J = 8.4 Hz, 2 H), 7.62 (d, J = 7.2 Hz, 2 H), 7.48-7.37 (m, 3 H), 7.15 7.06 (m, 1H), 6.95 (dd, J = 15.2 Hz, J = 1.5 Hz, 1 H), 2.01 (dd, J = 6.8 Hz, J = 1.5 Hz, 3H); δ (ppm): 190.2, 145.3, 144.9, 140.0, 136.6, 129.1, 128.9, 127.5, 127.3, 127.2, 18.6; IR (KBr): 3056, 1665, 1618, 1440, 919, 760 cm -1 ; HRMS (ESI) Calcd for C 16 H 14 O [M] + Na + = 245.0937, Found = 245.0931. 3g. (E)-1-(4-methoxyphenyl)but-2-en-1-one: Yield: 62% (54 mg); colorless oil. 1 H NMR (400 MHz, CDCl3) δ (ppm): 7.93 (d, J = 8.8 Hz, 2 H), 7.09 7.00 (m, 1 H), 6.94-6.89 (m, 3 H), 3.85 (s, 3 H), 1.97 (dd, J = 6.7 Hz, J = 1.2 Hz, 3 H); 13 C NMR(100 MHz, CDCl3) δ (ppm): 188.9, 163.3, 143.9, 130.8, 127.2, 113.7, 55.4, 18.5; IR (KBr): 3067, 1665, 1612, 1443, 1027, 1071, 813 cm -1 ; HRMS (ESI) Calcd for C 11 H 12 O 2 [M] + Na = 199.0730, Found = 199.0725. 3h. (E)-1-(4-chlorophenyl)but-2-en-1-one: S9

Yield: 30% (27 mg); colorless oil. δ (ppm): 7.87 (d, J = 8.6 Hz, 2 H), 7.44 (d, J = 8.6 Hz, 2H), 7.13 7.04 (m, 1H), 6.87 (dd, J = 15.3 Hz, J = 1.6 Hz, 1 H), 2.01(dd, J = 6.9 Hz, J = 1.6 Hz, 3 H); δ (ppm): 189.4, 145.6, 139.0, 136.2, 129.9, 128.8, 127.1, 18.6; IR (KBr): 3061, 1668, 1618, 1260, 1091, 805 cm -1 ; HRMS (ESI) Calcd for C 10 H 9 ClO [M] + Na + = 203.0234, Found = 203.0218. 3i. (E)-1-(m-tolyl)but-2-en-1-one: Yield: 88% (70 mg); colorless oil. δ (ppm): 7.74 7.70 (m, 2 H), 7.37-7.32 (m, 2 H), 7.11-7.02 (m, 1 H), 6.90 (dd, J = 15.3 Hz, J = 1.5 Hz, 1 H), 2.41 (s, 3 H), 2.00 (dd, J = 6.8 Hz, J = 1.5 Hz, 3 H); δ (ppm): 190.9, 144.7, 138.3, 137.9, 133.3, 129.0, 128.3, 127.7, 125.7, 21.3, 18.5; IR (KBr): 2959, 1651, 1615, 1257, 1099, 802 cm -1 ; HRMS (ESI) Calcd for C 11 H 12 O [M] + Na + = 183.0780, Found=183.0776. 3j. (E)-1-(3-methoxyphenyl)but-2-en-1-one: Yield: 78% (69mg); pale yellow oil. δ (ppm): 7.50 7.46 (m, 2 H), 7.36 (t, J = 8.0 Hz, 2 H), 7.12-7.03 (m, 2 H), 7.12-7.03 (m, 2H), 6.89 (dd, J = 15.3 Hz, J = 1.5 Hz, 1 H), 3.86 (s, 3 H), 2.00 (dd, J = 6.8 Hz, J = 1.5 Hz, 3 H); δ (ppm): 190.5, 159.8, 145.1, 139.3, 129.5, 127.6, 121.7, 119.2, 112.8, 55.4, 18.6; IR (KBr): 3003, 1671, 1624, 1460, 1035, 780 cm -1 ; HRMS (ESI) Calcd for C 11 H 12 O 2 [M] + Na + = 199.0730, Found = 199.0721. 3k. (E)-1-(3,5-dimethylphenyl)but-2-en-1-one: S10

Yield: 86% (75 mg); pale yellow oil. δ (ppm): 7.35 (s, 2 H), 7.17 (s, 1 H), 7.09-7.00 (m, 1 H), 6.90 (dd, J = 15.3 Hz, J = 1.5 Hz, 1 H), 2.36 (s, 6 H), 1.98 (dd, J = 6.8 Hz, J = 1.6 Hz, 3H); δ (ppm): 191.1, 144.5, 138.1, 138.0, 134.2, 127.8, 129.4, 126.3, 21.2, 18.5; IR (KBr): 3042, 1674, 1601, 1307, 1188, 1043 cm -1 ; HRMS (ESI) Calcd for C 12 H 14 O [M] + Na + = 197.0938, Found = 197.0931. 3l. (E)-1-(o-tolyl)but-2-en-1-one: Yield: 63% (50 mg); colorless oil. δ (ppm): 7.37-7.30 (m, 2 H), 7.26-7.20 (m, 2 H), 6.77-6.68 (m, 1 H), 6.50 (d, J = 15.7 Hz, 1 H), 2.38(s, 3 H), 1.94 (d, J = 6.8 Hz, 3 H); δ (ppm): 196.9, 146.7, 139.0, 136.6, 132.4, 131.1, 130.1, 127.9, 125.2, 20.0, 18.5; IR (KBr): 3021, 1651, 1621, 1451, 1032, 763 cm -1. HRMS (ESI) Calcd for C 11 H 12 O [M] + Na + = 183.0780, Found = 183.0776. 3m. (E)-1-(2-fluorophenyl)but-2-en-1-one: Yield: 60% (49 mg); pale yellow oil. δ (ppm): 7.69 (td, J = 7.5Hz, J = 1.8 Hz, 1H), 7.51-7.45 (m, 1 H),7.22 (td, J = 7.6 Hz, J = 1.0 Hz 1 H), 7.14 7.09 (m, 1 H), 7.04-6.95 (m, 1 H), 6.77-6.71 (m, 1 H), 1.98 (dd, J = 6.9 Hz, J = 1.6 Hz, 3H); δ (ppm): 188.6 (d, J C-F = 2.2 Hz), 159.9 (d, J C-F = 251 Hz), 144.7, 132.5 (d, J C-F = 8.6 Hz), 130.1 (d, J C-F = 5.4 Hz), 129.7 (d, J C-F = 2.8 Hz), 126.0 (d, J C-F = 13.8 Hz), 123.3 (d, J C-F = 3.5 Hz), 115.4 (d, J C-F = 22.8 Hz), S11

17.5; IR (KBr): 3006, 1674, 1649, 1454, 1035, 777 cm -1. HRMS (ESI) Calcd for C 10 H 9 FO [M] + Na + = 187.0530, Found = 187.0524. 3n. (E)-1-(2-chlorophenyl)but-2-en-1-one: Yield: 68% (61 mg); colorless oil. δ (ppm): 7.42-7.29 (m, 4 H), 6.76-6.67 (m, 1 H), 6.48 (dd, J = 15.7 Hz, J = 1.6 Hz, 1 H), 1.96 (dd, J = 6.8 Hz, J = 1.6 Hz, 3H); δ (ppm): 194.2, 148.0, 139.0, 132.0, 131.1, 130.1, 129.0, 126.6, 18.6; IR (KBr): 3059, 1660, 1618, 1435, 1038, 763 cm -1 ; HRMS (ESI) Calcd for C 10 H 9 ClO [M] + Na + = 203.0234, Found = 203.0231. 3o. (E)-1-(thiophen-3-yl)but-2-en-1-one: Yield: 66% (50 mg); pale yellow oil. δ (ppm): 7.75 (d, J = 3.4 Hz, 1 H), 7.63 (d, J = 4.8 Hz, 1 H), 7.17-7.08 (m, 2 H), 6.82 (d, J = 15.2 Hz, 1 H), 1.98 (d, J = 6.9 Hz, 3H); δ (ppm): 182.2, 145.1, 144.2, 133.6, 131.8, 128.1, 126.9, 18.4. IR (KBr): 3097, 1665, 1618, 1415, 1293, 1027 cm -1. HRMS (ESI) Calcd for C 8 H 8 OS [M] + Na + = 175.0184, Found = 175.0182. 3p. (E)-1-(naphthalen-1-yl)but-2-en-1-one: Yield: 80% (78 mg); pale yellow oil. 1 H NMR (400M Hz, CDCl 3 ) δ (ppm): 8.25 (d, J = 7.8 Hz, 1 H), 7.95 (d, J = 8.2 Hz, 1 H), 7.88 (d, J = 7.4 Hz, 1 H), 7.65 (d, J = 7.0 Hz, 1 H), 7.57-7.47 (m, 3 H), 6.90-6.81 (m, 1 H), 6.68 (d, J = 15.6 Hz, 1 H), 1.97 (d, J = S12

6.8 Hz, 3 H), 7.03 (dd, J = 1.4 Hz, J = 5.2 Hz, 1 H); δ (ppm): 196.1, 146.9, 136.9, 133.8, 132.8, 131.3, 130.5, 128.3, 127.3, 126.9, 126.4, 125.6, 124.4, 18.6; IR (KBr): 3056, 1668, 1621, 1296, 1185, 816 cm -1 ; HRMS (ESI) Calcd for C 14 H 12 O [M] + Na + = 219.0782, Found = 219.0772. 4b. (E)-4-phenyl-1-(p-tolyl)but-2-en-1-one Yield: 55% (65 mg); pale yellow oil. 1 H NMR (400M Hz, CDCl 3 ) δ (ppm): 7.90 (d, J = 8.2 Hz, 2 H), 7.37 (d, J = 7.3 Hz, 2 H), 7.31-7.19 (m, 5 H), 6.56-6.43 (m, 2 H), 3.87 (d, J = 6.1 Hz, 3 H), 2.4 (s, 3 H); δ (ppm): 197.6, 144.0, 137.1, 134.2, 133.4, 129.4, 128.5, 128.4, 127.4, 126.3, 122.8, 42.7, 21.7; IR (KBr): 3028, 1674, 1604, 1257, 1177, 694 cm -1 ; HRMS (ESI) Calcd for C 17 H 16 O [M] + Na + = 259.1099, Found = 259.1096. 4c. (E)-4-(m-tolyl)-1-(p-tolyl)but-2-en-1-one Yield: 56% (70 mg); pale yellow oil; 1 H NMR (400M Hz, CDCl 3 ) δ (ppm): 7.91 (d, J = 8.1 Hz, 2 H), 7.28 (d, J = 8.0 Hz, 2 H), 7.21-7.18 (m, 3 H), 7.04 (d, J = 5.7 Hz, 1 H), 6.54 6.43 (m, 2 H), 3.88 (d, J = 5.9 Hz, 2 H), 2.42 (s, 3 H), 2.34 (s, 3 H); 13 C NMR (100 MHz, CDCl 3 ) δ (ppm): 197.7, 144.0, 141.3, 138.0, 137.0, 134.2, 133.5, 129.4, 128.5, 128.4, 128.2, 126.9, 123.5, 122.6, 42.7, 21.7, 21.4; IR (KBr): 3028, 1674, 1607, 1282, 1179, 752 cm -1 ; HRMS (ESI) Calcd for C 18 H 18 O [M] + H + = 251.1430, Found = 251.1424. 4d. (E)-4-(2-ethylphenyl)-1-(p-tolyl)but-2-en-1-one S13

Yield: 45% (60 mg); pale yellow oil. 1 H NMR (400M Hz, CDCl 3 ) δ (ppm): 7.92 (d, J = 8.0 Hz, 2 H), 7.46 (d, J = 7.4 Hz, 2 H), 7.28 (d, J = 8.0 Hz, 2 H), 7.18 (m, 3 H), 6.80 (d, J = 15.7 Hz, 1H), 6.38-6.30 (m, 1 H), 3.91 (d, J = 6.8 Hz, 2 H), 2.68 (q, J = 7.6 Hz, 2 H), 2.42 (s, 3 H), 1.18 (t, J = 7.6 Hz, 3 H);, δ = 197.7, 144.0, 141.3, 135.6, 134.2, 131.2, 129.3, 128.6, 128.5, 127.6, 126.1, 126.0, 124.3, 43.0, 26.3, 21.6, 15.3; IR (KBr): 3028, 1674, 1607, 1260, 1178, 784 cm -1 ; HRMS (ESI) Calcd for C 19 H 20 O [M] + Na + = 287.1406, Found =287.1404. 4e. (E)-4-(2-methoxyphenyl)-1-(p-tolyl)but-2-en-1-one Yield: 65% (86 mg); pale yellow oil. 1 H NMR (400M Hz, CDCl 3 ) δ (ppm): 7.90 (d, J = 8.1 Hz, 2 H), 7.45 (dd, J = 7.6 Hz, J = 1.4 Hz, 2 H), 7.27 (d, J = 8.3 Hz, 2 H), 7.22-7.18 (m, 1 H), 6.92-6.84 (m, 3 H), 6.50-6.43 (m, 1 H), 3.90 (dd, J = 6.9 Hz, J = 1.4 Hz, 2 H), 3.84 (s, 3 H), 2.42(s, 3H); δ (ppm): 197.8, 156.5, 143.9, 134.3, 129.3, 128.5, 128.4, 128.2, 126.9, 126.2, 123.4, 120.7, 110.8, 55.5, 43.2, 21.6; IR (KBr): 2956, 1671, 1599, 1488, 1243, 1024 cm -1 ; C 18 H 18 O 2 [M] + Na + = 289.1200, Found = 289.1202. 4f. (E)-1-(p-tolyl)pent-2-en-1-one Yield: 60% (52 mg); pale yellow oil; 1 H NMR (400M Hz, CDCl 3 ): δ = 7.84 (d, J = 8.2 Hz, 2 H), 7.26 (d, J = 7.9 Hz, 2 H), 7.13 7.06 (m, 1H), 6.87 (td, J = 15.4 Hz, J = 1.6 Hz, 1 H), 2.42 (s, 3 H), 2.38-2.30 (m, 3 H) 1.14 (t, J = 7.4 Hz, 3 H); 13 C NMR (100 MHz, CDCl 3 ), δ = 190.6, 150.7, 143.3, 135.5, 129.2, 128.7, 124.9, 25.9, 21.6, S14

12.4. IR (KBr): 3113, 2920, 1733, 1503, 1389, 1255, 1192, 751 cm -1. C 12 H 14 O [M] + Na + = 197.0937, Found = 197.0932. 4g. (E)-4-cyclohexyl-1-(p-tolyl)but-2-en-1-one Yield: 56% (68 mg); pale yellow oil. 1 H NMR (400M Hz, CDCl 3 ) δ (ppm): 7.84 (d, J = 8.2 Hz, 2 H), 7.26 (d, J = 7.9 Hz, 2 H), 7.08-7.00 (m, 1 H), 6.85 (td, J = 15.3 Hz, J = 1.2 Hz, 1 H), 2.41 (s, 3 H), 2.22-2.18(m, 2 H), 1.77-1.63 (m, 5 H), 1.51 1.46 (m, 1 H), 1.29-1.13 (m, 3H), 1.02-0.92 (m, 2H); δ (ppm): 190.3, 148.4, 143.3, 135.5, 129.2, 128.7, 126.9, 40.8, 37.5, 33.2, 26.4, 26.2, 21.6; IR (KBr): 3028, 1668, 1610, 1446, 1263, 1016, 805 cm -1 ; C 17 H 22 O [M] + H + = 243.1743, Found = 243.1739. 4h. (E)-1-(p-tolyl)non-2-en-1-one Yield: 43% (50 mg); pale yellow oil. 1 H NMR (400M Hz, CDCl 3 ) δ (ppm): 7.84 (d, J = 8.2 Hz, 2 H), 7.26 (d, J = 8.0 Hz, 2 H), 7.09-7.02 (m, 1 H), 6.87 (td, J = 15.4 Hz, J = 1.3 Hz), 2.41 (s, 3 H), 2.33-2.28 (m, 2 H), 1.55-1.48 (m, 2 H), 1.37-1.28 (m, 6 H), 0.89 (t, J = 6.8 Hz, 3 H); δ (ppm): 190.5, 149.6, 143.3, 135.5, 130.2, 129.2, 128.7, 125.8, 32.8, 31.6, 28.9, 28.2, 22.6, 21.6, 14.1; IR (KBr): 2970, 1696, 1649, 1538, 1451, 1041 cm -1 ; C 16 H 22 O [M] + Na + = 253.1559, Found = 253.1559. 4i. 3-methyl-1-(p-tolyl)but-2-en-1-one S15

Yield: 84% (73 mg); pale yellow oil. 1 H NMR (400M Hz, CDCl 3 ) δ (ppm): 7.83 (d, J = 8.2 Hz, 2 H), 7.23 (d, J = 8.0 Hz, 2 H), 6.72 (t, J = 1.2 Hz, 1 H), 2.39 (s, 3 H), 2.19 (d, J = 0.8 Hz, 3 H), 2.00 (d, J = 0.9 Hz, 3 H); δ (ppm): 190.3, 154.8, 141.9, 135.7, 128.1, 127.3, 120.2, 26.9, 20.5, 20.1; IR (KBr): 2961, 1660, 1610, 1254, 1013, 805 cm -1 ; HRMS (ESI) Calcd for C 12 H 14 O [M] + Na + = 197.0937, Found = 197.0933. 4j. 4-methyl-1-(p-tolyl)pent-3-en-1-one pale yellow oil; 1 H NMR (400M Hz, CDCl 3 ) δ (ppm): 7.87 (d, J = 8.2 Hz, 2 H), 7.26 (d, J = 7.9 Hz, 2 H), 5.45 5.41 (m, 1 H), 3.66 (d, J = 6.9 Hz, 2 H), 2.41 (s, 3 H), 1.76 (d, J = 1.1 Hz, 3 H), 1.69 (s, 3 H); δ (ppm) 198.3, 143.7, 135.3, 134.4, 129.2, 128.4, 116.5, 38.4, 25.8, 21.6, 18.2; IR (KBr): 2975, 1665, 1604, 1503, 1293, 1179, 816 cm -1 ; HRMS (ESI) Calcd for C 13 H 16 O [M] + Na + = 211.1093, Found = 211.1107. 4f-a. (Z/E)-1-(p-tolyl)pent-3-en-1-one pale yellow oil; 1 H NMR (400M Hz, CDCl 3 ) δ (ppm): 7.89 (m, 2 H), 7.28 (m, 2 H), 5.75-5.61 (m, 2 H), 3.76-3.67 (m, 2 H), 2.43 (s, 3 H), 1.75-1,67 (m, 3 H); 13 C NMR (100 MHz, CDCl 3 ) δ (ppm) 198.4, 197.9, 143.8, 134.3, 134.2, 129.4, 129.3, 128.5, 128.4, 127.4, 123.6, 122.5, 42.4, 37.1, 21.7, 18.2, 13.2; IR (KBr): 3036, 1668, 1607, 1279, 1018, 810 cm -1 ; HRMS (ESI) Calcd for C 12 H 14 O [M] + Na + = 197.0937, Found = 197.0932. 4k. (E)-7-oxo-7-(p-tolyl)hept-5-en-1-yl acetate S16

Yield: 52% (67 mg); pale yellow oil; 1 H NMR (400M Hz, CDCl 3 ) δ (ppm): 7.85 (d, J = 8.1 Hz, 2 H), 7.27 (d, J = 7.1 Hz, 2 H), 7.07-7.00 (m, 1 H), 6.90 (d, J = 15.4 Hz), 4.09 (t, J = 6.3 Hz, 2 H), 2.42 (s, 3 H), 2.36 (q, J = 7.0 Hz, 2 H), 2.06 (s, 3 H), 1.72-1.67 (m, 4 H); δ (ppm) 198.3, 143.7, 135.3, 134.4, 129.2, 128.4, 116.5, 38.4, 25.8, 21.6, 18.2; IR (KBr): 2989, 1732, 1662, 1615, 1235, 1038 cm -1 ; HRMS (ESI) Calcd for C 16 H 20 O 3 [M] + Na + = 283.1305, Found = 283.1296. 4l. (E)-4, 8-dimethyl-1-(p-tolyl) nona-3, 7-dien-1-one Yield: 40% (51 mg); pale yellow oil; 1 H NMR (400M Hz, CDCl 3 ) δ (ppm): 7.87 (d, J = 8.2 Hz, 2 H), 7.26 (d, J = 7.9 Hz, 2 H), 5.46-5.41 (m, 1 H), 5.08-5.05 (m, 1 H), 3.67 (d, J = 6.8 Hz, 2 H), 2.41 (s, 3 H), 2.08 (m, 4 H), 1.69 (s, 3 H), 1.64 (s, 3 H), 1.58 (s, 3 H); δ (ppm): 198.3, 143.7, 138.8, 134.4, 131.6, 129.2, 128.5, 124.0, 116.4, 39.7, 38.4, 26.5, 25.6, 21.6, 17.7, 16.6; IR (KBr): 2981, 1676, 1610, 1285, 1105, 813 cm -1 ; HRMS (ESI) Calcd for C 18 H 24 O [M] + H + = 257.1890, Found = 257.1893. 7. References Entry Products Reference 1 3a [S1] 2 3b [S1] 3 3f [S1] 4 3g [S1] 5 3h [S1] S17

6 3i [S1] 7 3o [S1] 8 3p [S1] 9 3m [S2] [S1] F. Manjolinho, M. F. Grünberg, N. Rodríguez, L. J. Gooßen, Eur. J. Org. Chem. 2012, 2012, 4680-4683; [S2] N. Rodríguez, F. Manjolinho, M. F. Grünberg, L. J. Gooßen, Chem. Eur. J. 2011, 17, 13688-13691. S18

190.255 143.362 144.429 127.477 128.655 129.203 135.350 76.693 77.011 77.328 18.550 21.620 2.00 1.00 0.96 2.48 3.06 2.99 6.878 6.917 7.005 7.022 7.039 7.060 7.077 7.094 7.239 7.246 7.259 7.819 7.840 2.401 1.972 1.989 8. Copies of the 1 H NMR and 13 C NMR spectra of products 3a. (E)-1-(p-tolyl)but-2-en-1-one 10 9 8 7 6 5 4 3 2 1 0 ppm 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm S19

190.760 145.002 127.569 128.496 132.565 137.943 76.728 77.046 77.363 18.574 2.00 1.00 0.99 2.00 1.01 3.12 6.887 6.926 7.029 7.046 7.063 7.083 7.101 7.118 7.263 7.439 7.459 7.477 7.529 7.546 7.565 7.913 7.933 1.988 2.005 3b. (E)-1-phenylbut-2-en-1-one: 12 11 10 9 8 7 6 5 4 3 2 1 0-1 ppm 200 180 160 140 120 100 80 60 40 20 0 ppm S20

190.261 144.372 148.029 127.504 128.612 128.641 135.584 76.746 77.063 77.382 38.020 13.745 18.526 24.220 2.03 1.00 1.00 2.14 2.11 3.05 3.25 6.889 6.893 6.927 6.931 7.018 7.034 7.051 7.056 7.068 7.072 7.089 7.106 7.271 7.292 7.855 7.876 1.238 1.257 1.276 1.977 1.980 1.994 1.997 2.676 2.694 2.713 2.732 3c. (E)-1-(4-ethylphenyl)but-2-en-1-one: 13 12 11 10 9 8 7 6 5 4 3 2 1 0-1 -2-3 -4 ppm 220 200 180 160 140 120 100 80 60 40 20 0 ppm S21

190.261 144.372 148.029 127.504 128.612 128.641 135.584 76.746 77.063 77.382 38.020 13.745 18.526 24.220 2.02 1.02 1.00 2.21 2.11 3.07 2.11 3.17 6.890 6.893 6.928 6.932 7.017 7.033 7.050 7.072 7.088 7.106 7.247 7.268 7.849 7.869 0.924 0.943 0.961 1.614 1.632 1.651 1.670 1.689 1.707 1.972 1.976 1.989 1.993 2.618 2.637 2.656 3d. (E)-1-(4-propylphenyl)but-2-en-1-one: 11 10 9 8 7 6 5 4 3 2 1 0-1 -2 ppm 220 200 180 160 140 120 100 80 60 40 20 0 ppm S22

190.289 156.322 144.478 125.470 127.503 128.495 135.262 76.730 77.048 77.366 31.119 35.079 18.583 2.00 2.03 0.96 1.04 3.00 9.27 6.896 6.935 7.024 7.041 7.058 7.060 7.079 7.096 7.113 7.260 7.467 7.488 7.871 7.892 1.984 2.001 1.343 3e. (E)-1-(4-(tert-butyl)phenyl)but-2-en-1-one: 10 9 8 7 6 5 4 3 2 1 0-1 ppm 220 200 180 160 140 120 100 80 60 40 20 0 ppm S23

190.170 127.190 127.275 127.474 128.156 128.945 129.130 136.626 140.002 144.910 145.349 76.733 77.050 77.254 77.368 18.618 2.00 3.09 2.02 2.04 1.01 1.00 3.03 6.931 6.935 6.969 6.973 7.064 7.080 7.098 7.115 7.119 7.136 7.153 7.369 7.382 7.388 7.393 7.406 7.443 7.462 7.476 7.480 7.615 7.633 7.670 7.691 7.997 8.018 2.000 2.004 2.017 2.021 3f. (E)-1-([1,1'-biphenyl]-4-yl)but-2-en-1-one: 11 10 9 8 7 6 5 4 3 2 1 0 ppm 200 180 160 140 120 100 80 60 40 20 0 ppm S24

188.947 163.269 143.874 127.151 130.776 113.724 76.741 77.058 77.376 55.437 18.521 2.00 3.03 1.14 3.01 2.97 6.887 6.891 6.919 6.925 6.928 6.941 7.001 7.018 7.035 7.052 7.056 7.073 7.090 7.260 7.924 7.946 3.852 1.963 1.966 1.980 1.983 3g. (E)-1-(4-methoxyphenyl)but-2-en-1-one 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 ppm 200 180 160 140 120 100 80 60 40 20 0 ppm S25

189.392 127.072 128.831 129.924 136.208 139.018 145.638 76.702 77.020 77.224 77.338 18.639-0.009 2.04 2.02 1.02 1.00 3.09 6.851 6.855 6.889 6.893 7.045 7.062 7.079 7.096 7.100 7.117 7.134 7.265 7.428 7.450 7.861 7.883 1.615 1.997 2.001 2.014 2.018 3h. (E)-1-(4-chlorophenyl)but-2-en-1-one: 10 9 8 7 6 5 4 3 2 1 ppm 200 180 160 140 120 100 80 60 40 20 0 ppm S26

190.967 125.706 127.718 128.343 129.036 133.338 137.989 138.309 144.756 76.693 77.011 77.328 18.549 21.351 2.00 2.01 1.02 1.03 3.06 3.07 6.877 6.881 6.915 6.919 7.018 7.034 7.051 7.069 7.073 7.090 7.107 7.260 7.323 7.342 7.359 7.370 7.705 7.709 7.721 7.725 7.737 1.987 1.990 2.004 2.007 2.416 3i. (E)-1-(m-tolyl)but-2-en-1-one: 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 ppm 200 180 160 140 120 100 80 60 40 20 0 ppm S27

190.507 159.825 145.097 139.323 112.832 119.161 121.100 127.571 129.462 76.700 77.018 77.221 77.335 55.456 18.609-0.004 1.10 2.02 2.00 1.00 3.23 3.10 6.866 6.869 6.904 6.908 7.031 7.048 7.065 7.082 7.086 7.103 7.107 7.120 7.264 7.345 7.364 7.384 7.458 7.463 7.487 7.506 3.858 1.985 1.989 2.002 2.006 3j. (E)-1-(3-methoxyphenyl)but-2-en-1-one: 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 ppm 200 180 160 140 120 100 80 60 40 20 0 ppm S28

191.067 126.293 127.817 134.239 138.049 138.113 144.495 76.759 77.077 77.395 18.521 21.227 2.00 1.03 1.15 1.05 6.26 3.07 6.866 6.870 6.904 6.908 7.000 7.017 7.034 7.051 7.055 7.072 7.090 7.172 7.526 1.972 1.975 1.988 1.992 2.362 3k. (E)-1-(3,5-dimethylphenyl)but-2-en-1-one 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 ppm 200 180 160 140 120 100 80 60 40 20 0 ppm S29

196.926 125.266 127.944 130.155 131.121 132.411 136.631 138.995 146.726 76.737 77.055 77.373 18.489 20.037 2.02 2.04 1.00 1.01 3.07 3.11 6.480 6.519 6.677 6.694 6.712 6.732 6.750 6.767 7.197 7.216 7.235 7.262 7.309 7.327 7.357 7.376 2.378 1.935 1.952 3l. (E)-1-(o-tolyl)but-2-en-1-one: 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 ppm 200 180 160 140 120 100 80 60 40 20 0 ppm S30

188.584 188.606 158.668 161.183 115.268 115.497 123.313 123.348 125.923 126.062 129.731 129.759 130.085 130.139 132.481 132.567 144.687 75.678 75.995 76.197 76.313 17.512 1.01 1.00 1.10 1.07 1.03 1.01 3.10 1.603 1.967 1.971 1.984 1.988 6.716 6.720 6.723 6.727 6.750 6.754 6.758 6.762 6.766 6.770 6.969 6.973 6.986 6.990 7.003 7.007 7.011 7.024 7.029 7.093 7.095 7.113 7.116 7.119 7.122 7.140 7.142 7.196 7.199 7.215 7.218 7.234 7.237 7.259 7.453 7.457 7.465 7.471 7.473 7.476 7.478 7.484 7.486 7.489 7.491 7.497 7.505 7.509 7.672 7.676 7.690 7.695 7.709 7.714 3m. (E)-1-(2-fluorophenyl)but-2-en-1-one: 11 10 9 8 7 6 5 4 3 2 1 ppm 200 180 160 140 120 100 80 60 40 20 0 ppm S31

194.248 126.637 128.994 130.131 131.028 131.052 132.047 138.982 147.984 76.761 77.079 77.397 18.629 4.16 1.00 1.00 3.11 6.460 6.464 6.499 6.503 6.673 6.690 6.707 6.712 6.724 6.729 6.747 6.764 7.276 7.288 7.292 7.304 7.308 7.311 7.316 7.323 7.327 7.337 7.342 7.347 7.355 7.360 7.362 7.366 7.372 7.383 7.388 7.396 7.398 7.400 1.949 1.952 1.966 1.970 3n. (E)-1-(2-chlorophenyl)but-2-en-1-one: 10 9 8 7 6 5 4 3 2 1 0 ppm 200 180 160 140 120 100 80 60 40 20 0 ppm S32

182.185 144.210 145.108 126.944 128.115 131.758 133.595 76.724 77.041 77.245 77.359 18.420-0.011 1.015 1.00 1.05 2.15 1.03 3.26 6.804 6.841 7.077 7.094 7.111 7.123 7.133 7.145 7.166 7.257 7.625 7.637 7.741 7.750 1.976 1.993 3o. (E)-1-(thiophen-3-yl)but-2-en-1-one: 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 ppm 200 180 160 140 120 100 80 60 40 20 0 ppm S33

196.138 124.406 125.646 126.374 126.928 127.267 128.374 130.509 131.272 132.771 133.791 136.907 146.946 76.748 77.065 77.267 77.383 18.566 1.01 3.13 1.05 1.05 1.04 1.00 1.04 3.14 6.661 6.700 6.812 6.829 6.846 6.867 6.885 6.902 7.261 7.470 7.489 7.508 7.519 7.533 7.551 7.565 7.644 7.661 7.874 7.892 7.940 7.961 8.238 8.257 1.962 1.978 3p. (E)-1-(naphthalen-1-yl)but-2-en-1-one: 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 ppm 200 180 160 140 120 100 80 60 40 20 0 ppm S34

197.607 122.846 126.287 127.445 128.488 128.509 129.366 133.434 134.183 137.075 144.043 76.719 77.035 77.354 42.654 21.657 2.00 5.60 2.04 1.93 2.04 3.37 6.427 6.443 6.467 6.483 6.498 6.520 6.560 7.190 7.208 7.213 7.226 7.246 7.258 7.273 7.278 7.291 7.305 7.309 7.364 7.382 7.891 7.912 3.868 3.883 2.411 4b. (E)-4-phenyl-1-(p-tolyl)but-2-en-1-one 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 ppm 220 200 180 160 140 120 100 80 60 40 20 0 ppm S35

197.685 122.604 123.487 126.961 128.247 128.407 128.500 129.361 133.510 134.183 137.004 138.047 144.029 76.721 77.039 77.356 42.692 21.372 21.662 2.08 1.08 3.18 2.15 2.00 2.03 3.66 3.49 6.436 6.461 6.476 6.491 6.503 6.543 7.035 7.049 7.184 7.198 7.212 7.260 7.270 7.290 7.904 7.924 3.873 3.887 2.337 2.424 4c. (E)-4-(m-tolyl)-1-(p-tolyl)but-2-en-1-one 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 ppm 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm S36

197.682 124.275 126.067 126.126 127.592 128.510 128.568 129.342 131.164 134.190 135.609 141.284 143.991 76.698 77.015 77.333 43.033 21.650 26.352 15.291 2.07 3.09 2.12 1.11 1.08 1.00 2.07 2.19 3.29 3.50 6.304 6.321 6.342 6.360 6.377 6.779 6.819 7.135 7.149 7.166 7.187 7.259 7.269 7.289 7.454 7.473 7.910 7.930 3.905 3.922 2.423 2.654 2.672 2.691 2.710 1.159 1.178 1.197 1.577 4d. (E)-4-(2-ethylphenyl)-1-(p-tolyl)but-2-en-1-one 9 8 7 6 5 4 3 2 1 0 ppm 200 180 160 140 120 100 80 60 40 20 0 ppm S37

197.826 156.494 110.814 120.664 123.435 126.185 126.850 128.213 128.466 128.493 129.306 134.272 143.897 76.688 77.005 77.208 77.323 55.464 43.213 21.642-0.013 2.07 1.08 1.21 2.70 3.22 1.00 3.08 2.23 3.24 6.428 6.446 6.463 6.468 6.486 6.503 6.842 6.861 6.889 6.898 6.907 6.925 7.181 7.185 7.204 7.220 7.224 7.258 7.279 7.443 7.447 7.462 7.466 7.900 7.920 3.837 3.895 3.899 3.913 3.916 2.415 4e. (E)-4-(2-methoxyphenyl)-1-(p-tolyl)but-2-en-1-one 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 ppm 200 180 160 140 120 100 80 60 40 20 0 ppm S38

190.602 150.742 143.342 124.952 128.671 129.195 135.471 76.691 77.009 77.211 77.326 21.623 25.893 12.385-0.013 1.013 2.06 1.08 1.13 2.54 2.16 3.15 3.00 6.854 6.892 7.064 7.079 7.096 7.101 7.118 7.134 7.254 7.273 7.835 7.855 1.123 1.141 1.160 1.613 2.306 2.322 2.340 2.358 2.375 2.415 4f. (E)-1-(p-tolyl)pent-2-en-1-one 10 9 8 7 6 5 4 3 2 1 0-1 ppm 220 200 180 160 140 120 100 80 60 40 20 0 ppm S39

190.347 143.321 148.370 126.862 128.669 129.193 135.481 67.096 76.703 77.020 77.223 77.339 21.623 26.226 26.361 33.248 37.487 40.813-0.009 2.00 2.45 1.00 1.01 3.06 2.01 5.22 1.14 3.38 2.08 0.920 0.929 0.952 0.981 1.012 1.019 1.132 1.155 1.163 1.170 1.185 1.192 1.196 1.204 1.222 1.228 1.235 1.259 1.460 1.469 1.480 1.488 1.497 1.505 1.514 1.633 1.664 1.668 1.675 1.691 1.699 1.706 1.709 1.727 1.758 1.761 1.766 2.185 2.188 2.204 2.220 2.223 2.414 6.830 6.833 6.836 6.868 6.871 6.874 7.000 7.018 7.037 7.056 7.075 7.252 7.261 7.271 7.830 7.850 4g. (E)-4-cyclohexyl-1-(p-tolyl)but-2-en-1-one 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 ppm 200 180 160 140 120 100 80 60 40 20 0 ppm S40

190.494 149.605 125.820 128.669 128.897 129.190 130.184 135.473 143.327 76.697 77.014 77.332 14.058 21.622 22.560 28.192 28.927 31.630 32.847 1.97 0.93 0.94 2.63 1.97 3.22 6.60 2.02 2.96 6.853 6.892 7.018 7.035 7.053 7.074 7.091 7.253 7.261 7.273 7.693 7.713 7.833 7.853 0.876 0.893 0.910 1.255 1.308 1.334 1.351 1.373 1.481 1.500 1.518 1.536 1.554 2.282 2.299 2.317 2.336 2.415 4h. (E)-1-(p-tolyl)non-2-en-1-one 10 9 8 7 6 5 4 3 2 1 0-1 ppm O C 6 H 13 200 180 160 140 120 100 80 60 40 20 0 ppm S41

190.179 154.808 141.883 120.245 127.296 128.083 135.694 75.709 76.027 76.344 20.063 20.537 26.869 2.03 2.16 0.98 3.00 2.96 2.95 7.824 7.844 6.722 6.725 6.728 7.223 7.244 7.259 1.999 2.001 2.193 2.195 2.393 4i. 3-methyl-1-(p-tolyl)but-2-en-1-one 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 ppm 220 200 180 160 140 120 100 80 60 40 20 0 ppm S42

198.330 143.699 128.422 129.239 134.392 135.334 116.523 76.694 77.012 77.329 38.397 18.185 21.621 25.790 2.05 2.68 1.00 2.06 3.10 3.08 3.08 7.859 7.879 7.247 7.261 7.267 5.412 5.416 5.420 5.426 5.430 5.433 5.437 5.440 5.447 5.451 5.454 3.652 3.669 2.411 1.582 1.697 1.763 1.766 4j. 4-methyl-1-(p-tolyl)pent-3-en-1-one 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 ppm 200 180 160 140 120 100 80 60 40 20 0 ppm S43

197.930 198.380 122.494 123.632 127.393 128.410 128.457 129.277 129.407 134.182 134.264 143.843 76.731 77.049 77.367 42.423 37.135 13.221 18.156 21.664 2.00 2.18 1.95 2.03 3.00 3.16 3.672 3.688 3.742 3.744 3.747 3.755 5.607 5.622 5.630 5.646 5.661 5.675 5.678 5.693 5.696 5.708 5.712 5.716 5.718 5.721 5.734 5.736 5.740 5.741 5.747 5.749 7.268 7.274 7.284 7.287 7.878 7.891 7.898 2.432 1.665 1.716 1.729 1.731 1.743 1.746 4f-a. (Z/E)-1-(p-tolyl)pent-3-en-1-one 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 ppm 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm S44

190.240 171.180 143.506 148.388 126.208 128.678 129.247 135.320 76.700 77.017 77.221 77.335 64.087 20.992 21.650 24.633 28.173 32.289-0.004 2.11 2.20 1.00 1.04 2.39 2.23 3.27 3.37 4.18 6.883 6.921 7.001 7.018 7.035 7.056 7.074 7.264 7.282 7.837 7.858 4.077 4.093 4.109 1.669 1.685 1.702 1.722 2.059 2.331 2.347 2.365 2.383 2.421 4k. (E)-7-oxo-7-(p-tolyl)hept-5-en-1-yl acetate 9 8 7 6 5 4 3 2 1 0-1 ppm 200 180 160 140 120 100 80 60 40 20 0 ppm S45

198.317 116.444 124.019 128.451 129.226 131.561 134.388 138.829 143.668 76.708 77.026 77.344 38.427 39.678 16.590 17.676 21.623 25.647 26.528 1.97 2.21 0.98 1.09 2.00 2.93 4.69 2.53 2.89 3.40 7.857 7.877 7.244 7.260 7.263 5.048 5.064 5.067 5.078 5.436 5.439 5.453 5.455 5.470 3.657 3.674 1.582 1.646 1.698 2.055 2.071 2.087 2.104 2.409 4l. (E)-4, 8-dimethyl-1-(p-tolyl) nona-3, 7-dien-1-one 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 ppm 200 180 160 140 120 100 80 60 40 20 0 ppm S46