Stability Assessment of Gas Mixtures Containing Monoterpenes in Varying Cylinder Materials and Treatments

Similar documents
Analytical Measurements, 19, Moskovsky Prospekt, St-Petersburg, Russia

Jonathan M. Liebmann et al. Correspondence to: John N. Crowley

NIST gas standards containing volatile organic compounds in support of ambient air pollution measurements

Preparation of nitrous oxide (N 2 O) in air standard being traceable to SI by gravimetric method

Monoterpene and Sesquiterpene Emissions from Ponderosa Pine: Implications for Secondary Organic Aerosol Formation

Protection of terpenes against oxidative and acid decomposition on adsorbent cartridges

Preparation of nitrous oxide in air standard (320 nmol/mol) for CCQM-K68

Stories of Atmospheric Chemistry in the Lower Fraser Valley

CCQM-P28: An international comparison of ground-level ozone reference standards

Boiling Point ( C) Boiling Point ( F)

Jack Cochran, Lindsey Shear-Laude, Alex Hodgson VUV Analytics Emerald Conference. #emeraldconference

Supplementary Figures

a-terpinolene Ethyl butanoate 3-Carene Ethyl acetate Ethyl 2-butenoate

Supplemental material

GC/MS BATCH NUMBER: T50100

HPLC Reverse Phase Test Mix #1

High-pressure qnmr spectroscopy in condensed- and gas-phase towards determination of impurities and compositions of gas mixtures

Bureau International des Poids et Mesures

Alpha-pinene isomerization on acid-treated clays

USP Class 1 Residual Solvent Mixture

PRO LIGNO Vol. 11 N pp

Developing Reactivity- and Source-Based Monoterpene Parameterizations for SOA Modeling

r-terpineol from Hydration of Crude Sulfate Turpentine Oil

Secondary organic aerosol from low-volatility and traditional VOC precursors

WRF-Chem Chemistry Option T1-MOZCART (chem_opt = 114)

University of Queensland

Frequency of the QA/QC activites for gaseous compounds: At least one exercise in 2 different years

ph Calibration Buffers

Aldehydes/Ketones DNPH Standard

Turpentine Oil Hydration using Trichloroacetic Acid as Catalyst

Volatile Oil Composition of Four Populations of Satureja Montana L. from Southern France

Essential Oil composition from the aerial parts of Haplophyllum linifolium (L.) G. Don fil.

Wood Adhesives proceedings of a Symposium Sponsored by. USDA Forest Service Forest Products Laboratory. and. The Forest Products Society

Chemical Standard Department, 1600, Shimo-Takano, Sugito-machi, Kitakatsushikagun, Saitama , JAPAN

Rapid Analysis of Food and Fragrances Using High-Efficiency Capillary GC Columns. Application. Authors. Abstract. Introduction

NIST CERTIFICATION OF ITS-90 FIXED-POINT CELLS FROM K TO K: METHODS AND UNCERTAINTIES

Analysis of Terpenes in Cannabis Using the Agilent 7697A/7890B/5977B Headspace GC-MSD System

Chiral characterization of monoterpenes present in the volatile fraction of Myrtus communis L. growing in Algeria

Analytical Test Report Birthday Cake OG

Metolachlor ESA Sodium Salt Standard

COMPLIANCE EMISSIONS TEST California Dept. of Public Health Standard Method Version 1.1 and FloorScore Flooring Evaluation

Aroma characterization based on aromatic series analysis in table. grapes

Calibration strategies for FTIR and other IRIS instruments for accurate δ 13 C and δ 18 O measurements of CO 2 in air

SUNFLOWER OIL BLEACHING BY ADSORPTION ONTO ACID-ACTIVATED BENTONITE

Rep. of Korea (KRISS), Japan (NMIJ, CERI), Netherlands (NMi), Russia (VNIIM), United Kingdom (NPL), United States of America (NIST)

pinene (at 2 and 50 Torr) and β-pinene (at 200 Torr) with OH have been determined in varied conditions.

DEGRADED AQUEOUS GLYCOL SOLUTIONS: ph VALUES AND THE EFFECTS OF COMMON IONS ON SUPPRESSING ph DECREASES

NPL, India activity related to water as per the need of the country

Tri-n-propyltin Chloride Mixture

SYSTEM BRIEF DAILY SUMMARY

Identification of Chemical Compound of Dammar Resin using Various Solvents with Gas Chromatographic Mass Spectrometric Method

AN EVALUATION OF HOW NO 2, NO, O 3 AND RELATIVE HUMIDITY INTERACTS IN THE OXIDATION OF TERPENES

4.1 Hypothesis Testing

SYSTEM BRIEF DAILY SUMMARY

CERTIFICATE OF ANALYSIS

BIOGENIC VOLATILE ORGANIC COMPOUND (VOC) EMISSIONS FROM BOREAL DECIDUOUS TREES AND THEIR ATMOSPHERIC CHEMISTRY. Hannele Hakola

Chapter 5 Assessment. 164 Chapter 5 Measurements and Calculations. 8. Write each of the following numbers in standard scientific notation. a.

α-thujone (6.0%) were the major components identified in the volatile oil of A.

Dear MetNH3 stakeholder,

Certified BTEX in Unleaded Gas Composite

nobilis L.) and Its Main Components on the Germination of Some Weed and Crop Species

GAMINGRE 8/1/ of 7

H 3 CO H 3 CO S CH 3

Quantifying Thermophoretic Deposition of Soot on Surfaces

VSMOW Triple Point of Water Cells: Borosilicate versus Fused- Quartz

The leaf essential oil of Abies grandis (Doug. ex D. Don) Lindl. (Pinaceae): revisited 38 years later

The Uncertainty of Reference Standards

The Simulation of the TBP Curve of Thymol Essence and the Separation of Natural Components with ASPEN plus Software

GAW Expert Workshop VOC, C. Plass-Dülmer et al., FEHp-B 1

DEVELOPMENT, EXTENSION AND VALIDATION OF (THEORY-BASED) SARS DECEMBER 2018 I LUC VEREECKEN

Influence of Biogenic VOCs on Photooxidant Formation: Simulation Experiments in EUPHORE and Comparison with Model Calculations

Phytochemical Analysis of the Essential Oil from Aerial parts of Pulicaria undulata (L.) Kostel from Sudan

. University of Queensland

Multi Analyte Custom Grade Solution. Calcium, Iron, Potassium,

Microwave dry distillation as an useful tool for extraction of edible essential oils

The Chemical Constituents of New Essential Oils from Endemic and Sub Endemic Plants of Mongolian Gobi

Connection between new particle formation and sulphuric acid at Hohenpeissenberg (Germany) including the infl uence of organic compounds

A comparison of GC-FID and PTR-MS toluene measurements in ambient air under conditions of enhanced monoterpene loading

IJPRD, 2011; Vol 3(7): October 2011 (51-55) International Standard Serial Number

Seasonal Climate Watch February to June 2018

Watercare Air Quality Group March 2002 APPENDIX A. Monitoring Site Location Diagrams

Volatiles emission patterns of different plant organs and pollen of Citrus limon

Delta-9-THC Standard. Catalog # Lot # A082745

Pattern Recognition of the Herbal Drug, Magnoliae Flos According to their Essential Oil Components

Supporting Information

The Value-added Upgrading of Extractives

Do plants have internet? Interplant communication via common mycorrhizal networks. Jennifer Slater

Smoothed Prediction of the Onset of Tree Stem Radius Increase Based on Temperature Patterns

Comparison of Terpene Composition in Engelmann Spruce (Picea engelmannii) Using Hydrodistillation, SPME and PLE

A Comparative Study of the Chemical Composition of the Essential oil from Eucalyptus globulus Growing in Dehradun (india) and Around the World

Automated Characterization of Compounds in Fire Debris Samples

Prima PRO Process Mass Spectrometer

C.-H. Liang, X.-W. Wang, and X. Chen Science and Technology on Antennas and Microwave Laboratory Xidian University Xi an , China

Real-Time NO 3 and PO 4 Sensors for Chesapeake Bay

Characteristics Of The GC-MS Mass Spectra Of Terpenoids (C 10 H 16 )

CASE STUDY : airmozone : 88 VOC from PAMS and TO14 Ozone precursors by FID from WATER or AIR 0 / 325 µg/m 3 or higher

Mango is one of the oldest cultivated tropical fruits. It is popularly known as

Global modeling of organic aerosol: the importance of reactive nitrogen (NO x and NO 3 )

A comparison of GC-FID and PTR-MS toluene measurements in ambient air under conditions of enhanced monoterpene loading

Discovering the Scent of Celery: HS-SPME, GC-TOFMS, and Retention Indices for the Characterization of Volatiles

Transcription:

Stability Assessment of Gas Mixtures Containing Monoterpenes in Varying Cylinder Materials and Treatments Jerry Rhoderick and Janice Lin Analytical Chemistry Division National Institute of Standards and Technology 100 Bureau Drive, MS-8393 Gaithersburg, Maryland 20899-8393 USA 4th WMO-VOC meeting on Global Observations of VOCs September 12, 2012 York, United Kingdom

Ratios of terpenes to benzene with time in mixture ND02744 Aluminum Aculife Cylinder

Tracking the growth/degradation rates for ß-pinene, α-pinene, R-limonene, p-cymene and camphene in mixture ND02744

Publications on ß-Pinene and α-pinene Isomerization Foletto E, Valentini A, Probst L, Porto L., 2002. Gas-phase ß-pinene isomerization over acid-activated bentonite. Latin American Applied Research 32(2). Allahverdiev A, Gündüz G, Murzin D., 1998. Kinetics of α-pinene isomerization. Industrial Engenering and Chemical Research 37, 2373-2377. Findik S, Gündüz G., 1997. Isomerization of α-pinene to camphene. JAOCS 74(9), 1145-1151.

Concentration of Standards Prepared Experis Treated Aluminum Nickel-Plated Carbon Steel D646508 D646507 41311187Y 41311192Y 41311193Y Analyte x a u(x) b x a u(x) b x a u(x) b x a u(x) b x a u(x) b α-pinene 12.88 0.13 0.021 0.002 1.41 0.05 0.010 0.001 0.006 0.001 ß-Pinene 9.91 0.17 5.34 0.22 4.65 0.18 2.57 0.23 3-Carene 0.009 0.004 9.56 0.13 4.10 0.27 9.07 0.26 3.33 0.13 1,8-Cineole 0.015 0.001 0.014 0.002 4.48 0.21 6.63 0.19 2.31 0.28 Myrcene 1.92 0.19 R-Limonene 9.32 0.13 0.003 0.0002 0.002 0.0002 0.001 0.0002 p-cymene 0.008 0.002 10.70 0.16 0.026 0.001 0.041 0.002 0.015 0.001 Camphene 0.001 0.001 9.58 0.25 0.004 0.001 0.005 0.001 0.002 0.001 n-hexane 14.19 0.30 11.51 0.29 8.82 0.28 4.60 0.26 Benzene 14.74 0.30

RATIO Data and Statistics for Ni plated steel 41311192Y 3-Carene 1,8-Cineole β-pinene α-pinene p-cymene Camphene R- Limonene Days DateTime Ratio U(Rat) Ratio U(Rat) Ratio U(Rat) Ratio U(Rat) Ratio U(Rat) Ratio U(Rat) Ratio U(Rat) 1 23-Mar-12 1.5503 0.0123 1.3061 0.0131 0.8334 0.0082 0.0736 0.0006 0.0288 0.0009 0.0111 0.0021 0.0133 0.0006 6 28-Mar-12 1.5462 0.0202 1.3038 0.0275 0.8324 0.0111 0.0746 0.0011 0.0281 0.0014 0.0166 0.0019 0.0110 0.0011 7 29-Mar-12 1.5551 0.0360 1.2945 0.0350 0.8300 0.0058 0.0745 0.0009 0.0281 0.0006 0.0185 0.0009 0.0110 0.0004 14 5-Apr-12 1.5271 0.0079 1.3049 0.0086 0.8203 0.0048 0.0753 0.0009 0.0281 0.0007 0.0160 0.0014 0.0116 0.0009 19 10-Apr-12 1.5194 0.0058 1.3028 0.0051 0.8164 0.0033 0.0755 0.0010 0.0283 0.0012 0.0191 0.0018 0.0117 0.0007 20 11-Apr-12 1.5186 0.0130 1.3040 0.0106 0.8157 0.0067 0.0751 0.0008 0.0281 0.0004 0.0190 0.0007 0.0121 0.0006 22 13-Apr-12 1.5139 0.0143 1.2967 0.0116 0.8131 0.0074 0.0751 0.0009 0.0284 0.0006 0.0181 0.0008 0.0120 0.0003 29 20-Apr-12 1.5053 0.0090 1.2929 0.0081 0.8109 0.0042 0.0756 0.0017 0.0269 0.0002 0.0167 0.0021 0.0119 0.0003 33 24-Apr-12 1.5168 0.0067 1.2982 0.0075 0.8155 0.0036 0.0761 0.0013 0.0273 0.0002 0.0189 0.0006 0.0118 0.0005 35 26-Apr-12 1.5082 0.0100 1.2907 0.0093 0.8116 0.0054 0.0760 0.0015 0.0267 0.0003 0.0165 0.0002 0.0111 0.0005 36 27-Apr-12 1.5176 0.0260 1.2787 0.0158 0.8120 0.0047 0.0759 0.0010 0.0264 0.0004 0.0165 0.0003 0.0117 0.0012 56 17-May-12 1.4837 0.0029 1.2765 0.0042 0.7994 0.0006 0.0801 0.0024 0.0260 0.0008 0.0155 0.0006 0.0115 0.0005 61 22-May-12 1.4823 0.0032 1.2691 0.0067 0.7977 0.0020 0.0793 0.0013 0.0260 0.0002 0.0146 0.0020 0.0113 0.0012 62 23-May-12 1.4825 0.0128 1.2742 0.0110 0.7972 0.0063 0.0802 0.0015 0.0257 0.0012 0.0154 0.0006 0.0113 0.0006 69 30-May-12 1.4753 0.0066 1.2693 0.0077 0.7924 0.0031 0.0812 0.0022 0.0258 0.0001 0.0156 0.0010 0.0117 0.0005 81 11-Jun-12 1.4681 0.0058 1.2663 0.0067 0.7888 0.0035 0.0816 0.0005 0.0253 0.0005 0.0172 0.0005 0.0114 0.0008 n 16 16 16 16 16 16 16 Average 1.5107 0.0148 1.2893 0.0142 0.8117 0.0056 0.0769 0.0013 0.0271 0.0007 0.0166 0.0013 0.0116 0.0007 Stdev 0.0268 0.0145 0.0137 0.0026 0.0012 0.0020 0.0005 %RSD 1.77% 1.12% 1.69% 3.44% 4.27% 12.24% 4.68% Slp; Intr -0.00105 1.5467-0.00055 1.3083-0.00054 0.8304 0.00010 0.0733-0.000045 0.0287-0.00001 0.0168-0.00001 0.0119 u(slp); u(intr) 0.00008 0.0034 0.00006 0.0023 0.00003 0.0014 0.00001 0.0003 0.000004 0.0002 0.00002 0.0009 0.00001 0.0002 R 2 ; RMSE 0.924 0.008 0.874 0.005 0.948 0.003 0.937 0.001 0.903 0.0004 0.008 0.002 0.103 0.001 slp /u(slp) 13.08 9.88 15.95 14.47 11.41 0.34 1.26 p 0.00 0.00 0.00 0.00 0.00 0.74 0.23

Minor Component Peak Area Ratios Major Component Peak Area Ratios Major Monoterpene and Minor (Impurity) Analyte Ratios in CSNi-92Y 1.60 1.40 1.20 1.00 3-Carene 1,8-Cineole ß-Pinene α-pinene p-cymene Camphene R-Limonene Initial Linear Trend 0.80 0.60 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0 10 20 30 40 50 60 70 80 90 Time, Days from Preparation

Minor Component Peak Area Ratios Major Component Peak Area Ratios Major Monoterpene and Minor (Impurity) Analyte Ratios in CSNi-87Y 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.008 ß-Pinene 1,8-Cineole 3-Carene α-pinene Camphene p-cymene R-Limonene Initial Linear Trend 0.006 0.004 0.002 0.000 0 10 20 30 40 50 Time, Days from Preparation

Minor Component Peak Area Ratios Major Component Peak Area Ratios Major Monoterpene and Minor (Impurity) Analyte Ratios in CSNi-93Y 0.95 0.85 0.75 0.65 0.55 0.45 0.35 0.024 0.020 ß-Pinene 3-Carene 1,8-Cineole α-pinene Camphene p-cymene R-Limonene Initial Linear Trend 0.016 0.012 0.008 0.004 0.000 5 10 15 20 25 30 35 40 Time, Days from Preparation

Major Monoterpene and Minor (Impurity) Analyte Ratios in Al-Experis D646508

Ratios Ratios Major Monoterpene and Minor (Impurity) Analyte Ratios in Al-Experis Camphene β-pinene D646507 p-cymene R-Limonene 3-Carene 1.6 Initial Linear Trend Myrcene α-pinene 1.4 1.2 1.0 0.8 0.6 0.12 0.1 0.08 0.06 0.04 0.02 0 50 100 150 200 250 300 0 0 n 17 50 17 100 17 150 17 200 17 250 17 17 300 Average 1.4508 0.0222 1.2496 0.0167 1.0641 0.0159 0.9389 0.0141 0.7188 0.0110 0.1291 0.0027 0.0100 0.0003 Stdev 0.0095 0.0025 0.0033 0.0033 0.0030 0.0026 0.0016 %RSD 0.65% 0.20% 0.31% 0.36% 0.41% 2.02% 15.96% Camphene ß-Pinene p-cymene R-Limonene 3-Carene Myrcene α-pinene Slp Intr -0.000001 1.4510 0.000016 1.2476-0.00001 1.0653-0.000002 0.9391-0.00002 0.7208 0.000020 0.1267-0.000013 0.0116 u(slp) u(intr) 0.000025 0.0039 0.000005 0.0008 0.000008 0.0013 0.000009 0.0014 0.000006 0.0010 0.000005 0.0007 0.000002 0.0004 R RMSE 0.000 0.010 0.413 0.002 0.090 0.003 0.004 0.003 0.306 0.003 0.554 0.002 0.704 0.001 slp /u(slp) 0.06 3.25 1.21 0.24 2.57 4.31 5.97 Prob 0.95 0.01 0.24 0.81 0.02 0.00 0.00 Days

Ratios for ß-pinene in CSNi-92Y, CSNi-87Y, CSNi-93Y, Al-Experis-07, and Al-Aculife Cylinders.

Gravimetric Concentration of Additional Standards Prepared Aluminum Experis Treated Experis Treated Aluminum D646508 (20L) D750499 (10L) Analyte x a u(x) b x a u(x) b α-pinene 6.04 0.09 7.58 0.14 ß-Pinene 4.82 0.06 3.76 0.23 3-Carene 2.99 0.06 5.72 0.14 1,8-Cineole 4.74 0.006 4.96 0.09 R-Limonene 0.002 0.001 2.25 0.07 p-cymene 0.025 0.002 0.031 0.02 Camphene 0.004 0.001 0.003 0.001 n-hexane 9.65 0.11 2.34 0.25

Major Monoterpene Analyte Ratios in Remake Al-Experis D646508 n 12 12 12 12 Average 1.1616 0.0109 0.8751 0.0081 0.7877 0.0076 0.4677 0.0043 Stdev 0.0041 0.0033 0.0031 0.0016 %RSD 0.35% 0.38% 0.39% 0.35% α-pinene ß-Pinene 1,8-Cineole 3-Carene Slp Intr 0.000140 1.1574 0.00012335 0.8714 0.0001191 0.7841 0.000058 0.4659 u(slp) u(intr) 0.000040 0.0015 0.000028 0.0010 0.000025 0.0009 0.000015 0.0005 R RMSE 0.552 0.003 0.658 0.002 0.700 0.002 0.605 0.001 slp /u(slp) 3.51 4.39 4.83 3.92 Prob 0.01 0.00 0.00 0.00

Bi-lateral comparison with NIST

Values of NPL Standard vs NIST Standards

Results from Round Robin of ppt Hydrocarbon Mixture

Where do we go from here? develop several standards at higher concentration - 100-200 nmol/mol - verify concentrations prepare several 2-5 nmol/mol standards by dilution from higher concentration - verify gravimetric concentrations - compare to older 1-step standards - this procedure will lower the uncertainties substantially

Conclusions Air Products aluminum w/experis treatment very promising - nickel plate steel cylinders show degradation but a much slower rate than Aculifed aluminum results indicate stable (365+ days) mixtures of α-pinene, ß-pinene, 3-carene, p-cymene, R-limonene, camphene -1,8-cineole at 70+ days