d E /W D /W, d d E /W d /W E d K ddl edl ddl de / d /W W d ed ZK / d Z d& d d& E ZE 2

Similar documents
Introduction to Bioinformatics

Measuring TF-DNA interactions

Chapter 15 Active Reading Guide Regulation of Gene Expression

Complete all warm up questions Focus on operon functioning we will be creating operon models on Monday

Supplemental Information for Pramila et al. Periodic Normal Mixture Model (PNM)

Chapter 7: Regulatory Networks

Gene Regula*on, ChIP- X and DNA Mo*fs. Statistics in Genomics Hongkai Ji

Predicting Protein Functions and Domain Interactions from Protein Interactions

Computational Genomics. Reconstructing dynamic regulatory networks in multiple species

Different gene regulation strategies revealed by analysis of binding motifs

Fundamentally different strategies for transcriptional regulation are revealed by information-theoretical analysis of binding motifs

Regulation of Gene Expression

Alignment. Peak Detection

De novo identification of motifs in one species. Modified from Serafim Batzoglou s lecture notes

Biology. Biology. Slide 1 of 26. End Show. Copyright Pearson Prentice Hall

Universal Count Correction for High-Throughput Sequencing

Discovering MultipleLevels of Regulatory Networks

Prokaryotic Regulation

Matrix-based pattern discovery algorithms

Stochastic simulations

L3.1: Circuits: Introduction to Transcription Networks. Cellular Design Principles Prof. Jenna Rickus

Modeling Motifs Collecting Data (Measuring and Modeling Specificity of Protein-DNA Interactions)

Control of Gene Expression

Gene regulation: From biophysics to evolutionary genetics

Regulation of Gene Expression

An Introduction to the spls Package, Version 1.0

Written Exam 15 December Course name: Introduction to Systems Biology Course no

Inferring Transcriptional Regulatory Networks from Gene Expression Data II

Network Biology-part II

Regulation of Transcription in Eukaryotes. Nelson Saibo

Bi 8 Lecture 11. Quantitative aspects of transcription factor binding and gene regulatory circuit design. Ellen Rothenberg 9 February 2016

Regulation of gene Expression in Prokaryotes & Eukaryotes

Introduction. Gene expression is the combined process of :

Eukaryotic Gene Expression

Copyright 2010 by the American Society for Pharmacology and Experimental Therapeutics.

Inferring Protein-Signaling Networks

Gene Control Mechanisms at Transcription and Translation Levels

W W D D ddd ^ D,, Z > tdddee d lddddddededdedd ' d W d

Transcription factors (TFs) regulate genes by binding to their

REVIEW SESSION. Wednesday, September 15 5:30 PM SHANTZ 242 E

Molecular Pharmacology Fast Forward. Published on June 29, 2016 as DOI: /mol This article has not been copyedited and formatted.

Computational methods for predicting protein-protein interactions

Encoding and Decoding 3D Genome Organization

dynamic processes in cells (a systems approach to biology)

Co-ordination occurs in multiple layers Intracellular regulation: self-regulation Intercellular regulation: coordinated cell signalling e.g.

Lecture 18 June 2 nd, Gene Expression Regulation Mutations

Binding of transcription factors adapts to resolve information-energy tradeoff

CS-E5880 Modeling biological networks Gene regulatory networks

3.B.1 Gene Regulation. Gene regulation results in differential gene expression, leading to cell specialization.

h D t del d ddl ddl el del d < d

Dynamics of the Mixed Feedback Loop Integrated with MicroRNA

16 CONTROL OF GENE EXPRESSION

RNA Synthesis and Processing

Small RNA in rice genome

A sequence-dependent physical model of nucleosome occupancy along the eukaryotic chromatin fiber. Alain Arneodo

Regulation of gene expression. Premedical - Biology

d ^dzd K DZ/ '^ ^ '^ K '^ / '^ / DZ/ W / ^ d Eled ^ d Eldd dd d e t d d e de ^ '^ de ddl '^

Lecture 4: Transcription networks basic concepts

Honors Biology Reading Guide Chapter 11

Computational Genomics. Systems biology. Putting it together: Data integration using graphical models

Lecture Notes for Fall Network Modeling. Ernest Fraenkel

for the Analysis of ChIP-Seq Data

Systems biology and complexity research

Understanding Science Through the Lens of Computation. Richard M. Karp Nov. 3, 2007

The EcoCyc Database. January 25, de Nitrógeno, UNAM,Cuernavaca, A.P. 565-A, Morelos, 62100, Mexico;

BioControl - Week 6, Lecture 1

12-5 Gene Regulation

Clustering and Network

Molecular Biology of the Cell

Welcome to Class 21!

Supporting Information

Statistical Inferences for Isoform Expression in RNA-Seq

Rule learning for gene expression data

Genome 541 Introduction to Computational Molecular Biology. Max Libbrecht

Whole-genome analysis of GCN4 binding in S.cerevisiae

Prokaryotes: genome size:? gene number:?

Computational Cell Biology Lecture 4

Supplemental Material

Towards Reverse Engineering of Genetic Regulatory Networks

Prokaryotic Gene Expression (Learning Objectives)

CMARRT: A TOOL FOR THE ANALYSIS OF CHIP-CHIP DATA FROM TILING ARRAYS BY INCORPORATING THE CORRELATION STRUCTURE

INTEGRATING EPIGENETIC PRIORS FOR IMPROVING COMPUTATIONAL IDENTIFICATION OF TRANSCRIPTION FACTOR BINDING SITES AFFAN SHOUKAT

The geneticist s questions. Deleting yeast genes. Functional genomics. From Wikipedia, the free encyclopedia

Big Idea 3: Living systems store, retrieve, transmit and respond to information essential to life processes. Tuesday, December 27, 16

Genetic transcription and regulation

Gene Regulation and Expression

Introduction to Bioinformatics. Shifra Ben-Dor Irit Orr

CSCE555 Bioinformatics. Protein Function Annotation

Exhaustive search. CS 466 Saurabh Sinha

IDR: Irreproducible discovery rate

Sig2GRN: A Software Tool Linking Signaling Pathway with Gene Regulatory Network for Dynamic Simulation

Schedule for 501 Gene Expression Section # Lecture Date Lecturer Lecture Title

Transcription Regulation and Gene Expression in Eukaryotes FS08 Pharmacenter/Biocenter Auditorium 1 Wednesdays 16h15-18h00.

GENE REGULATION AND PROBLEMS OF DEVELOPMENT

jahmm: a tool for discretizing multiple ChIP-seq profiles

13.4 Gene Regulation and Expression

Peter Pristas. Gene regulation in eukaryotes

Joint Analysis of Multiple ChIP-seq Datasets with the. the jmosaics package.

56:198:582 Biological Networks Lecture 10

Genetic transcription and regulation

Transcription:

/W > ' d d d D W d d > d > d d : ' d d d d h d / D/d, d h d D ^ h Z /W >' D dd D D ddddd W edeedddedd : ' D dd D D ddddd W edeeedeeed < /W 1

d E /W D /W, d d E /W d /W E d K ddl edl ddl de / d /W W d ed ZK / d Z d& d d& E ZE 2

dddd / d& ' / E d ddde ^ ddde ^ t ddde, dddd d d d& D Y ddde ^ t ddde ddde ^ dddd D ^ ddde, dddd d& ddde Z ddde < ddde < K ^ ddde s ddde ' dddd D Y dddd s ddde ddde Z ddde s ddde D Y dddd K ddde < ddde < K ^ ddde ' dddd W Z dddd / : ddde d ddde s ddde s Z D ddde dddd d ' ddde K dddd > ddde d 3

/W ddde : ddde Z ddde /W Z W dddd d E d& E d d& d /W ddde : ddde Z ddde E, dddd ' & ddde D ddde, ddde ^ /W < ddde s ddde ddde > ddde K d < ddde s ddde /W Z dddd d /W dddd ' dddd D W ddde t & dddd Z dddd > ddde ^ dddd K > ddde /W, 4

t & dddd K ' dddd dddd ' dddd dddd / Z / > Z/> Z/> /W & dddd K /W d ^ E d Z/> > ddde /W Z/> /W t E d /W t de dddd Z > ddde /W & d / 5

/W d d& /W & d t /W & d / d & d D> W d d > ddde t & dddd K D d K d K d D D> Z/> ^ d ^d Z/> / D d e d t t d 6

/W /W Z/> /W K & d d ^ /W D /W D / d Z/> & Z/> /W D d d /W & d < ddde s ddde & d & d d d d d & d 7

/W d E ^ d E / E d& & d & d & d d > s W λ ^ D ( x) 1 e λ V F(x) = 1 e λ d d s /W ^e d E / d& E & ^d D s ' ^d ' n β d β n d& 8

^ D d Z/> t & d & d E d / & d d d d & d d & d, t / E dddd d de de D d& Z d /W Z D ' dddd t s ddde ddde t & dddd & dddd / & d d K 'D ' dddd & d Z/> 'D t 9

md ddd Y ^d W Z D^ md dd 'D 'D dd t 'D e dd dd ''' dd ' dd dd ed d 'D dd de 'D, 'D Z/> W^^D 'D / Z/> Z/> / / & d Z/> ddl edl / & d Z/> d d / K /W D D / & d d d D 10

& d K d ^d D ^e D ^e & d t / D h D ^dd ^dd d K K D d& Z dddd d D & ^d d ZK d ed & d & ^d ^e d& d& Z^d 'W ^ & ^dd ^dd 11

, K /W t & dddd t D /W ' dddd d, & ^e ^e d& Dy Z^d ^Z& Z dddd t d& 'W d& ' ' dddd d & ^dd ^de K /W /W : ddde s ddde D Y dddd / & Z dddd s ddde / Z/> /W Z/> D d Z/> d d D /W 12

/ /W D ' dddd & K dd d d dd d ddl deed dded K ddl d d demd ed mdd d d ddmd ed & ^d & d edmd ed mdd d d d ' ddde W deee ^ deed dddd d ddde ' ddde ^ dddd Z d& t > ddde /W K dddd < K ^ ddde ^ t ddde ' dddd K /W & dddd d /W d 13

/W / /W & d & d K d > ddde t & dddd d de de D d& Z dddd d K /W d& ' dddd Z/> & ^dd ^de E & d & d& Z d d& W Z dddd d /W Z/> 14

' t Z/> D ' dddd, EK EK > dddd s E < dddd d,kd Z dddd D d& Z/> d& / d& d& K E ^ D d /W d /W E Z W dddd E d d d& K dddd ddde < K ^ ddde ^ ddde > ddde, dddd d K dddd z dddd / 15

d& KZd KZd KZd K dddd t /W d / /W K t & /W D ^ t /W D d θ θ / ' θ n β ^d & 16

E[C fw (x; M, L,θ)] = b(x)+ E[C rv (x;m, L,θ)] = b(x)+ L i i L m i f fw ((x l i );θ) m i f rv ((x l i ));θ) d d d > t d θ l θ l θ t d ld ld d ld d ld d E[C fw (x; M, L,θ)] = b(x)+ d L m i f ((x l i );θ) + m i,i+1 f fw ((x (l i,i+1 d i,i+1 2 );θ) I(d i,i+1 < d * ) i L 1 E[C rv (x;m, L,θ)] = b(x)+ L i m i f ( (x l i );θ) + m i,i+1 f rv ((x (l i,i+1 + d i,i+1 2 ));θ) I(d < i,i+1 d* ) i L 1 i E > m ld d / ^ d ^ d & d ld ld dl ld l ld dl ld d 17

d /W & d d argmax L,M,θ P(L, M,θ C) = argmax L,M,θ P(C L, M,θ) P(L, M,θ) d t d d W > D θ d W > D θ & α > θ α > θ & obj r (L, M,θ) = α r (L,θ)+ (C fw (x) E[C fw (x; M, L,θ)]) 2 + (C rv (x) E[C rv (x; M, L,θ)]) 2 d x r obj(l, M,θ) = obj r (L, M,θ) e r R Z / & de de d d D> (L (i+1), M (i+1) ) = argmin L,M obj(l, M,θ (i) ) e W (θ (i+1) ) = argmin θ obj(l (i+1), M (i+1),θ) e 18

d D> W d e Dd> e d Dd> & Dd> ^ D d e, D> / h de d & ^dd d & / & ^dd & D> d α > θ d / /W h /W t e d 19

D D W^^D DD ddde d &^d ddd dd D t &/DK ddde W^^D d > d / d d d / D> W e e d mdd d d de & ^dd D> / mdd d d d α > θ d / ^ D / d t α > θ lα d > < > 20

< t d < K(r) = x in r 1 2 (C 2 fw(x)+crv(x)) 2 d α d d d K α d ld dd t α d ld d dd d m mdd d d dd d d mdd d : ddde s ddde K e & /W /W & dd d d < K ^ ddde ' ddde 21

d D = n (log(obj null ) log(obj alternative )) e d d d ^ ^ D ^ d dd d d & ^d d /W d d & ^d d 22

d d & ^d d W d ^ d & ^d d d t & ^d d & ^d d & ^d d ^d dd d W K / ddd ddd K ^ ddd ddd & d& 'W 'D d Dy Z^d ^Z& Z Z dddd 23

W Z/> ^ /W D D ' dddd d /W D d& Z de e de e t dd d dd d d D < & d dd d dd d, /W Z Z dddd 'W d& ddde s ddde ' dddd ^ d d ' : / ' t, z d : d & E / / E 24

/,,, ^ E,,^Ededdddedddde d Z & & &tk > ' : ' > ' d > : ' D W d D W > /W > : ' d 25

& > & d / d /W / / d & D> W & D> & d d ' /W K D K /W & d d /W / E d E d& d d D d E d d Z K d d d d 26

d & d Z/> d /W Z/> Z/> Z/> d d / Z/> dd de dddd d d d d Z/> l ddd & Z/> Z/> Z/> dddl K ZK & d d d E Z /W D Z < d & d d /W K e dddd d & ^d ^d d ^d D d 27

D d / d d d d / & ^d ^e d 28

d d d K d Z/> d & h Z/> Z/> Z/> Z/> /W Z/> Z/> /W & Z/> Z/> ddd ^ ddd ddd h ZK ZK Method True positives False positves 1 Missing sites False positives filtered out AUC ROC BRACIL-db 44 5 3 37 0.9420 BRACIL-sb 40 4 7 38 0.8941 p-value 10-2.5 45 42 2 0 0.8457 p-value 10-3 40 13 7 29 0.8465 BRACIL-co 24 0 23 42 0.5106 peak callers (best) 20 0 27 42 0.5377 Peak callers (combined) 36 29 11 13 0.6548 1 We assume the total number of negatives to be 42, which is the number of motifs detected with p-value 10-2.5 that does not match a reference binding site. Notice that, although not directly related, this value is also used to estimate the false positives for the peak callers. 29

Z Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS. 2009. MEME SUITE: tools for motif discovery and searching. Nucleic acids research 37: W202-208. Barski A, Cuddapah S, Cui K, Roh T-Y, Schones D, Wang Z, Wei G, Chepelev I, Zhao K. 2007. High-Resolution Profiling of Histone Methylations in the Human Genome. Cell 129(4): 823-837. Benson M, Pirrotta V. 1988. The Drosophila zeste protein binds cooperatively to sites in many gene regulatory regions: implications for transvection and gene regulation. The EMBO journal 7: 3907-3915. Berger MF, Bulyk ML. 2009. Universal protein-binding microarrays for the comprehensive characterization of the DNA-binding specificities of transcription factors. Nature protocols 4: 393-411. Berman BP, Nibu Y, Pfeiffer BD, Tomancak P, Celniker SE, Levine M, Rubin GM, Eisen MB. 2002. Exploiting transcription factor binding site clustering to identify cis-regulatory modules involved in pattern formation in the Drosophila genome. Proceedings of the National Academy of Sciences of the United States of America 99: 757-762. Boeva V, Surdez D, Guillon N, Tirode F, Fejes A, Delattre O, Barillot E. 2010. De novo motif identification improves the accuracy of predicting transcription factor binding sites in ChIP-Seq data analysis. Nucleic Acids Research 38(11): e126-e126. Browning D, Busby S. 2004. The regulation of bacterial transcription initiation. Nature Reviews Microbiology 2(1): 57-65. Chauhan S, Sharma D, Singh A, Surolia A, Tyagi JS. 2011. Comprehensive insights into Mycobacterium tuberculosis DevR (DosR) regulon activation switch. Nucleic acids research. Chauhan S, Tyagi JS. 2008. Cooperative binding of phosphorylated DevR to upstream sites is necessary and sufficient for activation of the Rv3134c-devRS operon in Mycobacterium tuberculosis: implication in the induction of DevR target genes. Journal of bacteriology 190(12): 4301-4312. Chen X, Xu H, Yuan P, Fang F, Huss M, Vega V, Wong E, Orlov Y, Zhang W, Jiang J et al. 2008. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133(6): 1106-1117. Chung D, Park D, Myers K, Grass J, Kiley P, Landick R, Keleş S. 2013. dpeak: high resolution identification of transcription factor binding sites from PET and SET ChIP-Seq data. PLoS computational biology 9: e1003246. Feng X, Grossman R, Stein L. 2011. PeakRanger: a cloud-enabled peak caller for ChIP-seq data. BMC bioinformatics 12: 139. Furey TS. 2012. ChIP-seq and beyond: new and improved methodologies to detect and characterize protein-dna interactions. Nature reviews Genetics 13: 840-852. Galagan JE, Minch K, Peterson M, Lyubetskaya A, Azizi E, Sweet L, Gomes A, Rustad T, Dolganov G, Glotova I et al. 2013. The Mycobacterium tuberculosis regulatory network and hypoxia. Nature. Gaszner M, Felsenfeld G. 2006. Insulators: exploiting transcriptional and epigenetic mechanisms. Nature Reviews Genetics 7(9): 703-713. Gertz J, Siggia E, Cohen B. 2009. Analysis of combinatorial cis-regulation in synthetic and genomic promoters. Nature 457(7226): 215-218. Giorgetti L, Siggers T, Tiana G, Caprara G, Notarbartolo S, Corona T, Pasparakis M, Milani P, Bulyk ML, Natoli G. 2010. Noncooperative interactions between transcription factors and clustered DNA binding sites enable graded transcriptional responses to environmental inputs. Molecular cell 37: 418-428. Gordon B, Li Y, Wang L, Sintsova A, van Bakel H, Tian S, Navarre W, Xia B, Liu J. 2010. Lsr2 is a nucleoidassociated protein that targets AT-rich sequences and virulence genes in Mycobacterium tuberculosis. Proceedings of the National Academy of Sciences. Guo Y, Mahony S, Gifford DK. 2012. High resolution genome wide binding event finding and motif discovery reveals transcription factor spatial binding constraints. PLoS computational biology 8: e1002638. Guo Y, Papachristoudis G, Altshuler RC, Gerber GK, Jaakkola TS, Gifford DK, Mahony S. 2010. Discovering homotypic binding events at high spatial resolution. Bioinformatics (Oxford, England) 26: 3028-3034. Hartman S, Bertone P, Nath A, Royce T, Gerstein M, Weissman S, Snyder M. 2005. Global changes in STAT target 30

selection and transcription regulation upon interferon treatments. Genes & development 19(24): 2953-2968. He X, Samee M, Blatti C, Sinha S. 2010. Thermodynamics-Based Models of Transcriptional Regulation by Enhancers: The Roles of Synergistic Activation, Cooperative Binding and Short-Range Repression. PLoS Comput Biol 6(9): e1000935. Heintzman N, Stuart R, Hon G, Fu Y, Ching C, Hawkins D, Barrera L, Van Calcar S, Qu C, Ching K et al. 2007. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nature genetics 39(3): 311-318. Johnson D, Mortazavi A, Myers R, Wold B. 2007. Genome-wide mapping of in vivo protein-dna interactions. Science (New York, NY) 316(5830): 1497-1502. Jothi R, Cuddapah S, Barski A, Cui K, Zhao K. 2008. Genome-wide identification of in vivo protein-dna binding sites from ChIP-Seq data. Nucleic Acids Research 36(16): 5221-5231. Kaplan N, Moore I, Fondufe-Mittendorf Y, Gossett A, Tillo D, Field Y, LeProust E, Hughes T, Lieb J, Widom J et al. 2008. The DNA-encoded nucleosome organization of a eukaryotic genome. Nature 458(7236): 362-366. Kharchenko P, Tolstorukov M, Park P. 2008. Design and analysis of ChIP-seq experiments for DNA-binding proteins. Nature Biotechnology 26(12): 1351-1359. Kim H, O'Shea E. 2008. A quantitative model of transcription factor activated gene expression. Nature Structural & Molecular Biology 15(11): 1192-1198. Landt SG, Marinov GK, Kundaje A, Kheradpour P, Pauli F, Batzoglou S, Bernstein BE, Bickel P, Brown JB, Cayting P et al. 2012. ChIP-seq guidelines and practices of the ENCODE and modencode consortia. Genome research 22: 1813-1831. Larochelle M, Drouin S, Robert F, Turcotte B. 2006. Oxidative stress-activated zinc cluster protein Stb5 has dual activator/repressor functions required for pentose phosphate pathway regulation and NADPH production. Molecular and cellular biology 26: 6690-6701. Lu T, Khalil A, Collins J. 2009. Next-generation synthetic gene networks. Nat Biotechnol 27(12): 1139-1150. Lun D, Sherrid A, Weiner B, Sherman D, Galagan J. 2009. A blind deconvolution approach to high-resolution mapping of transcription factor binding sites from ChIP-seq data. Genome Biology 10(12): R142. MacQuarrie K, Fong A, Morse R, Tapscott S. 2011. Genome-wide transcription factor binding: beyond direct target regulation. Trends in genetics : TIG 27(4): 141-148. Maerkl S, Quake S. 2007. A Systems Approach to Measuring the Binding Energy Landscapes of Transcription Factors. Science 315(5809): 233-237. Mortazavi A, Thompson E, Garcia S, Myers R, Wold B. 2006. Comparative genomics modeling of the NRSF/REST repressor network: From single conserved sites to genome-wide repertoire. Genome Research 16(10): 1208-1221. Oppenheim AB, Kobiler O, Stavans J, Court DL, Adhya S. 2005. Switches in bacteriophage lambda development. Annual review of genetics 39: 409-429. Pepke S, Wold B, Mortazavi A. 2009. Computation for ChIP-seq and RNA-seq studies. Nat Methods 6(11s): S22-S32. Pique-Regi R, Degner JF, Pai AA, Gaffney DJ, Gilad Y, Pritchard JK. 2011. Accurate inference of transcription factor binding from DNA sequence and chromatin accessibility data. Genome research 21: 447-455. Rhee H, Pugh F. 2011. Comprehensive Genome-wide Protein-DNA Interactions Detected at Single-Nucleotide Resolution. Cell 147(6): 1408-1419. Robertson G, Hirst M, Bainbridge M, Bilenky M, Zhao Y, Zeng T, Euskirchen G, Bernier B, Varhol R, Delaney A et al. 2007. Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nature Methods 4(8): 651-657. Roy S, Ernst J, Kharchenko PV, Kheradpour P, Negre N, Eaton ML, Landolin JM, Bristow CA, Ma L, Lin MF et al. 2010. Identification of functional elements and regulatory circuits by Drosophila modencode. Science (New York, NY) 330: 1787-1797. Rye M, Sætrom P, Drabløs F. 2011. A manually curated ChIP-seq benchmark demonstrates room for improvement in current peak-finder programs. Nucleic Acids Research 39(4): e25-e25. Salmon-Divon M, Dvinge H, Tammoja K, Bertone P. 2010. PeakAnalyzer: genome-wide annotation of chromatin binding and modification loci. BMC bioinformatics 11: 415. Schindler U, Baichwal VR. 1994. Three NF-kappa B binding sites in the human E-selectin gene required for maximal tumor necrosis factor alpha-induced expression. Molecular and Cellular Biology 14: 5820-5831. Segal E, Raveh-Sadka T, Schroeder M, Unnerstall U, Gaul U. 2008. Predicting expression patterns from regulatory sequence in Drosophila segmentation. Nature 451(7178): 535-540. 31

Segal E, Widom J. 2009. From DNA sequence to transcriptional behaviour: a quantitative approach. Nature Reviews Genetics 10(7): 443-456. Sharon E, Kalma Y, Sharp A, Raveh-Sadka T, Levo M, Zeevi D, Keren L, Yakhini Z, Weinberger A, Segal E. 2012. Inferring gene regulatory logic from high-throughput measurements of thousands of systematically designed promoters. Nat Biotech 30(6): 521-530. Stormo G, Zhao Y. 2010. Determining the specificity of protein-dna interactions. Nature Reviews Genetics 11(11): 751-760. Tanay A. 2006. Extensive low-affinity transcriptional interactions in the yeast genome. Genome Research 16(8): 962-972. Valouev A, Johnson D, Sundquist A, Medina C, Anton E, Batzoglou S, Myers R, Sidow A. 2008. Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data. Nature Methods 5(9): 829-834. Van Nostrand EL, Kim SK. 2013. Integrative analysis of C. elegans modencode ChIP-seq data sets to infer gene regulatory interactions. Genome research 23: 941-953. Vasudeva-Rao H, McDonough K. 2008. Expression of the Mycobacterium tuberculosis acr-coregulated Genes from the DevR (DosR) Regulon Is Controlled by Multiple Levels of Regulation. Infect Immun 76(6): 2478-2489. Visel A, Blow M, Li Z, Zhang T, Akiyama J, Holt A, Plajzer-Frick I, Shoukry M, Wright C, Chen F et al. 2009. ChIPseq accurately predicts tissue-specific activity of enhancers. Nature 457(7231): 854-858. Wilbanks E, Facciotti M. 2010. Evaluation of Algorithm Performance in ChIP-Seq Peak Detection. PLoS ONE 5(7): e11471. Yaniv M. 2011. The 50th anniversary of the publication of the operon theory in the Journal of Molecular Biology: past, present and future. Journal of molecular biology 409: 1-6. Zhang X, Robertson G, Krzywinski M, Ning K, Droit A, Jones S, Gottardo R. 2011. PICS: probabilistic inference for ChIP-seq. Biometrics 67: 151-163. Zhang Y, Liu T, Meyer C, Eeckhoute J, Johnson D, Bernstein B, Nusbaum C, Myers R, Brown M, Li W et al. 2008. Model-based Analysis of ChIP-Seq (MACS). Genome Biology 9(9): R137. Zhao Y, Granas D, Stormo G. 2009. Inferring Binding Energies from Selected Binding Sites. PLoS Comput Biol 5(12): e1000590. Zinzen R, Senger K, Levine M, Papatsenko D. 2006. Computational models for neurogenic gene expression in the Drosophila embryo. Current biology : CB 16(13): 1358-1365. 32