A Calculator for Sediment Transport in Microchannels Based on the Rouse Number. L. Pekker Fuji Film Dimatix Inc., Lebanon NH USA.

Similar documents
15. Physics of Sediment Transport William Wilcock

compare to Mannings equation

C C C C 2 C 2 C 2 C + u + v + (w + w P ) = D t x y z X. (1a) y 2 + D Z. z 2

EXAMPLES (SEDIMENT TRANSPORT) AUTUMN 2018

Sediment transport and river bed evolution

Sediment continuity: how to model sedimentary processes?

Evaluation of Sediment Transport Function using Different Fall Velocity Equations

Lecture 3: Fundamentals of Fluid Flow: fluid properties and types; Boundary layer structure; unidirectional flows

ICOLD Bulletin 164 on internal erosion of dams, dikes and levees and their foundations

Geomorphology 5. Stream Sediment Stream Sediment

Module 9: Packed beds Lecture 29: Drag, particles settling. Flow through a packed bed of solids. Drag. Criteria of settling.

BAE 820 Physical Principles of Environmental Systems

Calculation of Stream Discharge Required to Move Bed Material

What s important: viscosity Poiseuille's law Stokes' law Demo: dissipation in flow through a tube

Figure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m

8.6 Drag Forces in Fluids

U.S. Army Corps of Engineers Detroit District. Sediment Trap Assessment Saginaw River, Michigan

Tutorial 10. Boundary layer theory

* Chapter 9 Sediment Transport Mechanics

1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts)

Plateau-Rayleigh Instability of a Cylinder of Viscous Liquid (Rayleigh vs. Chandrasekhar) L. Pekker FujiFilm Dimatix Inc., Lebanon NH USA

Settling-velocity based criteria for incipient sediment motion

INTRODUCTION TO SEDIMENT TRANSPORT AUTUMN 2018

National Center for Earth-surface Dynamics: Renesse 2003: Non-cohesive Sediment Transport

Studies on flow through and around a porous permeable sphere: II. Heat Transfer

Module 2. The Science of Surface and Ground Water. Version 2 CE IIT, Kharagpur

Modelling of dispersed, multicomponent, multiphase flows in resource industries. Section 3: Examples of analyses conducted for Newtonian fluids

Part A: 1 pts each, 10 pts total, no partial credit.

AP Physics Laboratory #6.1: Analyzing Terminal Velocity Using an Interesting Version of Atwood s Machine

Day 24: Flow around objects

Paper No. : 04 Paper Title: Unit Operations in Food Processing Module- 18: Circulation of fluids through porous bed

Sedimentation Scour Model Gengsheng Wei, James Brethour, Markus Grünzner and Jeff Burnham August 2014; Revised October 2014

EXAMPLE SHEET FOR TOPIC 3 AUTUMN 2013

REE 307 Fluid Mechanics II. Lecture 1. Sep 27, Dr./ Ahmed Mohamed Nagib Elmekawy. Zewail City for Science and Technology

R09. d water surface. Prove that the depth of pressure is equal to p +.

This is start of the single grain view

Table of Contents. Foreword... xiii. Preface... xv

Ripple Factor using Tapi River Data, India.

Lecture-6 Motion of a Particle Through Fluid (One dimensional Flow)

TALLINN UNIVERSITY OF TECHNOLOGY, DIVISION OF PHYSICS 13. STOKES METHOD

CLASS SCHEDULE 2013 FALL

ρg 998(9.81) LV 50 V. d2g 0.062(9.81)

Fluids. Fluids in Motion or Fluid Dynamics

Intermezzo I. SETTLING VELOCITY OF SOLID PARTICLE IN A LIQUID

Only if handing in. Name: Student No.: Page 2 of 7

Problem 05 Levitation

Colloquium FLUID DYNAMICS 2012 Institute of Thermomechanics AS CR, v.v.i., Prague, October 24-26, 2012 p.1

(3) Sediment Movement Classes of sediment transported

Experiments at the University of Minnesota (draft 2)

LABORATORY TESTING OF PIPE FLOWS OF BIMODAL COMPLEX SLURRIES

Figure 34: Coordinate system for the flow in open channels.

ENGINEERING FLUID MECHANICS. CHAPTER 1 Properties of Fluids

The role of a movable sandy-bed in modelling open-channel flow

(3) Sediment Movement Classes of sediment transported

2, where dp is the constant, R is the radius of

6. Basic basic equations I ( )

External Flow and Boundary Layer Concepts

MECHANICAL PROPERTIES OF FLUIDS:

D.R. Rector, M.L. Stewart and A.P. Poloski Pacific Northwest National Laboratory P.O. Box 999, Richland, WA

CALIFORNIA POLYTECHNIC STATE UNIVERSITY Mechanical Engineering Department ME 347, Fluid Mechanics II, Winter 2018

Chemical and Biomolecular Engineering 150A Transport Processes Spring Semester 2017

Friction Factors and Drag Coefficients

Introduction to Mechanical Engineering

WATER INJECTION DREDGING by L.C. van Rijn

PART 2:! FLUVIAL HYDRAULICS" HYDROEUROPE

PIPE FLOWS: LECTURE /04/2017. Yesterday, for the example problem Δp = f(v, ρ, μ, L, D) We came up with the non dimensional relation

Chapter XII. Special Topics Report Centrifuge Settling & Filtration Theory

Prediction of bed form height in straight and meandering compound channels

BED LOAD SEDIMENT TRANSPORT

Measurements of In Situ Pick-up Rate of Nutrients on Riverbed

PROPERTIES OF BULK MATTER

FORMULA SHEET. General formulas:

Particle removal in linear shear flow: model prediction and experimental validation

In this process the temperature difference across the given length of pipe can be described as:

Uniform Channel Flow Basic Concepts. Definition of Uniform Flow

Water Circuit Lab. The pressure drop along a straight pipe segment can be calculated using the following set of equations:

10.52 Mechanics of Fluids Spring 2006 Problem Set 3

Hydraulics. B.E. (Civil), Year/Part: II/II. Tutorial solutions: Pipe flow. Tutorial 1

EINFLUSS DER PARTIKELLAGERUNG AUF DEN STRÖMUNGSINDUZIERTEN EINSATZ DER PARTIKEL-BEWEGUNG

V/ t = 0 p/ t = 0 ρ/ t = 0. V/ s = 0 p/ s = 0 ρ/ s = 0

Calculation of Power and Flow Capacity of Rotor / Stator Devices in VisiMix RSD Program.

2. Governing Equations

Contents. Microfluidics - Jens Ducrée Physics: Laminar and Turbulent Flow 1

Convective Mass Transfer

arxiv: v1 [physics.flu-dyn] 16 Nov 2018

FINITE ELEMENT METHOD IN

1. Starting of a project and entering of basic initial data.

CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer

Centrifugation. Tubular Bowl Centrifuge. Disc Bowl Centrifuge

Fig.8-1 Scheme of the fluidization column

Stream Entrainment, Erosion, Transportation & Deposition

The role of interparticle forces in the fluidization of micro and nanoparticles

Chapter 10. Solids and Fluids

MULTIPLE-CHOICE PROBLEMS:(Two marks per answer) (Circle the Letter Beside the Most Correct Answer in the Questions Below.)

centrifugal acceleration, whose magnitude is r cos, is zero at the poles and maximum at the equator. This distribution of the centrifugal acceleration

Simple Equations to Calculate Fall Velocity and Sediment Scale Parameter

OE4625 Dredge Pumps and Slurry Transport. Vaclav Matousek October 13, 2004

CEE 3310 External Flows (Boundary Layers & Drag), /2 f = 0.664

BACHELOR OF TECHNOLOGY IN MECHANICAL ENGINEERING (COMPUTER INTEGRATED MANUFACTURING)

The most common methods to identify velocity of flow are pathlines, streaklines and streamlines.

Transcription:

A Calculator for Sediment Transport in Microchannels Based on the Rouse Number L. Pekker Fuji Film Dimatix Inc., Lebanon NH 03766 USA Abstract The Rouse number is commonly used to estimate the mode of the sediment transports in turbulent flows with large Reynolds number. However, in microchannels such as in modern inkjet systems, the liquid flows are usually laminar. In this paper, I modify the Rouse number by expanding it to the case of weakly turbulent and laminar flows and construct a calculator to estimate the modes of sediment transport in microchannels. To illustrate the applicability of the modified Rouse number, I apply it to the transport of sediments in an inkjet system and compare theoretical results with experimental observations. The modified Rouse number constructed in this paper can be used in other application as well. 1

I. Introduction In 1937, Hunter Rouse introduced a characteristic non-dimensional scale parameter [1], which later was named the Rouse number, P = v s u κ, (1) that describes the modes of sediment transported in turbulent flows. In this equation, v s is the free fall settling (terminal) velocity of a sediment particle in the fluid, κ = 0.4 is the Karman constant calculated for turbulent flow, and u is the boundary shear velocity determined as u = τ/ρ f, (2) where τ is the shear stress of the fluid at the bottom (at the sediment bed) and ρ f is the mass density of the fluid. Table 1 presents the transport modes of sediments vs. the Rouse number [2, 3]: Table 1. Modes of sediment transport Mode of Transport Rouse Number Bed load P > 2.5 Suspended load: 50% Suspended 1.2 < P < 2.5 Suspended load: 100% suspended 0.8 < P < 1.2 Wash load P < 0.8 Since, in turbulent flow, u is proportional to the lift velocity of a particle at the sediment bed, Table 1 has perfect physical sense. Indeed, for large P, where the deposition rate of particles due to the gravity prevails over the particle lift, the sediments are transported as a bed load (in bed load mode); for small P, where the lift velocity of the particles is about the particle settling velocity, the particles are suspended in the flow and, therefore, the sediments are transported in the suspension mode; for very small P, where the particle lift velocity is much larger than the deposition rate of particles, the sediments are transported in the wash load mode. On the other hand, there should be a critical Rouse number that corresponds to a threshold for initiating the sediment motion; this is very important to know when designing microchannels to transport liquids with particles as, for an example, in the case of inkjet systems in which the ink consists of a liquid with micrometer-sized pigments. This threshold is described by the widely 2

used the Shields diagram [4], which, unlike the Rouse number, is applicable for a large range of Reynolds numbers, including laminar flows as well, Fiq.1. In Section II, I reformulate the Rouse number in Shields diagram terms using the particle boundary Reynolds number and the particle shear stress (Re and τ in Fig.1) and then extend the Rouse number to weakly turbulent and laminar flows by matching the Rouse number to the Shields diagram. To illustrate the applicability of the modified Rouse number, I apply it to the transport of sediments in an inkjet system and compare theoretical results with experimental observations, Section III. Conclusions are given in Section IV. II. Expansion of the Rouse number to laminar flows To connect the Rouse number with the Shields diagram, I will reformulate the Rouse number in terms of the Shields diagram. In the Shields diagram, Fig. 1, the particle boundary Reynolds number Re and the particle shear stress τ are determined as Re = D μ τρ f, (3) and τ = τ Dg(ρ p ρ f ), (4) where g is the Earth s gravitational acceleration; D is the characteristic diameter of a particle; ρ p is the mass density of a particle; and μ is the fluid viscosity. In Eq. (1), I will use an approximate formula for the settling velocity of grains as given in [5], gd 2 (ρ p ρ f ) v s = (5) C 1 μ+ 0.75C 2 (ρ p ρ f )ρ f gd 3 with coefficients C 1 and C 2 from Table 2 [5]: 3

τ cr = 0.12 R τ cr = 0.06 Fig. 1. The Shields diagram: in this diagram R corresponds to Re ; τ o τ; γ s gρ p ; γ gρ f ; U u ; d s D; and ν μ/ρ f. Table 2. Coefficients for settling velocity of grains Constant Smooth Sphere Natural Grains: Sieve Diameters Natural Grains: Nominal Diameters Limit for Ultra- Angular Grains C 1 18 18 20 24 C 2 0.4 1.0 1.1 1.2 As one can see from Eq. (5), in the creeping free fall case where the first term in the dominator of Eq. (5) is much larger than the second term, Eq. (5) reduces to the Stokes formula for settling velocity, v s = gd 2 (ρ p ρ f )/(C 1 μ), (6) and, in the turbulent free fall case where the first term is much smaller than the second term, Eq. (5) reduces to the formula for the turbulent settling velocity, 4

v s = 4gD 3C 2 ( ρ p ρ f ρ f ), (7) where C 1 and C 2 are the creepy and turbulent drag coefficients respectively. Substituting Eqs. (2) and (5) into Eq. (1) and then using Eqs. (3) and (4), Eq. (1) can be reduced to the following form: P = 1 κc 1 ( Re ) (1 + 0.75C 2 τ (C 1 ) 2 (Re τ )) 1. (8) Asymptotic solutions of Eq. (8) are: τ (Re ) = 4 3C 2 (κp) 2, (9) τ (Re 0) = Re κc 1 P. (10) Solving Eq. (8) for τ, I obtain that τ can be expressed in terms of Re and P as follows: τ = ( ( 0.75 C 2 Re 2 4C 1 2 ) 0.5 + ( 0.75 C 2 Re 2 4C 1 2 + Re )0.5 2 ) κc 1 P (11) The Shields diagram also has two asymptotes [1]: τ cr (Re ) = 0.06, (12) τ cr (Re 0) = 0.12 R. (13) To match the Rouse number and the Shields diagram, I introduce the critical value of the Rouse number, P cr, that yields the same τ as the Shields diagram at Re 1 and corresponds to the threshold of initiation of the sediment motion at the bed. Setting Eqs. (9) and (12) equal to each other, I obtain P cr = 11.79 C 2. (14) 5

In Eq. (14), I have taken into account that the Karman constant is equal to 0.4. Fig. 2 shows the Shields curve, τ cr (Re ), and curves of τ (Re ) calculated by Eq. (7) for different modes of sediment transport in the case of ultra-angular grains; C 1 and C 2 are taken from Table 2. As one can see from Fig. 2, in the case of the threshold of initiation of sediment motion mode, τ (P cr, Re ) is in a good agreement with the Shields diagram when Re > 10; however, with a decrease in Re, τ (P cr, Re ) sharply diverges from the Shields diagram. For other sediment transport modes, τ has no sense for small Re as well. This is so because Eq. (1) is applicable for turbulent flows only, for large Re. Full suspended load Some suspended load Bed load Wash load P = 0.8 P = 1.2 P = 2.5 Pcr = 10.77 No movement Fig. 2. The Shields diagram vs. the Rouse number: broken line - the Shields diagram curve (Fig. 1) and solid lines - Rouse numbers curves at given P, Eq. (11), for ultra-angular grains, Table 1. To expand the Rouse number to small Re and, at the same time to preserve the asymptote of τ (P cr, Re ), Eq. (9) with P = P cr, I will modify the Rouse number by using κ, 1 κ = 1 κ + 0.12C 1P cr (Re ) 2, (15) for κ in Eq. (11); this yields 6

τ = ( ( 0.75 C 2 0.5 2 Re 2 ) + ( 0.75 C 2 2 Re 2 + Re + 0.12P 0.5 2 cr ) ) 4C 1 4C 1 0.4C 1 P PRe. (16) The substitution of κ for κ into Eqs. (9) and (10) shows that the asymptotes of Eqs. (16) for Re 1 and Re 1 indeed coincide with Eqs. (12) and (13) respectively. Fig. 3 demonstrates the excellent agreement between the Shields diagram curve and τ (P cr, Re ). Wash load P = 0.8 P = 1.2 P = 2.5 * Full suspended load Bed load Some suspended load No movement Pcr = 10.77 Re * Fig. 3. The Shields diagram vs. the modified Rouse number: broken line - the Shields diagram curve (Fig. 1) and solid lines - the modified Rouse numbers curves at given P, Eq. (11), for ultraangular grains, C 1 and C 2 are from Table 1. III. Comparison with experiment To illustrate the applicability of the modified Rouse number, I applied it to the transport of sediments in a channel of Fuji Dimatix SG 1024 inkjet head and compared theoretical results with experimental observations. I used Microsoft Excel to plot τ vs. Re for the sediment transport modes from Table 1 using Eq. (16) and to plot the threshold of initiation of the sediment motion at the bed mode that corresponds to P = P cr calculated by Eq. (14). These plots are shown in the plot window of the calculator along with the Shields diagram curve, τ cr (Re ). The calculator input parameters are the characteristic radius of particles, C 1 and C 2 ; the density and viscosity of the fluid; the shear stress at the 7

sediment bed or both the radius of the cylindrical channel and the liquid flow. In the case where input parameters are the flow and the diameter of the channel, I calculate the shear stress at the bottom assuming Poiseuille s law, which is reasonable for this particular application. Table 3 presents the combined Excel input and output data for a channel of Fujifilm Dimatix SG 1024 inkjet print head for two ink flows: 2.71 10-8 and 5.646 10-7 m 3 /sec. The combined screen shots of the calculator plot window for these flows are presented in Fig. 4. As one can see from this figure, in the case of small flow, the sediment transport is in no movement mode; while in the case of large flow, it is in wash load mode. The experimental work with this type of print heads showed that, for the ink flow of 2.71 10-8 m 3 /sec, all nozzles of the print head where completely blocked by pigment particles and the print head could not be recovered; this experimental result corresponds to the case of small flow in Fig. 4. However, for the ink flow of 5.646 10-7 m 3 /sec, the print head worked normally and the particles were transported through this channel; this regime corresponds to the case of large flow in Fig. 4. Thus, experimental findings support the theoretical model Table 3 Input Parameters Small Flow Large Flow Particle Diameter, D (m) 5.0E-06 5.0E-06 Particle Density, ρ p (kg/m 3 ) 1320 1320 Fluid Density, ρ w (kg/m 3 ) 1000 1000 Viscosity, (Pa*s) 0.015 0.015 C1 24 24 C2 1.2 1.2 Flow, Q (m 3 /s) 2.71E-8 5.646E-7 Radius of the pipe, R (m) 1.5E-03 1.5E-03 Output Parameters Shear Stress, τ (Pa) 0.153 3.194 Boundary Reynolds Number, R * 0.004 0.019 Boundary shear stress, τ * 9.770 203.518 Pcr 10.76 10.76 Shield's Shear Stress, τ *P=Pcr 29.070 6.368 Shear Stress Some Suspension, τ *P=2.5 125.239 27.438 Shear Stress Full Suspension, τ *P=1.2 Shear Stress Wash Load, τ *P=0.8 Resuspension? 260.916 57.165 391.375 85.748 No Movement Wash Load 8

1.E+03 1.E+02 Large Flow Wash load Some suspended load * 1.E+01 Small flow Full suspended load P = 0.8 P = 1.2 1.E+00 P = 2.5 Bed load 1.E-01 No movement 1.E-02 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 Re * Fig. 4. The combined screen shots of the calculator plot window. The parameters of the calculator are presented in Table 3; the broken line corresponds to the Shields diagram curve τ cr (Re ). Pcr IV. Conclusions In this paper, I modified the Rouse number by expanding it to the case of weakly turbulent and laminar flows by matching it to the Shields diagram curve for the threshold of initiation of the sediment motion mode and demonstrating excellent agreement between the Shields diagram and the Rouse number calculated for this transport mode. Based on the modified Rouse number model, I have constructed an Excel calculator to estimate the transport of sediments in microchannels and applied it a Fujifilm Dimatix print head, finding strong correlation between theoretical results and experimental observations. The modified Rouse number constructed in this paper can be used in other applications as well, for example in hydrology. 9

Acknowledgments I would like to express my sincere gratitude to my colleagues Daniel Barnett and Matthew Aubrey for their kind support and helpful discussions during this research. I also would like to thank Alexander Pekker for his kind help in preparation the text of this paper. References [1] Rouse H., Modern Conceptions of Mechanics of Fluid Turbulence, Trans. ASCE, Vol. 102, No. 1, pp. 463-505 (1937), http://cedb.asce.org/cedbsearch/record.jsp?dockey=0288088. [2] Whipple, Kelin (September 2004). "IV. Essentials of Sediment Transport"(PDF). 12.163/12.463 Surface Processes and Landscape Evolution: Course Notes. MIT OpenCourseWare, Retrieved 2009-10-11. [3] Moore, Andrew. "Lecture 20 Some Loose Ends" (PDF). Lecture Notes: Fluvial Sediment Transport, Kent State, Retrieved 23 December 2009. [4] Shields A., Anwedung der Aehnlichkeysmechanik und der Turbulenzforsschung auf die Geschiebebewegung. Mitteilungen der Pruessischen Versuchanstalt fur Wasserbau und Schiffbau, Berlin 1936 (uuid:61a19716-a994-4942-9906-f680eb9952d6); see also in Garde R.J and Ranga Raju K.G., Mechanics of Sediment Transportation and Alluvial Stream Problems, Third Edition, New Age International Publishers (2000). [5] Ferguson, R. I., and M. Church (2006), A Simple Universal Equation for Grain Settling Velocity, Journal of Sedimentary Research, 74(6) 933-937, doi:10.1306/051204740933. 10