Synthesis and antimicrobial activity of Mannich bases of isatin and its derivatives with 2-[(2,6-dichlorophenyl)amino]phenylacetic acid

Similar documents
Synthesis And Biological Evaluation Of 1-(4-P-Toluidino)-6- (Diphenylamino)-1,3,5-Triazine 2-yl- 3-Methyl -2,6- Diphenyl Piperidine-4-One.

Journal of Chemical and Pharmaceutical Research

Development and evaluation of novel preservatives from simple organic acids 42

Synthesis and Antimicrobial Activities of 1,2,4-Triazole and 1,3,4-Thiadiazole Derivatives of 5-Amino-2-Hydroxybenzoic Acid

International Journal of PharmTech Research ISSN : Vol.1,No.1,pp 22-33, Jan March 2009

Synthesis and Biological Activity of Phenyl Amino Acetic Acid (2-Oxo-1,2-dihydroindol-3-ylidene)hydrazides

Pelagia Research Library

ISATIN (PER-O-ACETYL- -D- GALACTOPYRANOSYL)THIOSEMICARBAZONES

SOLVENT FREE MICROWAVE ASSISTED SYNTHESIS OF A NOVEL BIOLOGICAL AGENT

Pelagia Research Library

Synthesis and Computational studies of synthesized 3-(4 -Bromophenyl)-5-(aryl substituted) Isoxazole derivatives

World Journal of Pharmaceutical and Life Sciences WJPLS

Synthesis, Characterization and Antimicrobial Activity of Some Thiazole Derivatives

SYNTHESIS AND BIOLOGICAL EVALUATION OF SCHIFF BASE AND 4-THIAZOLIDINONES OF AMINO SALICYLIC ACID AND THEIR DERIVATIVES AS AN ANTIMICROBIAL AGENT

Journal of Chemical and Pharmaceutical Research

Synthesis and Antimicrobial Activity of Some New 2-Substituted Benzothiazole Derivatives

Synthesis and biological evaluation of some novel Mannich bases

S.K. NARWADE*, B.K. KARALE¹, S.G. JAGDHANI¹, C.S. CHAUDHARI² and S.S. RINDHE³

Synthesis of 6-iodo / bromo- 3-amino-2-methylquinazolin- 4 (3H)-ones by direct halogenation and their Schiff base derivatives

Mixed Ligand-Cu(II) Complexes as Antimicrobial Agents: Preparation and Spectroscopic Studies

Synthesis, characterization and antimicrobial activity of benzene- (1 /, 4 / -diimine)-substituted-4,4-10h-diphenothiazine derivatives

Journal of Chemical and Pharmaceutical Research

Solvent Free Synthesis of Chalcones and their Antibacterial Activities

Supporting information

NOVEL OXAZOLES AND THEIR HYDRAZONES

Journal of Chemical and Pharmaceutical Research

Synthesis of 2-[(1-Phenyl) (Aryl) Azo] Methyleneimino -6-Chloro/ Fluoro Benzothiazoles and their Antibacterial Activity

Journal of Chemical and Pharmaceutical Research

Scholars Research Library

Synthesis of Quinazoline Derivatives and their Biological Activities

An Eco-friendly Route to Synthesis of Quinolines

Synthesis and Evaluation of Some Coumarin Containing Potential Antimicrobial Agents

VOLUME: I: ISSUE-3: NOV-DEC ISSN SYNTHESIS AND ANTIMICROBIAL STUDIES OF SOME NOVEL ISOXAZOLINE DERIVATIVES

antimicrobial activity against different strains of bacteria and fungi.

Note. Antibacterial and antitubercular activities of some diphenyl hydrazones and semicarbazones

SYNTHESIS, CHARACTERIZATION AND ANTI- MICROBIAL SCREENING OF NOVEL THIAZOLIDINO- FUSED COMPOUNDS

Journal of Chemical and Pharmaceutical Research

Synthesis, characterisation and pharmacological evaluation of novel 4-aryl 3-chloro n-pyridine 2-yl 2- azetidinone

International Journal of Pharmacy and Pharmaceutical Sciences

Synthesis and antimicrobial activity of some novel derivatives of 7-hydroxy-4- methyl coumarin

Synthesis of some new 2,3-diaryl-1,3-thiazolidin-4-ones as antibacterial agents

Vol-3, Issue-4, Suppl-3, Dec 2012 ISSN: Parikh et al PHARMA SCIENCE MONITOR SYNTHESIS AND ANTIMICROBIAL ACTIVITY OF 5-PYRAZOLONE DERIVATIVES

2. EXPERIMENTAL Synthesis of 1-(2-(2,4,5-triphenyl-1H-imidazol-1-yl) ethyl)piperazines (84-98)

Journal of Global Pharma Technology

Synthesis and Biological Screening of 3-Aryl-5-[(4 - difluoromethoxy)(3 -hydroxy)phenyl]-4,5-dihydro isoxazole

ANTIMICROBIAL STUDY OF 1,1-BIS- {2-HYDROXY-3-(1 - PHENYL-5 -ARYL-PYRAZOLIN 3 -YL)-5 METHYL PHENYL} METHANE

New Benzimidazoles Derivatives: Synthesis, Characterization and Antifungal Activities

Synthesis and Biological Activity of Some Novel Phenyl Pyrazoline Derivatives

Maharashtra, India. Departments of Chemistry, R.C.Patel ASC College, Shirpur , Maharashtra, India

Synthesis, Characterization and Antimicrobial activity of a Novel Dapsone Schiff Base.

Journal of Chemical and Pharmaceutical Research

SYNTHESIS, CHARACTERIZATION AND ANTIMICROBIAL ACTIVITY OF SOME NOVEL SCHIFF AND MANNICH BASES OF ISATIN

Tariq Sana et al. IRJP 2012, 3 (9) INTERNATIONAL RESEARCH JOURNAL OF PHARMACY

Studies on Synthesis of Pyrimidine Derivatives and their Pharmacological Evaluation

Microwave assisted green chemistry approach to the synthesis of some novel N 1 -amino-methyl-substituted 1,4-Benzodiazepine derivatives

Synthesis and antibacterial activity of novel 3-[5-(4-substituted) phenyl-1,3,4-oxadiazole-2yl]-2- styrylquinazolin-4(3h)-ones

Journal of Chemical and Pharmaceutical Research

Microwave Irradiation Versus Conventional Method: Synthesis of some Novel 2-Substituted benzimidazole derivatives using Mannich Bases.

Novel 3-[4-(diethylamino)phenyl]-4-substituted-1-ylsulfonyl) sydnones: Synthesis, characterization and antimicrobial studies

Research Journal of Pharmaceutical, Biological and Chemical Sciences

Synthesis, characterization and antimicrobial study of some pyrazole compounds derived from chalcone

Journal of Chemical and Pharmaceutical Research

Synthesis and Antimicrobial Activity of Ciprofloxacin Schiff and Mannich bases

ISSN: Introduction: Mannich reaction and to screen antibacterial. reactions by microwave energy is a crucial compounds.

SYNTHESIS, CHARACTERISATION AND ANTIMICROBIAL ACTIVITY OF SOME NEW CHALCONES. Antibacterial

Synthesis and Antimicrobial Activities of N -[(2-Chloro-6-methoxy quinolin-3-yl)methylidene]- substituted Benzohydrazide

J. Serb. Chem. Soc. 70 (10) (2005) UDC

MATERIALS AND METHODS

Shinde N. C. et. al,asian Journal of Pharmaceutical Technology & Innovation, 04 (17); 2016;

Journal of Chemical and Pharmaceutical Research, 2017, 9(4): Research Article

Syntheses and Biological Activities of 6-Aryl-3-(3-hydroxypropyl)-7H-1,2,4-triazolo[3,4-b][1,3,4]thiadiazines

Volume: I: Issue-2: Aug-Oct ISSN ANTI-NOCICEPTIVE AND ANTIMICROBIAL EVALUATION OF MANNICH BASES OF 1H-INDOLES

Synthesis of Some Novel Antibacterial Sulfonamide Reactive Dyes. *

Synthesis of Novel Indolyl-Pyrimidine Antiinflammatory, Antioxidant and Antibacterial Agents

Synthesis of Some Benzimidazolyl Pyrazole Derivatives Under Microwave Irradiation and their Antimicrobial Activities

Synthesis, characterization and biological aspects of novel azetidinone derivatives

SYNTHESIS AND ANTIMICROBIAL ACTIVITY OF 4-ARYL- 5-HEPTA-O-BENZOYL-β-D-LACTOSYLIMINO-3-THIO-1,2,4- DITHIAZOLIDINES [HYDROCHLORIDE]

Compounds Synthesis and Bilogical Analysis

Page29 SHORT REPORT. Yeola

M. B. Gunjegaonkar 1, S. A. Fegade 2, A. A. Kulkarni 3, R. K. Nanda 4

Note. Synthesis of some novel pyrido[2,3- d]pyrimidine derivatives and their antimicrobial investigations

Organic Chemistry: An Indian Journal

Note. Synthesis of 2-aryl-5-(benzofuran-2-yl)- thiazolo[3,2-b][1,2,4]triazoles, grinding. procedures and their antibacterial activity

Journal of Chemical and Pharmaceutical Research, 2012, 4(5): Research Article

Synthesis of Mannich Bases of Thiosemicarbazide as Mutual Prodrug and In-Vitro Screening for Anti-Infective Activity

Asian Journal of Research in Chemistry and Pharmaceutical Sciences Journal home page:

Volume: 3: Issue-1: Jan - Mar-2012 ISSN

Similarly other chalcones (4a 4k) where prepared and their physical data and antimicrobial activities data published in onther journal.

Pelagia Research Library

SYNTHESIS AND ANTIBACTERIAL EVALUATION OF NOVEL 3,6- DISUBSTITUTED COUMARIN DERIVATIVES

Evaluation of the Effect of Azo Group on the Biological Activity of 1-(4-Methylphenylazo)-2-naphthol

Chapter 2 EXPERIMENTAL

Synthesis and Antimicrobial Activity of Some Aldehyde Derivatives of 3-Acetylchromen-2-one

Microwave Mediated Synthesis And Evaluation Of Some Novel Pyrimidines For Antimicrobial Activity

I. INTRODUCTION MATERIAL AND METHODS. [FRTSSDS- June 2018] ISSN DOI: /zenodo Impact Factor

Efficieant Synthesis of 1, 5- Benzothiazepine Derivatives Using Benzyl Tri Ethyl Ammonium Chloride in Ethonol

Vol-3, Issue-4, Suppl-2, Nov 2012 ISSN: Joshi et al PHARMA SCIENCE MONITOR

Journal of Chemical and Pharmaceutical Research

A SOLID STATE OXIDATION METHOD FOR THE SYNTHESIS OF SULFONES USING OXONE

Synthesis and Antimicrobial Evaluation of Some Novel Substituted 2-chloroacetanalides

Transcription:

Synthesis and antimicrobial activity of Mannich bases of isatin and its derivatives with 2-[(2,6-dichlorophenyl)amino]phenylacetic acid V. Ravichandran,* S. Mohan, and K. Suresh Kumar K. M. C. H. College of Pharmacy, Coimbatore, Tamilnadu, India 641 035 E-mail: Phravi75@rediffmail.com Abstract A series of 2,3-dihydro-2-oxo-1,3-disubstituted indoles were prepared by the reaction of 2,3- dihydro-2-oxo-3-substituted indoles with 2-[(2,6-dichlorophenyl)amino]phenylacetic acid in the presence of formaldehyde. The newly synthesized compounds were characterized on the basis of elemental analysis, IR, 1 H MR and mass spectra. All the synthesized compounds were tested for their antibacterial activities against Gram + and Gram bacteria, and antifungal activities. Among the synthesized compounds RS II showed moderate antibacterial activity against B. subtilis, RS I, RS II, RS III and RS VI showed moderate antibacterial activity against P. aeruginosa, RS V and RS VI showed good anti fungal activity against P. notatum. Keywords: Isatin, Schiff base, Mannich base, antimicrobial activity Introduction Isatin (2,3-dioxindole) is an endogenous compound with a long history and wide range of pharmacological actions. -alkyl isatin derivatives were synthesized and screened against Gram + and Gram bacteria [1]. Schiff and Mannich bases of isatin and its derivatives were synthesized and reported for antibacterial [2], antifungal [3], anti-hiv [4-11], anticonvulsant activities [12] and GAL3 receptor antagonists [13,14]. Prompted by the biological properties of 2,3-dioxindole derivatives and its Schiff and Mannich bases, it was decided to synthesize various Mannich bases of isatin and its derivatives with 2-[(2,6-dichlorophenyl) amino] phenyl acetic acid and to screen them for their antimicrobial properties. The results of such studies are discussed in this paper. Present address: Department of Pharmaceutical Sciences, Dr. H. S. Gour Vishwavidyalaya, Sagar (M.P), India 470 003 ISS 1424-6376 Page 51

Results and Discussion In the present study, Schiff bases of isatin were synthesized by condensation of the keto group of isatin with different aromatic primary amines. The -Mannich bases of the above Schiff bases were synthesized by reaction of the acidic imino group of isatin with formaldehyde and 2-[(2,6- dichlorophenyl)amino]phenylacetic acid. The previous reports [2-10] revealed that Mannich bases of isatin with substituted aromatic amines show good antimicrobial activity, especially halogenated aromatic amines; therefore, we have selected 2-[(2,6- dichlorophenyl)amino]phenylacetic acid to make Mannich bases with isatin in the present study. All the compounds gave satisfactory elemental analysis (Table 1). IR, 1 H MR and mass spectra were consistent with the assigned structures. R H + RH 2 Schiff reaction H CH 2 CH CH 2 H Mannich reaction R CH 2 CH Scheme 1. Synthesis of the studied compounds. ISS 1424-6376 Page 52

Table 1. The physical constant of the synthesized compounds Compd. R Molecular formula Elemental analysis Found/calculated (%) C H RS I C 29 H 20 3 3 3 61.35 3.46 7.35 61.66 3.57 7.44 RS II S 2 H 2 C 29 H 22 2 4 S 5 57.16 3.54 9.17 57.15 3.64 9.19 RS III CH C 30 H 21 2 3 5 62.70 3.65 7.30 62.73 3.68 7.32 RS IV HC C 30 H 21 2 3 5 62.68 3.65 7.32 62.73 3.68 7.32 RS V H C 29 H 22 2 4 3 63.84 4.02 10.28 63.86 4.07 10.27 RS VI C 23 H 16 2 2 4 60.63 3.52 6.11 60.67 3.54 6.15 All the synthesized compounds were tested for in vitro antimicrobial activity. The MIC values of the compounds against pathogenic bacteria and fungi are presented in Table 2. All compounds have shown moderate activity, but not up to our expectation, against tested bacteria and fungi. It may be, because of the bulky phenyl acetic acid group present at nitrogen atom of isatin nucleus. This bulky group may sterically hinder the compounds binding with bacteria. Substitution of isatin at 3-position with a substituted phenyl ring is conducive for antibacterial activity compared to an unsubstituted phenyl group or no substitution at the same position of isatin. Moreover, compound RS II showed good activity against all the bacteria tested suggesting that the substitution of isatin at the 3-position with a substituted phenyl ring favors antibacterial activity compared to an unsubstituted phenyl ring at ISS 1424-6376 Page 53

the same position. The antifungal activity of the compounds was studied with pathogenic fungi, and the results are given in Table 2. Fluconazole is used as a reference. All the compounds showed significant antifungal activity, especially compound RS V, indicating that unsubstituted phenyl ring at 3-position of isatin is desired for anti-fungal activity compared to substituted phenyl ring. Table 2. Antimicrobial activity of the compounds MIC s in µg/ml a Compounds Microorganisms RS I RS II RS III RS IV RS V RS VI Ciprofloxacin Fluconazol e MIC Value Escherchia coli 25.0 25.0 50.0 25.0 50.0 25.0 3.9 -- Pseudomonas 12.5 12.5 12.5 50.0 25.0 25.0 3.9 -- aeruginosa Bacillus cereus 25.0 25.0 50.0 50.0 50.0 50.0 7.8 -- Bacillus subtilis 25.0 12.5 50.0 50.0 25.0 50.0 3.9 -- Klebsiella 50.0 50.0 50.0 50.0 25.0 50.0 15.6 -- aeruginosa Staphylococcus 12.5 25.0 25.0 50.0 25.0 50.0 3.9 -- aureus Penicillium 50.0 50.0 100.0 12.5 6.25 12.25 -- 2.5 notatum Candida albicans 100.0 50.0 100.0 100.0 100.0 100.0 -- 10.0 Aspergillus niger 12.5 25.0 50.0 50.0 12.5 25.5 -- 5.0 a MIC- Minimum inhibitory concentration. Experimental Section Chemistry General Procedures. Melting points were determined using an open-ended capillary method and are uncorrected. The purity of the synthesized compounds was checked by TLC. UV/VIS spectra were taken in a Schimadzu UV/VIS 1700 spectrophotometer. FT-IR was recorded on a Jasco FT-IR spectrophotometer, 1 H MR spectra were recorded at 300 MHZ on a Bruker FT- MR spectrophotometer and mass spectra on a Varian Atlas CH-7 mass spectrometer at 70 ev (IICT, Hydrabad). The elemental analysis was obtained on a Vario-EL instrument. ISS 1424-6376 Page 54

General synthesis of 2,3-dihydro-2-oxo-1,3-disubstituted indoles Isatin was allowed to react with different aromatic primary amines like 4-chloroaniline, sulfanilamide, 4-amino benzoic acid, 2-amino benzoic acid and phenyl hydrazine respectively, in the presence of absolute alcohol and the ph was adjusted to 4-5 with glacial acetic acid to get 2,3-dihydro-2-oxo-3-substituted indoles. These compounds were directly used for the next step. The Mannich reactions of 2,3-dihydro-2-oxo-3-substituted indoles with 2-[(2,6- dihydrophenyl)amino]phenylacetic acid in the presence of formaldehyde were carried out at 0-5 o C by stirring the reaction mixture with magnetic stirrer. The reactions yielded 2,3-dihydro-2- oxo-1,3-disubstituted indoles (Scheme 1). The synthesized compounds were recrystalized from hot ethanol. The physical characteristics of the synthesized compounds are listed in Table 1. Spectral data {2-[3-(4-Chlorophenylimino)-2-oxo-2,3-dihydro-indol-1-yl-methyl]-(2,6-dichlorophenyl) amino]phenyl}acetic acid. (RS I). Yield 43.5%, mp 177-179 o C, UV (λ max ) 420.5 nm, IR (KBr) v max in cm -1 3414 (-H), 1616 (C=), 1509 (characteristic of 1,2-disubstituted benzene), 749 (C-). 1 H-MR (acetone) δ ppm: 3.52 (s, 2H, -CH 2 -C), 4.75 (s, 2H, - CH 2 -), 6.40-6.91 (m, 7H, Ar-H), 7.21-7.63 (m, 8H, Ar-H). 11.0 (s, 1H, -CH). EI-MS (m/z) 565. (2-{(2,6-Dichlorophenyl)-[2-oxo-3-(4-sulfamoylphenylimino)-2,3-dihydroindol-1-yl-methyl] amino}phenyl)acetic acid. (RS II). Yield 76%, mp 260-262 o C, UV (λ max ) 414.5 nm, IR (KBr) v max in cm -1 3411 (-H), 1737 (C=), 1617 (C=), 1150 (S 2 ), 749 (C-). 1 H-MR (acetone) δ ppm: 2.0 (br, 2H, S 2 H 2 ), 3.52 (s, 2H, -CH 2 -C), 4.72 (s, 2H, -CH 2 -), 6.43-6.90 (m, 7H, Ar-H), 7.20-7.65 (m, 8H, Ar-H). 11.20 (s, 1H, -CH). 4-(1-{[(2-Carboxymethylphenyl)-(2,6-dichlorophenyl)amino]methyl}-2-oxo-1,2-dihydroindol-3-ylidine amino)benzoic acid. (RS III). Yield 47.4%, mp 150-152 o C, UV (λ max ) 363.5 nm, IR (KBr) v max in cm -1 3413 (-H), 1737 (C=), 1504 (characteristic of 1,2-disubstituted benzene). 1 H-MR (acetone) δ ppm: 3.61 (s, 2H, -CH 2 -C), 4.65 (s, 2H, -CH 2 -), 6.51-6.86 (m, 7H, Ar-H), 7.12-7.60 (m, 8H, Ar-H), 11.42 (s, 1H, -CH). EI-MS (m/z) 574. 2-(1-{(2-Carboxymethylphenyl)-(2,6-dichlorophenyl)amino)methyl}-2-oxo-1,2-dihydroindol-3-ylidine amino)benzoic acid. (RS IV). Yield 77.8%, mp 155-157 o C, UV (λ max ) 291.4 nm, IR (KBr) v max in cm -1 3415 (-H), 1616 (C=), 1508 (characteristic of 1,2-disubstituted benzene). 1 H-MR (acetone) δ ppm: 3.60 (s, 2H, -CH 2 -C), 4.62 (s, 2H, -CH 2 -), 6.50-6.81 (m, 7H, Ar- H), 7.21-7.65 (m, 8H, Ar-H), 11.0 (s, 1H, CH). EI-MS (m/z) 574. (2-{(2,6-Dihydrophenyl)-[2-oxo-3-(phenylhydrazono)-2,3-dihydroindol-1-ylmethyl]amino} phenyl)acetic acid. (RS V). Yield 55.5%, mp 160-162 o C, UV (λ max ) 435 nm, IR (KBr) v max in cm -1 3413 (-H), 1575 (C=), 1507 (characteristic of 1,2-disubstituted benzene), 1391 (C=). 1 H- MR (Acetone) δ ppm: 3.63 (s, 2H, -CH 2 -C), 4.60 (s, 2H, -CH 2 -), 6.23-6.81 (m, 7H, Ar-H), 7.0 (s, 1H, -H-), 7.30-7.86 (m, 9H, Ar-H), 11.21 (s, 1H, -CH). EI-MS (m/z) 544. ISS 1424-6376 Page 55

{2-[(2,6-Dichlorophenyl)-(2,3-dioxo-2,3-dihydroindol-1-yl-methyl)amino]phenyl}acetic acid. (RS VI). Yield 62.3%, mp 158-160 o C, UV (λ max ) 413.5 nm, IR (KBr) v max in cm -1 3413 (-H), 1738 (C=), 1616 (C=). 1 H-MR (acetone) δ ppm: 3.60 (s, 2H, -CH 2 -C), 4.62 (s, 2H, -CH 2 -), 6.80-7.64 (m, 11H, Ar-H), 10.92 (s, 1H, -CH). Biological evaluation In vitro antibacterial activity Synthesized compounds were evaluated for their in-vitro antibacterial activity against pathogenic bacteria. The agar dilution method was performed using Muller-Hinton agar (Hi-Media) medium. Suspension of each microorganism was prepared and applied to plates with serially diluted compounds (DMF, solvent control) to be tested and incubated (approx. 20 h) at 37 o C. The minimum inhibitory concentration (MIC) was considered to be the lowest concentration that was completely inhibited growth on agar plates. The bacteria strains Pseudomonas aeruginosa (CIM 2200), Staphylococcus aureus (CIM 2079), Escherichia coli (CIM 2065), Bacillus subtilis (CIM 2063), Bacillus cereus (CIM 2155) and Klebsiella aeruginosa (CIM 2239) were used for this study. In vitro antifungal activity The compounds were evaluated for their in vitro anti-fungal activity against pathogenic fungi using agar dilution method with Saburoud s dextrose agar (Hi-Media). Suspension of each fungus were prepared and applied to agar plates with serially diluted compounds to be tested. The plates were incubated at 26 o C for 72 h and MIC s were determined. The fungus strains C. albicans (CIM 3102) and P. notatum (CIM 742) were used for this study. Acknowledgements The authors are thankful to Prof. Abhay Dharamsi, Principal, KMCH College of Pharmacy, Coimbatore for providing the necessary facilities to carry out this work. References 1. Pandeya, S..; Sriram, D.; ath, G.; Deercq, E. Farmaco, 1999, 54, 624. 2. Daisley, R. W.; Shah, V. K. J. Pharm. Sci., 1984, 73, 407. 3. Piscopo, B.; Diumo, M. V.; Godliardi, R.; Cucciniello, M.; Veneruso, G. Bol. Soc. Ital. Biol. Sper., 1987, 63, 827. 4. Teitz, Y.; Ronen, D.; Vansover, A.; Stematsky, T.; Rigg, J. L. Antiviral Res., 1994, 24, 215. 5. Pandeya, S..; Sriram, D.; Deercq, E.; Pannecouque, C.; Witvrouw, M. Indian J. Pharm. Sci., 1998, 60, 207. ISS 1424-6376 Page 56

6. Pandeya, S..; Sriram, D.; Deercq, E.; ath, G. Eur. J. Pharm. Sci., 1999, 9, 25. 7. Pandeya, S..; Sriram, D.; Deercq, E.; ath, G. Pharm. Acta. Helv., 1999, 74, 11. 8. Pandeya, S..; Yogeswari, P.; Sriram, D.; Deercq, E.; Pannecouque, C.; Witvrouw, M. Chemotherapy, 1999, 45, 192. 9. Pandeya, S..; Sriram, D.; Deercq, E.; ath, G. Arzneim Forsch., 2000, 50, 55. 10. Selvam, P.; Chandramohan, M.; Deercq, E.; Witvrouw, M.; Pannecouque, C. Eur. J. 11. Pharm. Sci., 2001, 14, 313. 12. Gursoy, A.; Karali,.; Buyuktimakin, S.; Demirayak, S.; Ekinci, A. C.; zer, H. Farmaco, 1996, 39, 5072. 13. Konkel, M. J.; Lagu, B.; Boteju, L. W.; Jimenez, H.; oble, S.; Walker, M. W.; Chandrasena, G.; Blackburn, T. P.; ikam, S. S.; Wright, J. L.; Kornberg, B. E.; Gregory, T.; Pugsley, T. A.; Akunne, H.; Zoski, K.; Wise, L. D. J. Med. Chem., 2006, 49, 3757. 14. Konkel, M. J.; Packiarajan, M.; Chen, H.; Topiwala, U. P.; Jimenez, H.; Talisman, I. J.; Coate, H.; Walker, M. W. Bioorg. Med. Chem. Lett., 2006, 16, 3950. ISS 1424-6376 Page 57