Y. Guo. A. Liu, T. Liu, Q. Ma UDC

Similar documents
General viscosity iterative method for a sequence of quasi-nonexpansive mappings

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION

APPENDIX A Some Linear Algebra

Perron Vectors of an Irreducible Nonnegative Interval Matrix

Research Article A Generalized Sum-Difference Inequality and Applications to Partial Difference Equations

A New Refinement of Jacobi Method for Solution of Linear System Equations AX=b

Appendix B. Criterion of Riemann-Stieltjes Integrability

A note on almost sure behavior of randomly weighted sums of φ-mixing random variables with φ-mixing weights

Math 217 Fall 2013 Homework 2 Solutions

The Order Relation and Trace Inequalities for. Hermitian Operators

Modelli Clamfim Equazioni differenziali 7 ottobre 2013

Errors for Linear Systems

Convexity preserving interpolation by splines of arbitrary degree

Binomial transforms of the modified k-fibonacci-like sequence

A new Approach for Solving Linear Ordinary Differential Equations

Bernoulli Numbers and Polynomials

10-801: Advanced Optimization and Randomized Methods Lecture 2: Convex functions (Jan 15, 2014)

The Two-scale Finite Element Errors Analysis for One Class of Thermoelastic Problem in Periodic Composites

First day August 1, Problems and Solutions

Self-complementing permutations of k-uniform hypergraphs

Uniqueness of Weak Solutions to the 3D Ginzburg- Landau Model for Superconductivity

The Minimum Universal Cost Flow in an Infeasible Flow Network

Sharp integral inequalities involving high-order partial derivatives. Journal Of Inequalities And Applications, 2008, v. 2008, article no.

Existence results for a fourth order multipoint boundary value problem at resonance

Randić Energy and Randić Estrada Index of a Graph

STEINHAUS PROPERTY IN BANACH LATTICES

On Finite Rank Perturbation of Diagonalizable Operators

Maximizing the number of nonnegative subsets

Lecture 21: Numerical methods for pricing American type derivatives

FACTORIZATION IN KRULL MONOIDS WITH INFINITE CLASS GROUP

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family

Appendix B. The Finite Difference Scheme

Math1110 (Spring 2009) Prelim 3 - Solutions

Modelli Clamfim Equazioni differenziali 22 settembre 2016

Case Study of Markov Chains Ray-Knight Compactification

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

Beyond Zudilin s Conjectured q-analog of Schmidt s problem

The lower and upper bounds on Perron root of nonnegative irreducible matrices

More metrics on cartesian products

2nd International Conference on Electronics, Network and Computer Engineering (ICENCE 2016)

ACTM State Calculus Competition Saturday April 30, 2011

Modelli Clamfim Equazione del Calore Lezione ottobre 2014

MMA and GCMMA two methods for nonlinear optimization

Bezier curves. Michael S. Floater. August 25, These notes provide an introduction to Bezier curves. i=0

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

REAL ANALYSIS I HOMEWORK 1

Asymptotics of the Solution of a Boundary Value. Problem for One-Characteristic Differential. Equation Degenerating into a Parabolic Equation

Projective change between two Special (α, β)- Finsler Metrics

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2

A CHARACTERIZATION OF ADDITIVE DERIVATIONS ON VON NEUMANN ALGEBRAS

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg

Dirichlet s Theorem In Arithmetic Progressions

NUMERICAL DIFFERENTIATION

The Study of Teaching-learning-based Optimization Algorithm

On statistical convergence in generalized Lacunary sequence spaces

Another converse of Jensen s inequality

6) Derivatives, gradients and Hessian matrices

Continuous Time Markov Chain

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

The equation of motion of a dynamical system is given by a set of differential equations. That is (1)

Markov chains. Definition of a CTMC: [2, page 381] is a continuous time, discrete value random process such that for an infinitesimal

Research Article Oscillation of Second-Order Mixed-Nonlinear Delay Dynamic Equations

HMMT February 2016 February 20, 2016

Discrete Mathematics. Laplacian spectral characterization of some graphs obtained by product operation

CSCE 790S Background Results

ON THE BURGERS EQUATION WITH A STOCHASTIC STEPPING STONE NOISY TERM

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens

Exercise Solutions to Real Analysis

Foundations of Arithmetic

SELECTED SOLUTIONS, SECTION (Weak duality) Prove that the primal and dual values p and d defined by equations (4.3.2) and (4.3.3) satisfy p d.

Boundary Layer to a System of Viscous Hyperbolic Conservation Laws

Remarks on the Properties of a Quasi-Fibonacci-like Polynomial Sequence

Bézier curves. Michael S. Floater. September 10, These notes provide an introduction to Bézier curves. i=0

arxiv:quant-ph/ Feb 2000

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Yong Joon Ryang. 1. Introduction Consider the multicommodity transportation problem with convex quadratic cost function. 1 2 (x x0 ) T Q(x x 0 )

Razumikhin-type stability theorems for discrete delay systems

Ballot Paths Avoiding Depth Zero Patterns

REGULAR POSITIVE TERNARY QUADRATIC FORMS. 1. Introduction

Research Article Relative Smooth Topological Spaces

The Second Anti-Mathima on Game Theory

Solutions to the 71st William Lowell Putnam Mathematical Competition Saturday, December 4, 2010

SELECTED PROOFS. DeMorgan s formulas: The first one is clear from Venn diagram, or the following truth table:

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction

Randomness and Computation

Improved delay-dependent stability criteria for discrete-time stochastic neural networks with time-varying delays

Numerical Heat and Mass Transfer

In 1991 Fermat s Last Theorem Has Been Proved(II)

Lecture 20: Lift and Project, SDP Duality. Today we will study the Lift and Project method. Then we will prove the SDP duality theorem.

A SURVEY OF PROPERTIES OF FINITE HORIZON DIFFERENTIAL GAMES UNDER ISAACS CONDITION. Contents

Digital Signal Processing

Power law and dimension of the maximum value for belief distribution with the max Deng entropy

SL n (F ) Equals its Own Derived Group

ON SEPARATING SETS OF WORDS IV

NP-Completeness : Proofs

Transcription:

UDC 517. 9 OSCILLATION OF A CLASS OF NONLINEAR PARTIAL DIFFERENCE EQUATIONS WITH CONTINUOUS VARIABLES* ОСЦИЛЯЦIЯ КЛАСУ НЕЛIНIЙНИХ ЧАСТКОВО РIЗНИЦЕВИХ РIВНЯНЬ З НЕПЕРЕРВНИМИ ЗМIННИМИ Y. Guo Graduate School Chna Acad. Eng. Phys. P. O. Box 2101, Bejng, 100088, P. R. Chna Guangx Unv. Technology Luzhou, 55006, P. R. Chna A. Lu, T. Lu, Q. Ma School Math. and Phys. Chna Unv. Geosc. Wuhan, 3007, P. R. Chna e-mal:wh_aplu@sna.com Ths paper s concerned wth a class of nonlnear partal dfference equatons wth contnuous varables. Some oscllaton crtera are obtaned usng an ntegral transformaton and nequaltes. Розглянуто клас нелнйних частково рзницевих рвнянь з неперервними змнними. Отримано деяк критерї осциляцї з використанням нтегральних перетворень та нервностей. 1. Introducton. Partal dfference equatons are dfference equatons whch nvolve functons wth two or more ndependent varables. Such equatons arse n nvestgaton of random walk problems, molecular structure problems [1], and numercal dfference approxmaton problems [2], etc. Recently, oscllaton problems for partal dfference equatons wth nvarable coeffcents and dscrete varables have been nvestgated n [3 8]. We can further nvestgate oscllaton propertes of nonlnear equatons wth varable coeffcents and contnuous varables and obtan some oscllaton crtera. In ths paper, we consder a class of nonlnear partal dfference equatons wth contnuous varables, p 1 (x, y)a(x a, y b) p 2 (x, y)a(x a, y) p 3 (x, y)a(x, y b) p (x, y)a(x, y) h (x, y, A(x σ, y τ )) = 0, (1) Ths work was supported by Natural Scence Foundaton of Chna (Grant Nos.10661002), Guangx Natural Scence Foundaton Grant No.0832065 and Research Foundaton for Outstandng Young Teachers, Chna Unversty of Geoscences (Wuhan) (No.CUGQNL081). c Y. Guo, A. Lu, T. Lu, Q. Ma, 2010 ISSN 1562-3076. Нелнйн коливання, 2010, т. 13, N 3 305

306 Y. GUO, A. LIU, T. LIU, Q. MA where p 1 (x, y) C(R R, [0, )); p 2 (x, y), p 3 (x, y), p (x, y) C(R R, (0, )); a, b, σ, τ are negatve and h (x, y, u) C(R R R, R), = 1,..., m. Let σ = max,...,m {σ }, τ = max,...,m {τ }. A soluton of (1) s defned to be a contnuous functon A(x, y), for all x σ, y τ, whch satsfes (1) on R R. A soluton A(x, y) of (1) s sad to be oscllatory f t s nether eventually postve nor eventually negatve. Some oscllaton crtera for a soluton of (1) are obtaned usng ntegral transformaton and nequaltes. Our results extend some oscllaton propertes of nonlnear equatons wth nvarable coeffcents and dscrete varables to nonlnear equatons wth varable coeffcents and contnuous varables. 2. Man lemmas. We assume that the followng condtons are satsfed throughout ths paper: (I) p 1 (x, y) p 1 0, p 2 (x, y) p 2 > 0, p 3 (x, y) p 3 > 0, 0 < p (x, y) p, and p, = 1, 2, 3,, are constants and also satsfy p 2, p 3 p ; (II) τ = k a θ, σ = l b ξ, = 1,..., m, where k, l are nonnegatve ntegers and θ (a, 0], ξ (b, 0]. Lemma 1. Assume that () h C(R R R, R), uh (x, y, u) > 0 for u 0, and h (x, y, u), = 1,..., m, s a nondecreasng functon n u; () h (x, y, u), = 1,..., m, s convex n u for u 0. Let A(x, y) be an eventually postve soluton of (1), then there exsts a postve functon x y = 1 A(u, v) du dv eventually satsfyng the followng results: ab xa yb (1) f mn,...,m {k } = 0 and mn,...,m {l } = 0, then p 1 Z(x a, y b) p 2 Z(x a, y) p 3 Z(x, y b) p h (x, y, Z(x σ, y τ )) 0; (2) (2) f mn,...,m {k } = 0 and mn,...,m {l } = 0, then p 1 Z(x a, y b) p 2 Z(x a, y) p 3 Z(x, y b) p h (x, y, Z(x k a, y l b)) 0; (3) (3) f mn,...,m {k } = 0 and mn,...,m {l } = 0, then p 1 Z(x a, y b) p 2 Z(x a, y) p 3 Z(x, y b) p h (x, y, Z(x σ, y l b)) 0; () ISSN 1562-3076. Нелнйн коливання, 2010, т. 13, N 3

OSCILLATION OF A CLASS OF NONLINEAR PARTIAL DIFFERENCE EQUATIONS... 307 () f mn,...,m {k } = 0 and mn,...,m {l } = 0, then p 1 Z(x a, y b) p 2 Z(x a, y) p 3 Z(x, y b) p h (x, y, Z(x k a, y τ )) 0. (5) Proof. From (I), we have the followng nequalty: eventually. Snce p (A(x a, y) A(x, y b) A(x, y)) p 1 A(x a, y b) p 2 A(x a, y) p 3 A(x, y b) p A(x, y) p 1 (x, y)a(x a, y b) p 2 (x, y)a(x a, y) p 3 (x, y)a(x, y b) p (x, y)a(x, y) < 0 = 1 ab x y xa yb A(u, v) du dv, (6) we have x y = 1 (A(x, v) A(x a, v))dv > 0 (7) ab yb and y x = 1 (A(u, y) A(u, y b))du > 0. (8) ab xa From the above, we have s nondecreasng n x and y eventually. Integratng (1), from (I) we have p 1 Z(x a, y b) p 2 Z(x a, y) p 3 Z(x, y b) p 1 ab xa x yb y h (u, v, A(u σ, v τ )) dv du 0. By (), (), and Jensen s nequalty, we obtan the followng nequalty: p 1 Z(x a, y b) p 2 Z(x a, y) p 3 Z(x, y b) p h (x, y, Z(x σ, y τ )) 0. ISSN 1562-3076. Нелнйн коливання, 2010, т. 13, N 3

308 Y. GUO, A. LIU, T. LIU, Q. MA Thus (2) holds. Snce a, b, τ, σ are negatve real numbers, there exst nonnegatve ntegers k and l satsfyng σ = k a θ, τ = l b ξ, where a < θ 0, b < ξ 0, = 1, 2,..., m. From (7) and (8), we obtan s nondecreasng eventually. So f mn {k } = 0,,...,m mn {l } = 0,,...,m we have Z(x σ, y τ ) Z(x k a, y l b), = 1, 2,..., m. Snce h (x, y, u), = 1, 2,..., m, s nondecreasng n u, we have p 1 Z(xa, y b)p 2 Z(xa, y)p 3 Z(x, y b) p h (x, y, Z(x k a, y l b)) 0. Hence, (3) holds. Smlarly f mn,...,m {k } = 0, mn,...,m {l } = 0, s nondecreasng n x and y eventually, we have Z(x σ, y τ ) Z(x σ, y l b). Snce h (x, y, u), = 1, 2,..., m, s nondecreasng n u eventually, we have the followng nequalty: p 1 Z(x a, y b) p 2 Z(x a, y) p 3 Z(x, y b) p h (x, y, Z(x σ, y l b)) 0, mplyng (). Smlarly f mn,...,m {k } = 0, mn,...,m {l } = 0, = 1, 2,..., m, s nondecreasng n x and y eventually, we have Z(x σ, y τ ) Z(x k a, y τ ). Snce h (x, y, u) s nondecresng n u, we have the followng nequalty: p 1 Z(xa, y b)p 2 Z(xa, y)p 3 Z(x, y b) p h (x, y, Z(x k a, y τ )) 0. Hence, (5) holds. The proof s completed. By a smlar method, we can obtan propertes of an eventually negatve soluton of (1). Lemma 2. Assume that () h C(R R R, R), uh (x, y, u) > 0 for u 0 and h (x, y, u), = 1,..., m, s a nondecreasng functon n u; () h (x, y, u), = 1,..., m, s concave n u for u 0. Let A(x, y) be an eventually negatve soluton of (1), then there exsts a negatve functon x y = 1 A(u, v)dudv eventually satsfyng the followng results: ab xa yb (1) f mn,...,m {k } = 0 and mn,...,m {l } = 0, then p 1 Z(x a, y b) p 2 Z(x a, y) p 3 Z(x, y b) p h (x, y, Z(x σ, y τ )) 0; (9) ISSN 1562-3076. Нелнйн коливання, 2010, т. 13, N 3

OSCILLATION OF A CLASS OF NONLINEAR PARTIAL DIFFERENCE EQUATIONS... 309 (2) f mn,...,m {k } = 0 and mn,...,m {l } = 0, then p 1 Z(x a, y b) p 2 Z(x a, y) p 3 Z(x, y b) p h (x, y, Z(x k a, y l b)) 0; (10) (3) f mn,...,m {k } = 0 and mn,...,m {l } = 0, then p 1 Z(x a, y b) p 2 Z(x a, y) p 3 Z(x, y b) p h (x, y, Z(x σ, y l b)) 0; (11) () f mn,...,m {k } = 0 and mn,...,m {l } = 0, then p 1 Z(x a, y b) p 2 Z(x a, y) p 3 Z(x, y b) p h (x, y, Z(x k a, y τ )) 0. (12) 3. Man results. In the followng, we nvestgate oscllatory propertes of a soluton of (1) and obtan the man results of ths paper. Theorem 1. Assume that () h (x, y, u) C(R R R, R) s nondecreasng n u and uh (x, y, u) > 0, = = 1, 2,..., m, for all u 0, () lm nf h (x, y, u)/u = S 0, m S > 0, = 1, 2,..., m, x,y,u 0 () h (x, y, u) s convex n u for u > 0, h (x, y, u), = 1,..., m, s concave n u for u < 0, (v) one of the followng condtons holds: S (η 1) η 1 η η (p 1 p 2 p 3 ) η p (η 1) > 1, η = mn{k, l } > 0, = 1,..., m, (13) S k k (k 1) k 1 p k 1 2 p k > 1, mn,...,m {k } > 0, mn {l } = 0, (1),...,m S l l (l 1) l 1 p l 1 3 p l > 1, mn {k } = 0,,...,m mn {l } > 0, (15),...,m 1 p S > 1, Then every soluton of (1) s oscllatory. mn {k } = mn {l } = 0. (16),...,m,...,m ISSN 1562-3076. Нелнйн коливання, 2010, т. 13, N 3

310 Y. GUO, A. LIU, T. LIU, Q. MA Proof. Assume the contrary. Let A(x, y) be an eventually postve soluton of (1), and be defned by (6). Then by Lemma 1, we obtan lm x,y = ζ 0. In the followng, we clam that ζ = 0. Otherwse, let ζ > 0. By Lemma 1, we know that (2) holds. From (2) and condton (I), we have So p 1 Z(x a, y b) p (Z(x a, y) Z(x, y b) ) p 1 Z(x a, y b) p 2 Z(x a, y) p 3 Z(x, y b) p 0. Z(x a, y) Z(x, y b) 0. (17) Takng the lmt on both sde of (17), we have ζ 0. Consder ζ 0. Then we have ζ = 0. If mn,...,m {k } > 0, mn,...,m {l } > 0, n the vew of (2), we have (p 1 p 2 p 3 )Z(x a, y b) p p 1Z(x a, y b) p 2 Z(x a, y) p 3 Z(x, y b) p h (x, y, Z(x σ, y τ )). (18) Snce s nondecreasng eventually, from (18) for all large x and y we have (p 1 p 2 p 3 )Z(x a, y b) p h (x, y, Z(x η a, y η b)) = = h (x, y, Z(x η a, y η b)) Z(x η a, y η b) η j=1 Z(x ja, y jb) Z(x (j 1)a, y (j 1)b), (19) where η = mn{k, l }, = 1,..., m. Let α(x, y) = /Z(x a, y b). Then α(x, y) > 1 for all large x and y. From (19), we have.e., p 1 p 2 p 3 α(x, y) (p 1 p 2 p 3 ) h (x, y, Z(x η a, y η b)) Z(x η a, y η b) h (x, y, Z(x η a, y η b)) Z(x η a, y η b) η η α(x ja, y jb) p, j=1 α(x ja, y jb)α(x, y) p α(x, y). By (), (20) mples that α(x, y) s bounded. Let lm nf α(x, y) = β. Takng the lmt nferor on both sdes of (20), we obtan x,y (p 1 p 2 p 3 ) j=1 S β η1 p β, (20) ISSN 1562-3076. Нелнйн коливання, 2010, т. 13, N 3

OSCILLATION OF A CLASS OF NONLINEAR PARTIAL DIFFERENCE EQUATIONS... 311.e., p 1 p 2 p 3 β p S β η < p. (21) Hence, β > p 1 p 2 p 3. Snce m p S β η1 /(p β (p 1 p 2 p 3 )) 1, computng the mnmum of the functon f(x) = x η1 /(p x (p 1 p 2 p 3 )) as x > p 1 p 2 p 3 we obtan p mn β> p 1 p 2 p 3 p So we have m S (η 1) η 1 βη1 p β (p 1 p 2 p 3 ) = (η 1) η1 η η η η (p 1 p 2 p 3 ) η p η 1 (p 1 p 2 p 3 ) η. (13) holds we can obtan that every soluton of (1) s oscllatory. If mn,...,m {k } > 0, mn,...,m {l } = 0, by Lemma 1, we obtan p 1 Z(xa, y b)p 2 Z(xa, y)p 3 Z(x, y b) p p η 1 1 whch s contrary to (13). Therefore f h (x, y, Z(x k a, y τ )) 0. Then we have p 2 Z(x a, y) p h (x, y, Z(x k a, y τ ) = = h (x, y, Z(x k a, y τ )) Z(x a, y τ ) Z(x k a, y τ ) k j=2 Z(x ja, y τ ) Z(x (j 1)a, y τ ). (22) Snce s nondecreasng n x, y eventually, we have Z(x a, y τ )/ > 1 for all large x and y. From (22), we have p 2 Z(x a, y) h (x, y, Z(x k a, y τ )) Z(x k a, y τ ) k j=2 Let α(x, y) = /Z(x a, y) > 1. From (23), we have p m 2 α(x, y) h (x, y, Z(x k a, y τ )) Z(x k a, y τ ) Z(x ja, y τ ) Z(x (j 1)a, y τ ) p. (23) k j=2 α(x ja, y τ ) p. (2) By condton () the above nequalty mples that α(x, y) s bounded. Let lm nf α(x, y) = x,y = β. From (22), we can obtan p 2 h (x, y, Z(x k a, y τ )) Z(x k a, y τ ) k j=1 α(x ja, y τ )α(x, y) p α(x, y). (25) ISSN 1562-3076. Нелнйн коливання, 2010, т. 13, N 3

312 Y. GUO, A. LIU, T. LIU, Q. MA Takng the lmt nferor on both sdes of (25), we have p 2 m S β k p β. Hence we have p 2 β m S β k 1 p,.e., p 2 β p m S β k 1 < p. Then we obtan β > p 2 and m p S β k 1 /(p β p 2 ) 1. β k Snce mn p β> 2 = pk 1 2 k k p p β p 2 p k (k 1) k 1, we have m S k k (k 1) k 1, 1 whch contradcfs (1). So f (1) holds we can obtan that every soluton of (1) s oscllatory. Smlarly, we can prove that f (15) holds then we can also obtan every soluton of (1) s oscllatory. If mn,...,m {k } = mn,...,m {l } = 0, from Lemma 1, we know that (3) holds. Hence we have Then p 1 Z(x a, y b) p 2 Z(x a, y) p 3 Z(x, y b) p p k 1 2 p k h (x, y, ) p 1 Z(x a, y b) p 2 Z(x a, y) p 3 Z(x, y b) p h (x, y, ) h (x, y, Z(x σ, y τ )) 0. p 0. (26) Takng the lmt nferor on both sdes of (26), we have m S p, whch s contrary to (16). So f (16) holds we can obtan that every soluton of (1) s oscllatory. If A(x, y) s the eventually negatve soluton of (1), we can obtan a contradcton by assumng that A(x, y) s an eventually negatve soluton of equaton (1). Therefore we know the result s correct. The proof s over. The results ndcate that there are some crtera of oscllatory propertes of solutons of some partal dfference equatons wth forward front dfference. In some sense, the results play some roles n nvestgatng propertes of solutons of advanced partal dfferental equatons. 1. L X. P. Partal dfference equatons used n the study of molecular orbts (n Chnese) // Acta Chm. SINICA. 1982. 0. P. 688 698. 2. Zhang B. G., Lu S. T., Cheng S. S. Oscllaton of a class of delay partal dfference equatons // J. Dfference Equat. and Appl. 1995. 1. P. 215 226. 3. Kelley W. G., Peterson A. C. Dfference equatons. New York: Acad. Press, 1991.. Zhang B. G., Lu S. T. On the oscllaton of two partal dfference equatons // J. Math. Anal. and Appl. 1997. 206. P. 80 92. 5. Zhang B. G., Lu B. M. Oscllaton crtera of certan nonlnear partal dfference equatons // Comput. Math. Appl. 1999. 38. P. 107 112. 6. Agarwal R. P., Yong Zhou. Oscllaton of partal dfference equatons wth contnuous varables // Math. and Comput. Modellng. 2000. 31. P. 17 29. ISSN 1562-3076. Нелнйн коливання, 2010, т. 13, N 3

OSCILLATION OF A CLASS OF NONLINEAR PARTIAL DIFFERENCE EQUATIONS... 313 7. Zhang B. G., Tan C. J. Oscllaton crtera of a class of partal dfference equatons wth delays // Comput. Math. Appl. 200. 8. P. 291 303. 8. Cu B. T., Lu Y. Q. Oscllaton for partal dfference equaton wth contnuous varables // J. Comput. and Appl. Math. 2003. 15. P. 373 391. 9. Lu A. P., Guo Y. F. Oscllaton of the solutons of nonlnear delay hyperbolc partal dfferental equatons // Chn. Quart. J. Math. 200. 19,. P. 373 378. 10. Anpng Lu, Qngxa Ma, Mengxng He. Oscllaton of nonlnear mpulsve parabolc equatons of neutral type // Rocky Mountan J. Math. 2006. 36, 3. P. 1011 1026. 11. Guo Y. F., Lu A. P. Oscllaton of nonlnear mpulsve parabolc dfferental equaton wth several delays // Ann. Dfferent. Equat. 2005. 21, 3. P. 286 289. Receved 07.02.06, after revson 11.0.09 ISSN 1562-3076. Нелнйн коливання, 2010, т. 13, N 3