PROPELLER INDUCED STRUCTURAL VIBRATION THROUGH THE THRUST BEARING

Similar documents
Study of the influence of the resonance changer on the longitudinal vibration of marine propulsion shafting system

Sound radiation of a plate into a reverberant water tank

PRELIMINARY MODELLING OF A MARINE PROPULSION SYSTEM

Measurement of pressure fluctuations inside a model thrust bearing using PVDF sensors

Structural and Acoustic Responses of a Submarine due to Propeller Forces Transmitted to the Hull via the Shaft and Fluid

Ship structure dynamic analysis - effects of made assumptions on computation results

PLEASURE VESSEL VIBRATION AND NOISE FINITE ELEMENT ANALYSIS

EXCITATION OF A SUBMARINE HULL BY PROPELLER FORCES. Sydney, NSW 2052, Australia 2 Senior Visiting Research Fellow, University of New South Wales

LECTURE 12. STEADY-STATE RESPONSE DUE TO ROTATING IMBALANCE

SAMCEF For ROTORS. Chapter 1 : Physical Aspects of rotor dynamics. This document is the property of SAMTECH S.A. MEF A, Page 1

Reduction of the sound power radiated by a submarine using passive and active vibration control

VIBRATION ANALYSIS IN SHIP STRUCTURES BY FINITE ELEMENT METHOD

WORK SHEET FOR MEP311

IDENTIFICATION OF SHIP PROPELLER TORSIONAL VIBRATIONS

CHAPTER 1 INTRODUCTION Hydrodynamic journal bearings are considered to be a vital component of all the rotating machinery. These are used to support

Using Operating Deflection Shapes to Detect Misalignment in Rotating Equipment

Step 1: Mathematical Modeling

Dynamics of structures

NUMERICAL MODELLING OF RUBBER VIBRATION ISOLATORS

CONTRIBUTION TO THE IDENTIFICATION OF THE DYNAMIC BEHAVIOUR OF FLOATING HARBOUR SYSTEMS USING FREQUENCY DOMAIN DECOMPOSITION

Analytical and experimental study of single frame double wall

Analysis on propulsion shafting coupled torsional-longitudinal vibration under different applied loads

STRUCTURAL DYNAMICS BASICS:

Towards Rotordynamic Analysis with COMSOL Multiphysics

Experimental test of static and dynamic characteristics of tilting-pad thrust bearings

Measurement Techniques for Engineers. Motion and Vibration Measurement

Structural intensity analysis of a large container carrier under harmonic excitations of propulsion system

Chapter 23: Principles of Passive Vibration Control: Design of absorber

Effects of mass distribution and buoyancy on the sound radiation of a fluid loaded cylinder

Experimental Investigations of Whirl Speeds of a Rotor on Hydrodynamic Spiral Journal Bearings Under Flooded Lubrication

ROLLER BEARING FAILURES IN REDUCTION GEAR CAUSED BY INADEQUATE DAMPING BY ELASTIC COUPLINGS FOR LOW ORDER EXCITATIONS

System Parameter Identification for Uncertain Two Degree of Freedom Vibration System

Prediction of Propeller Blade Stress Distribution Through FEA

Robust shaft design to compensate deformation in the hub press fitting and disk clamping process of 2.5 HDDs

e jωt = cos(ωt) + jsin(ωt),

Vibration Dynamics and Control

Chapter 2: Rigid Bar Supported by Two Buckled Struts under Axial, Harmonic, Displacement Excitation..14

STATIC AND DYNAMIC ANALYSIS OF A BISTABLE PLATE FOR APPLICATION IN MORPHING STRUCTURES

DETC98/PTG-5788 VIBRO-ACOUSTIC STUDIES OF TRANSMISSION CASING STRUCTURES

APVC2009. Forced Vibration Analysis of the Flexible Spinning Disk-spindle System Represented by Asymmetric Finite Element Equations

Transactions on the Built Environment vol 22, 1996 WIT Press, ISSN

FEDSM99 S-291 AXIAL ROTOR OSCILLATIONS IN CRYOGENIC FLUID MACHINERY

EFFECT OF HYDRODYNAMIC THRUST BEARINGS ON ROTORDYNAMICS

Abstract. 1 Introduction

A Modal Approach to Lightweight Partitions with Internal Resonators

Mitigation of Diesel Generator Vibrations in Nuclear Applications Antti Kangasperko. FSD3020xxx-x_01-00

Dynamic Analysis on Vibration Isolation of Hypersonic Vehicle Internal Systems

NV-TECH-Design: Scalable Automatic Modal Hammer (SAM) for structural dynamics testing

VIBRATION ANALYSIS OF E-GLASS FIBRE RESIN MONO LEAF SPRING USED IN LMV

Foundations of Ultraprecision Mechanism Design

Operating Conditions of Floating Ring Annular Seals

Cavitation of a Propeller and Influence of a Wake Equalizing Duct

Non-linear Modal Behaviour in Cantilever Beam Structures

VIBRATION PROBLEMS IN ENGINEERING

COUPLED USE OF FEA AND EMA FOR THE INVESTIGATION OF DYNAMIC BEHAVIOUR OF AN INJECTION PUMP

Open Research Online The Open University s repository of research publications and other research outputs

Sound radiation from nested cylindrical shells

Design and Experimental Evaluation of the Flywheel Energy Storage System

Application and measurement of underwater acoustic reciprocity transfer functions with impulse sound sources

Dynamic behavior of turbine foundation considering full interaction among facility, structure and soil

Fundamentals of noise and Vibration analysis for engineers

IDENTIFICATION OF FRICTION ENERGY DISSIPATION USING FREE VIBRATION VELOCITY: MEASUREMENT AND MODELING

PERFORMANCE EVALUATION OF OVERLOAD ABSORBING GEAR COUPLINGS

ROTATING MACHINERY VIBRATION

Active Structural Acoustic Control of. Ribbed Plates using a Weighted Sum of Spatial Gradients.

Design and Evaluation of a Pole Placement Controller for Controlling Vibration of Structures

Effect of an hourglass shaped sleeve on the performance of the fluid dynamic bearings of a HDD spindle motor

MASS LOADING EFFECTS FOR HEAVY EQUIPMENT AND PAYLOADS Revision F

Dynamic characterization of engine mount at different orientation using sine swept frequency test

Laboratory notes. Torsional Vibration Absorber

Increasing of the Stern Tube Bushes Precision by On-Line Adaptive Control of the Cutting Process

Replacement of Grid Coupling with Bush Pin Coupling in Blower

Improving the Ability to Simulate Noise from Brake Squeal

Influence of Eccentricity and Angular Velocity on Force Effects on Rotor of Magnetorheological Damper

Lecture 9: Harmonic Loads (Con t)

USE OF MECHANICAL RESONANCE IN MACHINES DRIVE SYSTEMS

Review of modal testing

PROJECT 2 DYNAMICS OF MACHINES 41514

1820. Selection of torsional vibration damper based on the results of simulation

10 Measurement of Acceleration, Vibration and Shock Transducers

This is the author s version of a work that was submitted/accepted for publication in the following source:

The Design of a Multiple Degree of Freedom Flexure Stage with Tunable Dynamics for Milling Experimentation

KNIFE EDGE FLAT ROLLER

DEVELOPMENT OF SEISMIC ISOLATION TABLE COMPOSED OF AN X-Y TABLE AND WIRE ROPE ISOLATORS

FREE-FREE DYNAMICS OF SOME VIBRATION ISOLATORS

Introduction to Vibration. Professor Mike Brennan

Review on Vortex-Induced Vibration for Wave Propagation Class

Modal Analysis: What it is and is not Gerrit Visser

Vibrations in Mechanical Systems

MV Module 5 Solution. Module 5

ANALYSIS AND IDENTIFICATION IN ROTOR-BEARING SYSTEMS

Design and Research on Characteristics of a New Vibration Isolator with Quasi-zero-stiffness Shi Peicheng1, a, Nie Gaofa1, b

The Impact of High-Frequency Vibration on the Performance of Railway Fastening Systems

Hull loads and response, hydroelasticity

vii Preface ix Acknowledgements

Stability for Bridge Cable and Cable-Deck Interaction. Dr. Maria Rosaria Marsico D.J. Wagg

The Effect of the Shaft Diameter and Torsional Stiffness on the Whirling Speed of the Ship Propeller Shafting System

Theory and Practice of Rotor Dynamics Prof. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology Guwahati

Aalto University School of Engineering

Characterizing, Simulating, and Eliminating Vibration Induced Counts in Measurement While Drilling Gamma Ray Detectors. authors

Transcription:

PROPELLER INDUCED TRUCTURAL VIBRATION THROUGH THE THRUT BEARING Jie Pan, Nabil Farag, Terry Lin and Ross Juniper* DEPARTMENT OF MECHANICAL AND MATERIAL ENGINEERING THE UNIVERITY OF WETERN AUTRALIA 35 TIRLING HIGHWAY, CRAWLEY, WA 6009, AUTRALIA *MARITIME PLATFORM DIVIION AERONAUTICAL & MARITIME REEARCH LABORATORY CORDITE AVENUE, MARIBYRNONG 3032, VIC. AUTRALIA ABTRACT Propeller induced structural vibration through the thrust bearing is an important source for low frequency shipboard noise and underwater sound radiation from a submarine hull. uch vibration is investigated using a scaled experimental model. This research concentrates on the experimental characterization of propeller force, hydrodynamic force of the thrust bearing and vibration transmission through a thrust bearing into the supporting structure. The results of laboratory measurement of the propeller force and the complex hydrodynamic stiffness of the thrust bearing are presented in this paper. The response of the shaft axial vibration and flexural vibration of the supporting structure is also analyzed. I. INTRODUCTION While the propeller delivers thrust to submarines and surface ships, it also generates oscillatory disturbances. A particular disturbance, as the focus of this paper, is due to the asymmetry in the hull or protrusions of control surfaces or shaft bearing struts, which results in a non-uniform wake velocity in the fluid field near the propeller. A small variation of thrust is then produced when the blades rotate through the non-uniform wake. The frequency of this variation is well known as the blade passing frequency, which is equal to the shaft rotational speed multiplied by the number of blades on the propeller. The oscillatory thrust axially acting on the shaft generates ship structural vibration through the hydrodynamic stiffness force of the lubricant oil film between the tilting pads and the shaft collar. One option for reducing the propeller induced ship structural vibration is to actively decrease the hydrodynamic stiffness at the frequencies of the oscillatory thrust by introducing a negative spring stiffness using magnetic actuators [1]. With a minimum hydrodynamic stiffness, the

transmission of the oscillatory stiffness force through the oil film can be minimised. This control at the source indicates new promise in reducing propeller-induced vibration. Effective control of propeller induced vibration at the thrust bearing requires a clear understanding of the hydrodynamic stiffness of the lubricant oil film. A literature survey suggested that hydrodynamic stiffness of the fluid film is related to thrust (steady load), and shaft speed [2] among other factors. The dependence of the stiffness on the frequency and shaft speed is nonlinear. The complex nonlinear dynamics of the thrust bearing increases the difficulty for active control of the hydrodynamic stiffness. Traditional linear control design methods is no longer suitable for such nonlinear system in hand. The understanding of nonlinear system dynamics is vital for the stability analysis, robustness and design of control laws. It is also related to the selection of control actuators. Work described in this paper is a preliminary investigation into the vibration transmission characteristics of the thrust bearing. It includes the laboratory determination of propeller oscillatory thrust and hydrodynamic force of the lubricant oil film in the thrust bearing. The shaft and supporting structure response to the thrust excitation is also analysed. II. DECRIPTION OF DYNAMIC YTEM A generic propeller shaft system is outlined in Figure 1. It represents a typical propeller shaft system in the main propulsion unit in marine installations. The system consists of the propeller, propeller shaft, thrust bearing and part of the flexible coupling in the propeller side. It has been shown in a previous report [3] that the flexible coupling isolates the engine side from the propeller side of the propulsion system, as far as the axial vibration is concerned. This eliminates the effect of engine excitation on the supporting structure of the thrust bearing. A three-blade propeller with a diameter of 0.2m is attached to one end of the propeller shaft 3 and placed in a water tank ( 0.99 0.585 0.58m ) as shown in Figure 2. Two journal bearings are used to support the shaft. They are respectively located on the tank wall and on the supporting structure. The 8-pad fixed taper thrust bearing is designed according to reference [4] to allow the establishment of hydrodynamic lubrication between the runner and thrust pads. A circular shoulder is fixed to the propeller shaft, where the shaft can be excited by an impact hammer and the shaft axial motion can be measured by a linear laser vibrometer and inductive 3 displacement pickup. The thrust bearing is supported by a steel plate ( 1 0.6 0.0016m ) clamped to an angle steel frame. Accelerometers are attached to the bearing housing and supporting structure for measuring the system response.

upporting plate structure Excitation force Journal bearing Thrust bearing stiffness One side of flexible coupling Journal bearing Figure 1: A generic propeller shaft system used in the present study to represent real installation in marine applications. Figure 2: A photo of the test rig. III. MEAUREMENT OF PROPELLER DYNAMIC THRUT The propeller thrust plays a dominant role in exciting the vibration of the shaft and supporting structure. It also directly affects the characteristics of the hydrodynamic stiffness of the thrust bearing. In this paper, we propose an experimental method to determine the propeller force in situ using the mobility measurements. Propeller shaft response v is related to the input mobility function M and excitation force F by: v = M F. (1) At low frequencies, the shaft can be approximated as a rigid mass. Thus the input mobility function is independent of the excitation location on the shaft. We used the impact method to measure the mobility function of the shaft at different engine speeds. An impact force is applied at the circular shoulder and the axial velocity of the shaft is also measured at the shoulder. For such measurement, the shaft response is due to propeller force and impact hammer force and the latter is removed by v I = v I+ P v P (2) where v I and v P are the shaft velocity response due to hammer and propeller excitation respectively. v I+ P is the response to the combined excitation of the hammer and propeller.

Equation (2) is implemented in the frequency domain. Results from 10 measurements are averaged to minimize the variation due to the phase differences between the two excitations and the effect of other disturbances. The mobility function of the shaft is then calculated from v I and the measured impact force F I at different engine speeds: M = v I. (3) F I Thus the direct result from this measurement is the propeller dynamic thrust F P : v P F P =. (4) M In the meantime, the effect of the engine speed on the mobility function can be related to the characteristics of the hydrodynamic force at the thrust bearing. Figure 3 is the waterfall plot of the shaft longitudinal vibration velocity measured on the shaft shoulder by a laser velocity transducer at different rotational speeds. The shaft response is mainly at the blade passing frequency and at the rotating frequency of the shaft. The response at the latter frequency is due to the dynamic characteristics of the propeller shaft itself such as misalignment. 629 RPM Lin pec 2 119 RPM 0.002 M/ rms 1E-38 1 Hz Frequency (Hz) 101 Hz Figure 3: haft axial vibration velocity at different shaft speeds. Concentrating at the blade passing frequency, we were able to obtain the propeller dynamic thrust at this frequency and at different shaft speeds as shown in Figure 4. This measurement provides the thrust magnitudes at each shaft speed. The overall trend agrees with the existing understanding of the square functional relationship between the propeller force and shaft rotating speed ω : F P ω 2 (5)

test1 test2 test3 F=C*N^2 0.4 Propeller force (N) 0.3 0.2 0.1 0 120 180 240 300 360 420 480 540 600 haft speed (rpm) Figure 4: Propeller dynamic thrust at blade passing frequency and at different shaft speeds. It is observed from Figure 3 that the shaft response at the blade passing frequency does not follow the square relationship with the shaft speed as the thrust does. This observation suggests that the mobility function at the blade passing frequency is not a constant. A straightforward explanation is that the propeller shaft response is controlled by the resonance of the system including propeller, shaft, thrust bearing, and supporting structure. When the blade passing frequency is close to the resonance frequency of the system, an increase in the shaft velocity response is observed. Indeed the measured mobility function (Figure 5) shows two resonance peaks in the low frequency range (<37Hz). Furthermore the resonance frequency and the peak value in the mobility function vary with the shaft speed. uch variation in mobility function characteristics may be linked with the variation of the hydrodynamic stiffness and damping of the thrust bearing. Axial mobility (m/sn) 0.015 0.01 0.005 120rpm 420rpm 600rpm 0 0 20 40 60 80 100 Frequency (Hz) Figure 5: Measured mobility functions of the shaft system at different shaft speeds.

IV. MEAUREMENT OF HYDRODYNAMIC FORCE OF THRUT BEARING The hydrodynamic force includes the stiffness and viscous forces of the lubricant oil film in the thrust bearing. It is the constraint force for the characteristics of the shaft vibration. It is the excitation force that directly drives the supporting structure at the thrust bearing housing. A simple two-degree of freedom model of the propeller shaft, thrust bearing and supporting plate is shown in Figure 6. In this model, we assume that the only unknown parameters are the stiffness and damping of the thrust bearing. As a result, the force balance equation for the shaft mass motion is m x + k x + c x + k x + c x = F + F H H s P I (6) where m is the mass of propeller shaft including propeller, shaft and hydrodynamic inertia (add mass). k and c are the stiffness and damping coefficients from those constraint forces at the propeller and journal bearings. x = x s x P is the relative displacement between the shaft and thrust bearing housing. The hydrodynamic force (stiffness and damping) of the thrust bearing is described by a complex stiffness in the frequency domain: k H (ω ) = k H (ω) + jωc H (ω). (7) By expressing the hydrodynamic force of the thrust bearing in the form of Equation (7), we have restricted the validity of our method to the linearized range of x = o where o is the amplitude of x. Nevertheless, this model allows nonlinear dependence of k H and c H on x. Dividing the forcing term on the both sides of equation (6) in the frequency domain, we then obtained following expression for the determination of the complex stiffness of the thrust bearing; jω[1 jmωm ] ( k + jωc ) M k H ( ω) = (8) [ M M P ] where M P is the mobility function of the system with impact force on the shaft and response measured on the thrust bearing housing. k F p C x m k H C H x P m P k P C P Figure 6: A two degree of freedom model representing the propeller shaft, thrust bearing and supporting plate.

Figure 7 shows the magnitude of the complex stiffness of the thrust bearing at three different shaft speeds. An interesting observation of Figure 7 is the dependence of the complex stiffness upon the shaft speeds. The difference between the thrust bearing complex stiffness at different speeds is evident at low frequencies. At low frequencies, the lubricant film is in the stiffness controlled region. Therefore the observable difference actually demonstrates the change of the hydrodynamic stiffness of lubricant film with shaft speed. The frequency dependence of the complex stiffness requires further investigation by separating the stiffness and viscous damping terms. Axial stiffness (N/m) 1.E+08 1.E+06 1.E+04 Measured oil film stiffness of thrust bearing 120rpm 300rpm 600rpm 1.E+02 1 10 100 1000 Frequency (Hz) Figure 7: Magnitude of the complex stiffness of the thrust bearing at two different shaft speeds. V. YTEM REPONE As a preliminary study, a constant stiffness of the thrust bearing at the low frequency 4 ( 6 10 ( N / m) ) is used for the prediction of the axial mobility function of the propeller shaft. The mass and stiffness of the supporting structure are included in the prediction using Finite Element Analysis. Figure 8 is the measured and predicted axial input mobility function of the shaft when the shaft speed is at 600rpm.

Axial mobility (m/sn) 0.02 0.015 0.01 0.005 haft axial mobility At 600rpm FEA prediction 0 0 20 40 60 80 100 Frequency (Hz) Figure 8: Propeller shaft input mobility function at 600rpm. The mode shapes corresponding to the three resonance peaks are shown in Figure 9. The coupling between the plate distributed mode and the shaft rigid body modes is demonstrated there. Mode 1: 13.3Hz Mode 2: 35.3Hz Mode 3: 42.9Hz Figure 9. The mode shapes corresponding to the three resonant peaks in the mobility function. The measured response of the supporting plate at ( 105mm,250mm) from the upper-right corner is shown in the waterfall plot in Figure 10 as a function of shaft speed. As expected, the peak

responses at the blade passing frequency and at the shaft frequency are identifiable. The magnitude variation at those frequencies indicates the effect of the system resonance and modal response of the plate vibration. VI. CONCLUION This paper focuses on the understanding of structural vibration excited by propeller dynamic thrust along the shaft. The measurement of the shaft axial mobility function allows the experimental determination of the propeller force at the blade passing frequency. It was found that the mobility function is characterized by resonance peaks at low frequencies. The variation of the resonance frequencies of the propeller shaft with shaft speed demonstrates the significant effect of the hydrodynamic stiffness of the thrust bearing on the system characteristics. This paper also presents an approximate experimental method to measure the complex hydrodynamic stiffness of the thrust bearing. A significant change of the complex stiffness in the stiffness controlled frequency range with shaft speed is observed. This observation and experimental method may lead to a better understanding of the dynamics of thrust bearing for potential active control of the hydrodynamic force transmission into the supporting structure. For active control of a nonlinear system in particular, the effective cancellation of the nonlinear stiffness force at the thrust bearing requires an accurate model of such stiffness and methods to determine it on line. The paper also covers the analysis of the system response (shaft and supporting panel) to the propeller force and the hydrodynamics of the thrust bearing. The mode shapes of the coupled shaft-plate system are obtained by FEA and provide useful insight for the system vibration analysis. 630 RPM Lin pec 2 120 RPM 0.002 M/ rms 0 1 Hz Frequency (Hz) 100 Hz Figure 10. Measured response of the supporting plate at different shaft speeds.

ACKNOWLEDGMENT upport for this work from the Defense cience and Technology Organization is gratefully acknowledged. REFERENCE [1] Lewis, D.W. and Allaire, P.E., Active magnetic control of oscillatory axial shaft vibrations in ship shaft transmission systems, Part 1: ystem natural frequencies and laboratory scale model, Journal of Tribology Transactions, 32, 170-178, (1989). [2] Parkins, D. W. and Horner, D., Tilting pad journal bearing --- measured and predicted stiffness coefficients, Journal of Tribology Transactions, 36, 359-366, (1993). [3] Pan, J., Lin, T. and Farag, N., Characterisation and control of thrust bearing vibration Issue 2, April 2002, report to DTO. [4] Neale M. J., The Tribology Handbook, Butterworth-Heinemann Ltd., Oxford, Great Britian (1995).