A SHORT NOTE ON PERMEABILITY ANISOTROPY IN HETEROGENEOUS POROUS MEDIA

Similar documents
MODELING FLUID FLOW IN HETEROGENEOUS AND ANISOTROPIC POROUS MEDIA

SOLUTE TRANSPORT IN HETEROGENEOUS POROUS MEDIA

Borehole Acoustics and Logging Consortium. Annual Report

SENSITIVITY ANALYSIS OF AMPLITUDE VARIATION WITH OFFSET (AVO) IN FRACTURED MEDIA

Introduction to Aspects of Multiscale Modeling as Applied to Porous Media

F-K Characteristics of the Seismic Response to a Set of Parallel Discrete Fractures

Effects of Fracture Parameters in an Anisotropy Model on P-Wave Azimuthal Amplitude Responses

Characterization of Induced Seismicity in a Petroleum Reservoir: A Case Study

DYNAMIC FLUID FLOW IN HETEROGENEOUS POROUS MEDIA AND THROUGH A SINGLE FRACTURE WITH ROUGH SURFACES

Downloaded 08/30/13 to Redistribution subject to SEG license or copyright; see Terms of Use at

Hydraulic properties of porous media

Theoretical and Experimental Studies of Seismoelectric Conversions in Boreholes

Determination of the Laminar, Structural and Disperse Shale Volumes Using a Joint Inversion of Conventional Logs*

(Refer Slide Time: 02:10)

Maximize the potential of seismic data in shale exploration and production Examples from the Barnett shale and the Eagle Ford shale

Microseismic monitoring of borehole fluid injections: Data modeling and inversion for hydraulic properties of rocks

In all of the following equations, is the coefficient of permeability in the x direction, and is the hydraulic head.

EFFECTS OF FRACTURED RESERVOIR ELASTIC PROPERTIES ON AZIMUTHAL AVO. Feng Shen, Xiang Zhu, and M. Nafi Toksoz

Seismic inversion for the parameters of two orthogonal fracture sets in a VTI background medium

BOREHOLE ELECTROSEISMIC MEASUREMENTS IN DOLOMITE: IDENTIFYING FRACTURES AND PERMEABLE ZONES

6298 Stress induced azimuthally anisotropic reservoir - AVO modeling

Physical modeling and analysis of P-wave attenuation anisotropy in transversely isotropic media

AVAZ inversion for fracture orientation and intensity: a physical modeling study

PUBLISHED VERSION.

THEORETICAL RESERVOIR MODELS

STONELEY WAVE PROPAGATION ACROSS BOREHOLE PERMEABILITY HETEROGENEITIES

FRACTURE PROPERTIES FROM SEISMIC SCATTERING

SEG Las Vegas 2008 Annual Meeting 677

P235 Modelling Anisotropy for Improved Velocities, Synthetics and Well Ties

Envelope of Fracture Density

Modeling seismic wave propagation during fluid injection in a fractured network: Effects of pore fluid pressure on time-lapse seismic signatures

Chapter 4 Influences of Compositional, Structural and Environmental Factors on. Soil EM Properties

Anisotropic Modelings of the Hydrothermal Convection in Layered Porous Media

Summary. Simple model for kerogen maturity (Carcione, 2000)

Reservoir Geomechanics and Faults

Demystifying Tight-gas Reservoirs using Multi-scale Seismic Data

Critical Borehole Orientations Rock Mechanics Aspects

1.72, Groundwater Hydrology Prof. Charles Harvey Lecture Packet #4: Continuity and Flow Nets

CHARACTERIZATION OF IN-SITU STRESS AND PERMEABILITY IN FRACTURED RESERVOIRS

Estimating Permeability from Acoustic Velocity and Formation Resistivity Factor

A HYBRID SEMI-ANALYTICAL AND NUMERICAL METHOD FOR MODELING WELLBORE HEAT TRANSMISSION

Mapping the Preferential Flow Paths within a Fractured Reservoir

1 Modeling Immiscible Fluid Flow in Porous Media

RATE OF FLUID FLOW THROUGH POROUS MEDIA

P314 Anisotropic Elastic Modelling for Organic Shales

Determination of Locally Varying Directions through Mass Moment of Inertia Tensor

SHEAR-WAVE REFLECTION MOVEOUT FOR AZIMUTHALLY ANISOTROPIC MEDIA

Faults. Strike-slip fault. Normal fault. Thrust fault

Investigating the Barnett Shale

Anisotropic permeabilities evolution of reservoir rocks under pressure:

Seismic Waves in Complex 3 D Structures, 26 (2016), (ISSN , online at

We Challenges in shale-reservoir characterization by means of AVA and AVAZ

Summary of Fourier Optics

Stress-induced transverse isotropy in rocks

Detecting fractures using time-lapse 3C-3D seismic data

SEISMIC WAVE PROPAGATION IN FRACTURED CARBONATE ROCK

q v = - K h = kg/ν units of velocity Darcy's Law: K = kρg/µ HYDRAULIC CONDUCTIVITY, K Proportionality constant in Darcy's Law

GEOPHYSICAL PROSPECTING: DYNAMIC RESERVOIR CHARACTERIZATION AND TIME-LAPSE MULTICOMPONENT SEISMOLOGY FOR RESERVOIR MONITORING UNESCO EOLSS

Where does the proppant go? Examining the application of electromagnetic methods for hydraulic fracture characterization

An integrated study of fracture detection using P-wave seismic data

WP 4.1. Site selection criteria and ranking methodology. Karen Kirk

Multiscale Seismic Signature of a Small Fault Zone in a Carbonate Reservoir: Relationships Between V P Imaging, Fault Zone Architecture and Cohesion*

VI. Porous Media. Lecture 34: Transport in Porous Media

Analytic Tools for Quantitative Interpretation. Mrinal K.Sen

Integrating Lab and Numerical Experiments to Investigate Fractured Rock

Kirchhoff prestack depth migration in velocity models with and without rotation of the tensor of elastic moduli: Orthorhombic and triclinic anisotropy

Location uncertainty for a microearhquake cluster

AVAZ and VVAZ practical analysis to estimate anisotropic properties

P191 Bayesian Linearized AVAZ Inversion in HTI Fractured Media

P026 Outcrop-based reservoir modeling of a naturally fractured siliciclastic CO 2 sequestration site, Svalbard, Arctic Norway

An empirical method for estimation of anisotropic parameters in clastic rocks

Observation of shear-wave splitting from microseismicity induced by hydraulic fracturing: A non-vti story

Turbulent flow over anisotropic porous media

Evaluation Of The Fracture Sizes By Using The Frequency Dependence Of Anisotropy

N. Shaikh, C. Steele and G.S. Kino

NMO residual reduction on medium anisotropy in field X using Fomel and Stovas method

Lawrence Berkeley National Laboratory

Rock Physics of Shales and Source Rocks. Gary Mavko Professor of Geophysics Director, Stanford Rock Physics Project

water L v i Chapter 4 Saturation

QVOA analysis: P-wave attenuation anisotropy for fracture characterization

An Immersed Boundary Method for Computing Anisotropic Permeability of Structured Porous Media

2. Governing Equations. 1. Introduction

Stress induced seismic velocity anisotropy study Bin Qiu, Mita Sengupta, Jorg Herwanger, WesternGeco/Schlumberger

Institute de Physique du Globe, Paris, France. Summary

CHAPTER III. METHODOLOGY

Effective behavior near clogging in upscaled equations for non-isothermal reactive porous media flow

Integrating rock physics and full elastic modeling for reservoir characterization Mosab Nasser and John B. Sinton*, Maersk Oil Houston Inc.

Laboratory Triaxial and Permeability Tests on Tournemire Shale and Cobourg Limestone (Contract : R413.8) FINAL REPORT

The effect of anticlines on seismic fracture characterization and inversion based on a 3D numerical study

Permeability of Dual-Structured Porous Media

PETROPHYSICAL STUDIES OF SANDSTONES UNDER TRUE-TRIAXIAL STRESS CONDITIONS

Seismic techniques for imaging fractures, cracks and faults in the Earth. Michael Kendall

Integrating reservoir flow simulation with time-lapse seismic inversion in a heavy oil case study

P306 Seismic Velocity Anisotropy in the Illizi Basin of Eastern Algeria

Geophysical and geomechanical rock property templates for source rocks Malleswar Yenugu, Ikon Science Americas, USA

Quantifying shale matrix permeability: challenges associated with gas slippage

Groundwater. (x 1000 km 3 /y) Reservoirs. Oceans Cover >70% of Surface. Groundwater and the. Hydrologic Cycle

Cross-well seismic modelling for coal seam delineation

Reservoir Rock Properties

Theory - SBRC fundamentals

Transcription:

A SHORT NOTE ON PERMEABLTY ANSOTROPY N HETEROGENEOUS POROUS MEDA by Xiaomin Zhao and M. Nafi Toksoz Earth Resources Laboratory Department of Earth, Atmospheric, and Planetary Sciences Massachusetts nstitute of Technology Cambridge, MA 02139 ABSTRACT This paper presents some new results of theoretical modeling on permeability anisotropy in heterogeneous porous media. t is shown that the lineation of heterogeneities results in permeability anisotropy. However, to produce strong anisotropy, the permeability contrast between the lineated high permeability region and the background must be very high. We demonstrate this using two examples. The first is the fracture model in which the background has negligible permeability compared to the fractures. n the second example the fractures are replaced by impermeable stripes and the background has high permeability. n both cases permeability anisotropy with an order of magnitude difference is produced. These results compare well with the results of laboratory experiments performed to evaluate permeability anisotropy. NTRODUCTON Permeability anisotropy is of interest in the study of fluid flow in reservoirs. Recent studies have emerged in this research area (Gibson and Toksoz, 1990; Bernabe, 1991; Zhao and Toksoz, 1991). These studies demonstrated that the condition for producing strong permeability anisotropy is that the permeability contrast between the lineated permeable region and the less permeable region should be large, as in the lineated fracture case (Zhao and Toksoz, 1991). n this study, we show that strong anisotropy can also result from the case where the medium contains some impermeable layers sandwiched between permeable regions. The modeling techniques were described in Zhao and Toksoz (1991). A Successive Over-Relaxation (SOR) finite-difference scheme was used to simulate the fluid flow field, and the lineated Gaussian correlation function was used to produce the lineated heterogeneities. Bernabe (1991) performed a set of permeability measurements on synthetic anisotropic

180 Zhao and Toksoz samples. These results provide experimental evidence of permeability anisotropy. Two sets of experimental results are of particular interest to this study. n one case permeable layers are sandwiched between less-permeable porous plates. But the permeability contrast between the two types of regions is not very large. n the second case, thin layers with very low permeability are sandwiched between the permeable layers and the porous plates. The two data sets will be modeled using the finite-difference algorithm. The data sets, coupled with theoretical results, demonstrate that the permeability contrast is the key factor controlling the degree of anisotropy. MODELNG EXAMPLES (1) Lineated Heterogeneities (Low Permeability Contrast) The effects of lineated heterogeneities have been studied by Zhao and Toksoz (1991). Here we present the results of the theoretical modeling in order to explain the experimental results of Bernabe (1991), which will be described later. The heterogeneous distributions are generated using different correlation lengths in the Gaussian correlation function (al = 20 and a2 = 2, respectively, see Zhao and Toksoz, 1991). The flow fields have been calculated for various () values between 0 and 90. As an example, the aligned medium and the simulated flow field at () = 45 are given in Figure 1. Because of the lineation of permeability heterogeneities, the flow tends to channel through high permeability regions. This is shown clearly in Figure 1b, where the lineation of high and low permeability strips makes the flow field have a trend to deflect toward the lineation of high permeability regions. Figure 2 shows the calculated average flow versus (). The permeability is the maximum along () = 0, and becomes minimum along () = 90 ; the anisotropy (defined as (ko - kgo)/«ko + k90)/2)) for this case is about 10%. By varying the correlation lengths al and a2, the degree of anisotropy does not significantly exceed this value due to the random medium model used here. n this model, a region with moderate and low permeabilities is sandwiched between two adjacent high permeability regions. Therefore flow can always cross the less permeable region without having to flow around the region. Thus due to the presence of background permeability, the lineation of random heterogeneities cannot result in anisotropic permeabilities that are an order of magnitude difference. n order to produce a strong permeability anisotropy, the permeability contrast between the permeable stripes and the background must be high. This will be the case of fractures studied in the following section. (2) Fracture Model (Permeable Channels - mpermeable Background) Since fractures can contribute significantly to the reservoir permeability, it is important to model the effects of fracture permeability. As shown by Gibson and Toksoz (1990),

Permeability Anisotropy 181 a primary effect of fracture is anisotropy in permeability. Because of the alignment of fractures, the permeability can vary with orientation by orders of magnitude. The major features of fracture fluld flow are that the background has negligible permeability and that the flow is highly concentrated along the fractures. This situation can be modeled using the random medium model as follows. We choose the aspect ratio, aj/a2»1, so that the heterogeneities are highly lineated. n order to remove the background permeability, we set a threshold, say, 60% of the maximum [a(x, V)]. The values of a(x, y) that are smaller than this threshold are set to a very small number; values greater than the threshold are kept unchanged. Figures 3a and 3c show the a(x, y) distributions that resemble a natural fracture network. The permeability contrast between the fracture and the background is 600: 1. Although the background permeability may still be large compared to typical fractured rocks (granite, limestone, etc.), the highly conductive channels (fractures) conduct most of the flow so that the background flow is small. n this way the flow in the fracture network is simulated. The calculated flow field along and perpendicular to the fracture alignment is shown in Figures 3b and 3d. The flow patterns for the two orientations are qulte different. As expected, the flow is highly channeled along the fractures. For the B = 90 0 case (Figure 3d) the flow has to wind around the junctions of the fractures, while in the B= 0 case flow takes place along the straight channel. These result in signlficant permeability difference for the two cases. We have performed the calculation for various orientations. Figure 4 shows the calculated average flow as a function of the orientation B. n this figure, the permeability is maximum along fractures and minimum perpendicular to them, the same as in the previous case of aligned heterogeneities. However, the permeability difference between B= 0 and B= 90 is 184% in the present case. (3) Fracture Model (mpermeable Barriers - Permeable Background) The above fracture model shows that strong permeability anisotropy exists in lineated heterogeneous porous media only when the permeability contrast between the permeable channels (fractures) and the less permeable background is large. t is interesting to study the case where the background becomes permeable while the flow channels (fractures) are sealed (impermeable). This model can be generated from the previous lineated heterogeneity model, in the same way as the above fracture model. We set a threshold, say, 40% of the maximum permeability value of the model. The regions whose permeability is less than this threshold is assigned to a very small value (about 1/600 of the maximum permeability). Figures Sa, c, and e show heterogeneity models for the angle of lineation B = 0 0, 45 0, and 90 0 cases, together with the simulated flow field, Figures 5b, d, f. Because of the no-flow barriers in the heterogeneous distribution, the flow has to wind around these barriers. For the B = 0 0 case, the flow takes place along the lineation of the barriers, while for the B= 90 0 case, the flow has to penetrate the junctions between the barriers and the flow paths are longer than in the B= 0 case.

182 Zhao and Toksoz Therefore, flow fields along and perpendicular to the channels are very different. This results in significant permeability anisotropy. Fignre 6 shows the calculated average flow as a function of the angle of lineation e. The permeability difference between e = 0 and e= 90 0 is about 175%, almost the same order as the previous fracture model. COMPARSON WTH EXPERMENTAL DATA MEASURED FROM MATERALS WTH ANSOTROPC PERMEABLTY n a recently published paper Bernabe (1991) showed the experimental results of permeability measurements on anisotropic materials. These experiments were performed to evaluate the validity of the tensor form of Darcy's law in anisotropic porous media. n that study a 2-D finite-difference simulation using the anisotropic tensor form Darcy's law was also performed. Excellent agreement was found between the numerical analysis and the experiment. The experimental results provide a test of the present numerical analysis of heterogeneous media. The experiments were performed on anisotropic porous medium samples made from a stack of identical flat porous plates. n the sample, the space between two adjacent plates was deliberately left open. t was hoped that these openings would act as high permeability channels, analogous to fractures. However, it turned out that the ratio of permeabilities measured perpendicular and parallel to the plates was ouly about 0.6, the material obtained being only moderately anisotropic. n fact, these experimental results are quite consistent with our modeling results for the aligned permeability distribution (Figure 1), which shows that the lineation of high permeability channels (analogous to the openings between the plates) surrounded by a less permeable background (analogous to the synthetic porous plates) cannot result in significant permeability anisotropy. As described in Bernabe's (1991) paper, in order to provide a highly anisotropic permeability model, a large percentage of the top surface of each plate was coated with a thin layer of impermeable silicone rubber so that the flow perpendicular to the plates was largely reduced. This time a permeability ratio of 0.02 for e = 0 and 90 was obtained. To determine the variation of permeability measured along different directions, the synthetic materials of both cases (i.e., permeability ratios of 0.6 and of 0.02) were cut at 0, 15, 30, and 45 with respect to the direction parallel to the plates. Permeabilities along these directions were measured, with other sides of the (cubic) sample that are parallel to the measurement direction sealed with a jacket (no flow boundaries). The experimental results are replotted here in Fignre 7 (crosses). The anisotropic finite-difference modeling results of Bernabe (1991) are also represented in the same fignre (triangles). t is seen that strong permeability anisotropy is produced by the impermeable layer, with the ratio of permeabilities measured perpendicular and parallel to the plates being 0.02. This result is also consistent with the modeling results for the permeable background with impermeable barriers (Fignre 6). We model the

Permeability Anisotropy 183 experimental results quantitatively using our finite-difference formulation and show that a macroscopically anisotropic permeability medium can result from a microscopically isotropic but heterogeneous medium. Figure 8 shows our finite-difference model composed of stacked plates. The permeability of the plates and that of the opening are denoted by kp and ko, respectively. A thin region with permeability k c is used to model the less permeable layer due to the silicone rubber coating. The three permeabilities are determined as follows. n the first, we determined kp and ko in the absence of the k c region. Given the measured permeabilities at 0 = 0 and 0 = 90, kp and ko can be uniquely determined. For the model shown in Figure 8, kp = 1 Darcy and ko = 0.1 Darcy. This is the case with the permeability ratio equal to 0.6. n the second step, the k c region is introduced between kp and ko regions and the value of k c is adjusted to obtaln the measured permeability ratio of 0.02 for 0 = 90 and 0. This value is found to be 4 x 10-4 Darcy. From the model of Figure 8, square models were cut at 0 = 0,15,30,45,60, 75, and 90 with respect to the direction parallel to the plates. Each model includes 16 plates. For the models with given 0 values, finite-difference modeling was carried out and the average permeability for each 0 was calculated. The results are given in Figure 10 (circles), together with the experimental results and those from the anisotropic finite-difference modeling (Bernabe, 1991). Clearly, the results from our finite-difference modeling agree well with both results. The agreement with experimental results verifies for the validity of our heterogeneous finite difference formulation. More important, the agreement with Bernabe's (1991) anisotropic finite difference results indicates that the permeability anisotropy on a macroscopic scale can result from heterogeneities composed of microscopically isotropic materials. CONCLUSONS The purpose of this study was to demonstrate that permeability contrast between permeable and impermeable regions in lineated heterogeneous porous media is the key factor controlling the degree of permeability anisotropy. Strong anisotropy exists only when the contrast is large. This implies that strong anisotropy will exist in reservoirs consisting of lineated fractures or in reservoirs containing nonpermeable barriers, such as the sand-shale sequence commonly encountered in reservoirs. ACKNOWLEDGEMENTS We would like to thank Yves Bernabe for his valuable suggestions and for providing us with his experimental results. This research was supported by the Borehole Acoustics and Logging Consortium at M.LT. and by Department of Energy Grant DE-FG02-

184 Zhao and Toksoz 86ER13636. REFERENCES Bernabe, Y.,1991, On the measurement of permeability in anisotropic rocks. Fault Mechanism and Transport Properties of Rocks: A Festchrijt in Honor of W. F. Brace, B. Evans and T. F. Wong (eds), Academic Press, London, in press. Gibson, R.L., Jr. and M.N. ToksOz, 1990, Permeability estimation from velocity anisotropy in fractured rock, J. Geophys. Res., 95, 15643--15655. Zhao, X.M. and M.N. ToksOz, 1991, Permeability anisotropy in heterogeneous porous media, SEG Abstracts, D/P1.7,387-390. ( (

Permeability Anisotropy 185 (a) (b) Figure 1: (a): Aligned distribution with e = 45 calculated using Gaussian correlation functions. The two correlation lengths are al = 20, a2 = 2. Model lengths are Xo = Yo = 128. (b): calculated fiow fields.

186 Zhao and Toksoz 1.45x 1,,-7, - 1.4 - - 1:-_ -... 1.35 - - - -... --- - '-' =.. - -- sotropic Gaussian.. /---... Q" 1.3 - -........ 1.25 -... -... Aligned Gaussian 1.2-0 10 20 30 40 50 60 70 80 90 e(o) ( Figure 2: Average flow q versus angle of alignment for the cases of aligned distributions. The case of isotropic Gaussian (a = 20) is also plotted for comparison (solid line). Although permeability anisotropy is present, its magnitude is oniy about 10%.

Permeability Anisotropy 187... u...:.\ :--=::::::::.....::..-..... :::::::::...... ---=_:::::gg;;; (a) (b) (c) (d) Figure 3: (a) and (c): Aligned fracture distributions with () = 0 (a) and 90 (c). The correlation lengths and model lengths are the same as in Figure 4. (b) and (d): calculated flow for () = OO(b) and 90 (d).

188 Zhao and Toksoz 2.5 xl 0-,7,.. --. 2 1.5 1 0.5 - - - - - - - -,,,,,,,,, lil,,,,,,,,,,,.,,,,,,,, '.. o o 10 20 30 40 50... -... - -- 60 --... ------ 70 80 90 8(0) Figure 4: Average flow q vs. () for the case of Figure 6. n the case of aligned fractures, i can have an order of magnitude difference between () = 0 and () = 90, resulting in significant anisotropy (about 184%).

Permeability Anisotropy 189 (a) (b) (e).....................::::::;::::::: ::::::. :.: :j i;"".: dli;;h;gnn Hjj (d) Figure 5: (a), (c), and (e): aligned barriers distributions with e= 0,45, and 90. The correlation lengths and model lengths are the same as in Figure 3. (b), (d), and (f): calculated flow fields for e= 00,45, and 90.

190 Zhao and Toksoz ( (e) (f) scale Ml 6 Figure 5: continued.

Permeability Anisotropy 191 10 x1v 8... 8........ ", -,..., - -, " 6 -, -, E -C" 4 -, 2 -.' " 'lit.. "...... -... -- - 0 0 10 20 30 40 50 60 70 80 90 eo Figure 6: Average flow ij vs. 0 for the case of Figure 5. The permeability anisotropy in this case is about 175%.

192 Zhao and Toksoz 100 -=: + + -! >- C- : (,) J... 10 ( >- -.-.c Q) 1 -: x E 6 J... X Q) a. x x 0.1,,, 0 15 30 45 60 75 90 Angle (Degree) l Figure 7: Theoretical (triangles and circles) and experimental (crosses + and x) results for the two synthetic materials (k90/ko = 0.6 and koo/ko = 0.02). Triangles are the anisotropic finite difference modeling results obtained by Bernabe (1991). Circles are the finite difference modeling results of this study.

Permeability Anisotropy 193 Low permeability layer High permeability layer Figure 8: Stacked plates model used in this study.

194 Zhao and Toksoz (