arxiv: v1 [math.ac] 28 Dec 2007

Similar documents
Proximity inequalities for complete ideals in two-dimensional regular local rings

Arithmetic Funtions Over Rings with Zero Divisors

VALUATION SEMIGROUPS OF NOETHIERIAN LOCAL DOMAINS

Pacific Journal of Mathematics

ALMOST GORENSTEIN RINGS

GROWTH OF RANK 1 VALUATION SEMIGROUPS

JUST THE MATHS UNIT NUMBER 1.9. ALGEBRA 9 (The theory of partial fractions) A.J.Hobson

arxiv: v2 [math.ag] 3 May 2018

ON STRONGLY PRIME IDEALS AND STRONGLY ZERO-DIMENSIONAL RINGS. Christian Gottlieb

TIGHT CLOSURE IN NON EQUIDIMENSIONAL RINGS ANURAG K. SINGH

Filtrations by complete ideals and applications

ARITHMETIC PROGRESSIONS IN CYCLES OF QUADRATIC POLYNOMIALS

RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES RIMS A Note on an Anabelian Open Basis for a Smooth Variety. Yuichiro HOSHI.

Extending valuations to formal completions.

Some examples of two-dimensional regular rings

Course 311: Michaelmas Term 2005 Part III: Topics in Commutative Algebra

ALGORITHMS FOR ALGEBRAIC CURVES

Jónsson posets and unary Jónsson algebras

Polynomials, Ideals, and Gröbner Bases

Basic Algebraic Geometry 1

On the Abhyankar-Moh inequality

GOLOMB S ARITHMETICAL SEMIGROUP TOPOLOGY AND A SEMIPRIME SUFFICIENCY CONDITION FOR DIRICHLET S THEOREM

EGYPTIAN FRACTIONS WITH SMALL NUMERATORS

Valuations and local uniformization

A Remark on Certain Filtrations on the Inner Automorphism Groups of Central Division Algebras over Local Number Fields

THE P-ADIC NUMBERS AND FINITE FIELD EXTENSIONS OF Q p

arxiv: v1 [cs.it] 26 Apr 2007

A finite universal SAGBI basis for the kernel of a derivation. Osaka Journal of Mathematics. 41(4) P.759-P.792

= 1 2x. x 2 a ) 0 (mod p n ), (x 2 + 2a + a2. x a ) 2

On a Theorem of Dedekind

TAMAGAWA NUMBERS OF ELLIPTIC CURVES WITH C 13 TORSION OVER QUADRATIC FIELDS

FORMAL GROUPS OF CERTAIN Q-CURVES OVER QUADRATIC FIELDS

ON THE REPRESENTABILITY OF Hilb n k[x] (x) Roy Mikael Skjelnes

CHAPTER 0 PRELIMINARY MATERIAL. Paul Vojta. University of California, Berkeley. 18 February 1998

A short proof of Klyachko s theorem about rational algebraic tori

arxiv: v2 [math.nt] 4 Jun 2016

arxiv:math/ v1 [math.ac] 19 Sep 2002 Ian M. Aberbach

Questionnaire for CSET Mathematics subset 1

1/30: Polynomials over Z/n.

ABSTRACT NONSINGULAR CURVES

CLASS FIELD THEORY WEEK Motivation

An arithmetic theorem related to groups of bounded nilpotency class

Standard forms for writing numbers

ALGEBRA AND ALGEBRAIC COMPUTING ELEMENTS OF. John D. Lipson. Addison-Wesley Publishing Company, Inc.

ADJOINTS AND POLARS OF SIMPLE COMPLETE IDEALS IN TWO-DIMENSIONAL REGULAR LOCAL RINGS. Joseph Lipman Purdue University. Contents

1 i<j k (g ih j g j h i ) 0.

Algebraic function fields

GENERATING IDEALS IN SUBRINGS OF K[[X]] VIA NUMERICAL SEMIGROUPS

Sign changes of Fourier coefficients of cusp forms supported on prime power indices

arxiv: v3 [math.ac] 3 Jul 2012

32 Divisibility Theory in Integral Domains

Arithmetic Analogues of Derivations

The smallest positive integer that is solution of a proportionally modular Diophantine inequality

Proofs. Chapter 2 P P Q Q

INTEGER VALUED POLYNOMIALS AND LUBIN-TATE FORMAL GROUPS

arxiv: v1 [math.nt] 28 Feb 2018

On convergent power series

arxiv:math/ v1 [math.ag] 28 Oct 1999

Formal power series rings, inverse limits, and I-adic completions of rings

Lecture Notes Math 371: Algebra (Fall 2006) by Nathanael Leedom Ackerman

14 Ordinary and supersingular elliptic curves

Projective Schemes with Degenerate General Hyperplane Section II

CHAPTER 10: POLYNOMIALS (DRAFT)

On the order bound of one-point algebraic geometry codes.

Associated graded rings of one-dimensional analytically irreducible rings

The primitive root theorem

ABSOLUTE VALUES AND VALUATIONS

+ 1 3 x2 2x x3 + 3x 2 + 0x x x2 2x + 3 4

CONDITIONS FOR THE YONEDA ALGEBRA OF A LOCAL RING TO BE GENERATED IN LOW DEGREES

Necessary and Sufficient Conditions for the Central Norm to Equal 2 h in the Simple Continued Fraction Expansion of 2 h c for Any Odd Non-Square c > 1

MATH 233B, FLATNESS AND SMOOTHNESS.

Lecture Notes Introduction to Cluster Algebra

DONG QUAN NGOC NGUYEN

A Generalization of Wilson s Theorem

HILBERT BASIS OF THE LIPMAN SEMIGROUP

RINGS ISOMORPHIC TO THEIR NONTRIVIAL SUBRINGS

Porteous s Formula for Maps between Coherent Sheaves

REFLEXIVE MODULES OVER GORENSTEIN RINGS

A NOTE ON RETRACTS AND LATTICES (AFTER D. J. SALTMAN)

Some Results on the Arithmetic Correlation of Sequences

MA257: INTRODUCTION TO NUMBER THEORY LECTURE NOTES

On a theorem of Ziv Ran

Some remarks on Krull's conjecture regarding almost integral elements

A Proof of the Lucas-Lehmer Test and its Variations by Using a Singular Cubic Curve

RANK AND PERIOD OF PRIMES IN THE FIBONACCI SEQUENCE. A TRICHOTOMY

THE CONE OF CURVES AND THE COX RING OF RATIONAL SURFACES GIVEN BY DIVISORIAL VALUATIONS

Level Structures of Drinfeld Modules Closing a Small Gap

THE REGULAR ELEMENT PROPERTY

ARITHMETIC IN PURE CUBIC FIELDS AFTER DEDEKIND.

A Version of the Grothendieck Conjecture for p-adic Local Fields

Represented Value Sets for Integral Binary Quadratic Forms and Lattices

GENERATING NON-NOETHERIAN MODULES CONSTRUCTIVELY

DOES XY 2 = Z 2 IMPLY X IS A SQUARE?

ON THE SUBGROUPS OF TORSION-FREE GROUPS WHICH ARE SUBRINGS IN EVERY RING

The p-adic Numbers. Akhil Mathew. 4 May Math 155, Professor Alan Candiotti

arxiv: v1 [math.ac] 7 Feb 2009

3. Lecture 3. Y Z[1/p]Hom (Sch/k) (Y, X).

More Polynomial Equations Section 6.4

15 Lecture 15: Points and lft maps

Adjoints of ideals. Reinhold Hübl and Irena Swanson

Transcription:

arxiv:0712.4329v1 [math.ac] 28 Dec 2007 On the value-semigroup of a simple complete ideal in a two-dimensional regular local ring S. Greco Politecnico di Torino Abstract K. Kiyek University of Paderborn Let R be a two-dimensional regular local ring with maximal ideal m, and let be a simple complete m-primary ideal which is residually rational. Let R 0 := R R 1 R r be the quadratic sequence associated to, let Γ be the value-semigroup associated to, and let (e j( )) 0 j r be the multiplicity sequence of. We associate to a sequence (γ i( )) 0 i g of natural integers which we call the formal characteristic sequence of. We show that the value-semigroup of, the multiplicity sequence of and the formal characteristic sequence of are equivalent data; furthermore, we give a new proof of the fact that Γ is symmetric. In order to prove these results, we use the Hamburger-Noether tableau of [cf. [3]]; we also give a formula for c, the conductor of Γ, in terms of the Hamburger-Noether tableau of 1 Introduction and Notations (1.1) Introduction: Let R be a two-dimensional regular local ring with maximal ideal m, quotient field K and residue field κ, and let be a simple complete m-primary ideal of R. We use the terminology and results developed in chapter VII of [5]; for other references cf. Appendix 3 of [12] and the papers [6], [7] and [8] of Lipman. The ideal determines a sequence R 0 := R R 1 R r =: S where R 1,..., R r are two-dimensional regular local rings with quotient field K; for each j {1,...,r} the ring R j is a quadratic transform of R j 1, and the residue field κ j of R j is a finite extension of κ; we denote its degree by [ R j : R ] [ cf. [5], VII(5.1) ]. We set f := [ R r : R ], and we call the ideal residually rational if f = 1. The order function ord S of S gives rise to a discrete rank 1 valuation of K which shall be denoted by ν = ν; let V be the valuation ring of ν. Then, for j {1,..., r}, R j is the only quadratic transform of R j 1 which is contained in V. (1) The semigroup Γ := {ν(z) z R \ {0}} is called the value-semigroup of. Since K is the quotient field of V and R, there exist non-zero elements z 1, z 2 R with ν(z 1 ) ν(z 2 ) = 1, email: silvio.greco@mail.polito.it email: karlh@math.upb.de 1

2 hence Γ is a numerical semigroup, i.e., the greatest common divisor of its elements is 1, and therefore Γ is finitely generated. The group Γ was studied in papers of Noh [9], Lipman [8], Spivakovsky [11] and in [3]; in [9] Noh showed in case κ is algebraically closed that Γ is symmetric; Lipman [8] showed that this result also holds if is residually rational and he gave a formula for the conductor c of Γ in terms of the multiplicities of [ cf. (2) for this notion]. In the rest of this note, we always assume that is residually rational. We choose a system κ of representatives of κ in R with the additional property that the zero element of κ is represented by 0. Since all the rings R 1,...,R r have the same residue field κ, we can take κ as a set of representatives of κ in each of the rings R 1,..., R r. In [3], Prop. (8.6), we constructed using the Hamburger-Noether tableau of a system of generators r 0,...,r h of Γ such that Γ is even strictly generated by these elements [ cf. [3], (8.3), for this notion]. (2) For j {0,...,r} let Rj be the transform of in R j [ cf. [5], chapter VII, section (2.3)]; note that Rr is the maximal ideal of R r. We set e j ( ) = ord Rj ( Rj ) for j {0,..., r}. The sequence (e j ( )) 0 j r is called the multiplicity sequence of [ these integers are the non-zero elements of the point basis of, cf. Lipman [7], [8] ]. (3) Let n 0 > n 1 > > n t = 1 be the distinct multiplicities occurring in the sequence (e j ( )) 0 j r, and assume that, for every i {1,..., t}, n i occurs exactly h i times. Then the multiplicity sequence (e j ( )) 0 j r of takes the form We call n 0,...,n }{{} 0, n 1,...,n 1,..., n }{{} t 1,...,n t 1, 1, 1,...,1 }{{}}{{} h 0 h t 1 h 1 n 0,..., n }{{} 0, n 1,..., n 1,..., n }{{} t 1,...,n t 1 }{{} h 0 h 1 h t 1 the essential part of the multiplicity sequence; note that t 1 h t = l R (R/ ) i=0 h i n i (n i + 1) 2 h t. by the length formula of Hoskin-Deligne [ cf. [5], chapter VII, section (6.9)]. Furthermore, let {s 1,..., s g } = {j {1,...,t} n j divides n j 1 }, and let these elements be labeled in such a way that s 1 < < s g. Note that g = 0 iff e 0 ( ) = 1. The non-negative integer g will be called the genus of. It is often convenient to set s 0 = 0. We set f i := n s i 1 for i {1,..., g}. n si

(4) We set γ 0 ( ) := n 0, and we define, by recursion 1 γ 1 ( ) := h 0 n 0 + n 1, γ i+1 ( ) γ i ( ) := (h si f i )n si + n si+1 for every i {1,...,g 1}. ( ) We call the sequence (γ i ( )) 0 i g the formal characteristic sequence of. (5) We show in this note, using only the Hamburger-Noether tableau of, that Γ is symmetric, give several formulae which express c, the conductor of Γ, in terms of data of the Hamburger-Noether tableau of, give a new proof for the formula of Lipman (2.11) expressing c in terms of the multiplicities of, and show that Γ, the sequence of multiplicities of, and the formal characteristic sequence of are equivalent data. (1.2) Multiplicity sequence and quadratic transforms: Let i {0,..., t 1}, set j := h 0 n 0 + + h i n i and T := R j. Let T = T 0, T 1,... be the sequence of quadratic transforms of T along V ; we have n i = e( T ), n i+1 = e( T1 ). There exists a regular system of parameters {x, y} for T such that ν(x) = n i, ν(y) > ν(x), and ν(y/x) = n i+1. (1) Firstly, we consider the case that n i+1 does not divide n i. Then we have n i+1 = e( T k ) for k {1,..., h i+1 }, and, setting x 1 := y/x, y 1 := x, {x 1, y 1 } is a regular system of parameters for T 1, and since ν(y 1 /x1 k 1 ) = n i (k 1)n i+1 for k {1,..., h i+1 }, it is clear that {x k := x 1, y k := y 1 /x1 k 1 } is a regular system of parameters for T k for k {1,...,h i+1 }. We have ν(y hi+1 ) = n i (h i+1 1)n i+1 n i, n i h i+1 n i+1 < n i, hence n i h i+1 n i+1 = n i+2, and this is the division identity for the natural integers n i, n i+1. (2) Now, we treat the case that n i+1 divides n i, and set f := n i /n i+1. We consider the first f quadratic transforms T 1,..., T f of T along V. Setting x k := x 1 := y/x, y k := y 1 /x1 k 1 for k {1,..., f}, we see that {x k, y k } is a regular system of parameters for T k, and that T f+1, the quadratic transform of T f along V, has a system of parameters {x 1, (y 1 ax f 1 )/xf 1 } where a R is the unique element in κ \ {0} such that ν((y 1 ax f 1 )/xf 1 ) > 0 [ for the existence of such an element a remember that is residually rational, that T 0 R r, and use the argument given in [3], (7.5)(3)], and e( T f ) e( T f+1 ). This implies, in particular, that f h i+1. (1.3) Multiplicity sequence and formal characteristic sequence: We show that the formal characteristic sequence (γ i ( )) 0 i g of determines the essential part of the multiplicity sequence (e j ( )) 0 j r of, hence that the multiplicity sequence and the formal characteristic sequence of are equivalent data. (1) We have by (1.2) n j 1 = h j n j + n j+1 for j {1,...,r 1} \ {s 1,..., s g }, n si 1 = f i n si where f i N and f i h si for i {1,..., g}. (2) Let i {0,...,g 1}. The continued fraction expansion of n si /n si+1 takes the form 3 ( ) n si n si+1 = [ h si+1,...,h si+1 1, f i+1 ], 1 the elements h 0, h 1... here are the elements which are denoted by e 0, e 1,... in [4], (2.2) and (2.3).

4 and we have gcd(n si, n si+1) = gcd(n si, n si+1, n si+2) = = gcd(n si, n si+1,...,n si+1 1) = n si+1. From this it follows easily that gcd(n 0, n 1,...,n si 1) = n si for every i {1,..., g}. (3) Let γ i := γ i ( ) for i {0,..., g}. We show that γ 0 = n 0, gcd(γ 0,..., γ i ) = gcd(n si 1, n si 1+1) = n si for every i {1,..., g}. This holds if g = 0. Now we assume that g 1. The assertion holds if i = 1 since, by definition, γ 0 = n 0, γ 1 = h 0 n 0 +n 1, hence gcd(γ 0, γ 1 ) = gcd(n 0, n 1 ) = n s1 [ cf. (2)]. Assume that i {1,..., g 1}, and that the assertion holds for i, hence, in particular, that n si divides γ i. Then gcd(γ 0,..., γ i+1 ) = gcd(n si, γ i+1 ). From (2) and (1.1)(4)( ) we see that n si+1 = gcd(n si, γ i+1 ) = gcd(n si, n si+1). (4) Now ( ) in (1.1)(4) is the division identity for the integers γ 1 and γ 0 = n 0. By (3) we have n si = gcd(γ 0,...,γ i ) for every i {0,...,g}. Let i {1,...,g 1}; since n si > n si+1, ( ) in (1.1)(4) is the division identity for the integers γ i+1 γ i and n si. Knowing n si and n si+1 for every i {0,..., g 1}, we use (2) to calculate n 0,...,n r, h 0,..., h r 1, i.e., we have calculated the essential part of the multiplicity sequence of from its formal characteristic sequence. 2 Quadratic Transform and HN-Tableau (2.1) Quadratic transform: We consider the quadratic transform R 1 of R and let n 0 > n 1 > > n t etc., be the numbers defined by the multiplicity sequence (e( Rj )) 1 j r of the simple ideal R1 of R 1. It is easy to check that the connection between the sequence n 0,..., n t and the sequence n 0,..., n t is given by the formulae in [4], (2.4)-(2.6). (2.2) Hamburger-Noether tableau and quadratic transform: Let {x, y} be a regular system of parameters for R. We assume that m; remember that ν dominates R 1. If ν(x) < ν(y), then we take {x 1 := x, y 1 := y/x} as a regular system of parameters for R 1, if ν(x) > ν(y), then we take {x 1 := y, y 1 := x/y} as a regular system of parameters for R 1 ; finally, if ν(x) = ν(y), then let a 1 κ\{0} be the unique element with ν(y a 1 x) > ν(x) [ for the existence of a 1, note that r 1, and argue as in (1.2)(2)], and in this case we take {x 1 := x, y 1 := (y a 1 x)/x} as a regular system of parameters for R 1. Let HN( ; x, y) = p i c i a i 1 i l

be the Hamburger-Noether tableau of with respect to {x, y} [ cf. [3], (7.6), for the definition of the HN-tableau HN( ; x, y)]. We set := R1, and we assume that is not the maximal ideal of R 1. Then the Hamburger-Noether tableau of with respect to the regular system of parameters {x 1, y 1 } for R 1 constructed in the preceding paragraph is p 1 c 1 p 2 c 1 c 2 if p 1 > c 1, a 1 a 2 c 1 p 1 p 2 HN( ; x 1, y 1 ) = p 1 c 2 if p 1 < c 1, a 1 a 2 p 2 p 3 c 2 c 3 if p 1 = c 1. a 2 a 3 5 (2.3) Remark: Let (θ 1, q 1,..., q h ) (resp. (θ 1, q 1,..., q h )) be the characteristic sequence2 of with respect to {x, y} (resp. of with respect to {x 1, y 1 }). It is easy to check that the connection between these two sequences is given by the formulae in [4], (3.1)-(3.6). (2.4) Proposition: Let {x, y} be a regular system of parameters for R, let (θ 1 ; q 1,...,q h ) be the characteristic sequence of with respect to {x, y}, and let (γ 0,...,γ g ) be the formal characteristic sequence of. Then we have (1) if θ 1 q 1 and θ 1 q 1, then h = g, γ 0 = θ 1, γ 1 = q 1, γ j γ j 1 = q j for every j {2,...,g}, (2) if θ 1 q 1 or q 1 θ 1, then h = g + 1, γ 0 = θ 1, γ 1 = q 1 + q 2, γ i γ i 1 = q i+1 for every j {2,...,g}, (3) if q 1 < θ 1 and q 1 θ 1, then h = g, γ 0 = q 1, γ 1 = θ 1, γ j γ j 1 = q j for every j {2,...,g}. Proof: By induction, we may assume that the corresponding formulae hold for the HNtableau HN( ; x 1, y 1 ), defined as in (2.2); it is a routine matter, using (1.2) and (2.3), to verify these relations. 2 Cf. [3], (8.4), for this notion.

6 (2.5) Corollary: Let be a simple complete m-primary ideal of R which is residually rational. The following data are equivalent: (1) The semigroup Γ of. (2) The multiplicity sequence of. (3) The formal characteristic sequence of. Proof: This is an easy consequence of the last results. (2.6) Remark: (1) For quite a different proof of the fact that the data in (1) and (2) of (2.5) are equivalent if κ is algebraically closed, cf. the proof of Th. 3 in Noh s paper [9]. (2) Let κ be an algebraically closed field of characteristic 0, let κ[ t] be the ring of formal power series over κ, let (γ i ) 0 i g be the formal characteristic sequence of, and set x := t γ0, y := t γ1 + + t γg ; let C be the plane algebroid curve defined by this parametrization. Then (γ i ) 0 i g is the characteristic sequence of this curve with respect to the pair (x, y). If one determines the HN-tableau for the pair (x, y) [ cf. [10], (2.2)], and calculates its semigroup sequence [cf. [10], 2.8.5], then it is easy to check that the semigroup which is strictly generated by this semigroup sequence, is the semigroup of C. This explains the name formal characteristic sequence. (2.7) Proposition: Let {x, y} be a regular system of parameters for R, let HN( ; x, y) be the HN-tableau of with respect to {x, y}, and let (θ i ) 1 i h+1 (resp. (r i ) 0 i h ) be the divisor sequence (resp. the semigroup sequence 3 ) of with respect to {x, y}. The semigroup Γ is strictly generated by the semigroup sequence (r i ) 0 i h, it is symmetric, and its conductor c is h c = r 0 + 1 + r j (θ j /θ j+1 1). j=1 Proof: The assertion that Γ is strictly generated by the sequence (r i ) 0 i h, was proved in [3], Prop. 8.6; all the other statements follow from the argument in Russel s paper [10], proof of Th. 6.1, (2)-(6), where he essentially uses only the fact that Γ is strictly generated by the sequence (r i ) 0 i h. (2.8) Remark: We take the opportunity to correct an omission in [3], (8.17) and (8.18). We must add also the condition θ 1 > > θ g+1 = 1 (this condition is used in order to show that the tableau given in the proof of [3], (8.19) is, in fact, a HN-tableau). Here we should mention also the paper of Angermüller [1], and, in particular, Satz 1. (2.9) Notation: Let {x, y} be a regular system of parameters for R, and let HN( ; x, y) = 3 Cf. [3], (8.4)(2) and (8.4)(3) for this notions. p i c i a i 1 i l

7 be the HN-tableau of with respect to {x, y}. We set ǫ := min({i N 0 c j = c i+1 for every j i + 1}). (2.10) Corollary: We keep the notations of (2.7), and let (θ 1 ; q 1,..., q h ) be the characteristic sequence of with respect to {x, y}. For the conductor c of the symmetric semigroup Γ we have c = r 0 + 1 + h r j (θ j /θ j+1 1) j=1 = (q 1 1)(θ 1 1) + = (p 1 1)(c 1 1) + h q j (θ j 1) j=2 ǫ p i (c i 1). Proof: We have shown in (2.7) that Γ is symmetric, and that the first expression in the above displayed formulae is the conductor of. From the definition of ǫ it follows immediately that the second and third expression are equal, and it is a trivial matter of arithmetic to show that the first and the second expression are equal. (2.11) Corollary: [ Lipman ] We have c = i=2 r e i ( )(e i ( ) 1). i=0 Proof: Let {x 1, y 1 } be the regular system of parameters for R 1 as constructed in (2.2). We consider the second expression for the conductor given in (2.10), and compare it with the corresponding expression in HN( R1 ; x 1, y 1 ); the difference equals e 0 ( )(e 0 ( ) 1). References [1] Angermüller, G., Die Wertehalbgruppe einer ebenen irreduziblen algebroiden Kurve. Math. Z. 153 (1977), 267 282. [2] Campillo, A., Algebroid curves in positive characteristic. LNM 813. Springer, Berlin - Heidelberg - New York 1980. [3] Greco, S. and Kiyek, K., General Elements of Complete Ideals and Valuations Centered at a Two-dimensional Regular Local Ring. In: Algebra, Arithmetic and Geometry with Applications, 381 455. Springer, Berlin - Heidelberg - New York 2004. [4] Kiyek, K., Multiplicity sequence and value semigroup. Manuscripta Math. 37 (1982), 211 216.

8 [5] Kiyek, K. and Vicente J. L., Resolution of Curve and Surface Singularities in Characteristic Zero. Kluwer, Dordrecht 2004. [6] Lipman, J., On complete ideals in regular local rings. In: Algebraic geometry and commutative algebra, Vol. I, 203 231. Kinokuniya, Tokyo 1988. [7] Lipman, J., Proximity inequalities for complete ideals in two-dimensional regular local rings. In: Commutative algebra: Syzygies, multiplicities, and birational algebra (South Hadley, MA, 1992), Contemp. Math. 159 (1992), 293 306. [8] Lipman, J., Adjoints and polars of simple complete ideals in two-dimensional regular local rings. Bull. Soc. Math. Belgique 45 (1993), 223 244. [9] Noh, S., The Value Semigroup of Prime Divisors of the Second Kind in 2-dimensional Regular Local Rings. Trans. Amer. Math. Soc. 336 (1993), 607 619. [10] Russell, P., Hamburger-Noether expansions and approximate roots of polynomials. Manuscripta Math. 31 (1980), 25 95. [11] Spivakovsky, M., Valuations in Function Fields of Surfaces. Amer. J. Math. 112 (1990), 107 156. [12] Zariski, O. and Samuel, P., Commutative Algebra, vol. II. Van Nostrand, Princeton 1960.