Tunable Room Temp. Skyrmions in Ir/Fe/Co/Pt Multilayers

Similar documents
Skyrmions in symmetric bilayers

Skyrmion à la carte. Bertrand Dupé. Skyrmion à la carte Bertrand Dupé. Institute of Physics, Johannes Gutenberg University of Mainz, Germany

Room temperature chiral magnetic skyrmions in ultrathin Pt/Co/MgO nanostructures

Manipulation of interface-induced Skyrmions studied with STM

Skyrmions à la carte

REPORT ON D1.1 (LEAD: PSI)

Skyrmions in quasi-2d chiral magnets

Supplementary Figure 1. Magnetic domain configuration under out-of-plane field application. (a), (b) MTXM images showing magnetic domain state

Ferromagnetism and Anomalous Hall Effect in Graphene

Tailoring Spin-Orbit effects in graphene for Spin-Orbitronic applications Rodolfo Miranda MINECO ANR ANR MIUR

How to measure the local Dzyaloshinskii Moriya Interaction in Skyrmion Thin Film Multilayers

Nanoscale magnetic imaging with single spins in diamond

Determination of the Interfacial Dzyaloshinskii-Moriya Interaction (idmi) in the Inversion Symmetry Broken Systems

X-ray Imaging and Spectroscopy of Individual Nanoparticles

Tuning magnetic anisotropy, Kondo screening and Dzyaloshinskii-Moriya interaction in pairs of Fe adatoms

Mesoscopic Spintronics

Skyrmions in magnetic materials Download slides from:

Symmetry breaking in spin spirals and skyrmions by in-plane and canted magnetic fields

Imprinting domain/spin configurations in antiferromagnets. A way to tailor hysteresis loops in ferromagnetic-antiferromagnetic systems

SUPPLEMENTARY INFORMATION

Skyrmion Dynamics and Topological Transport Phenomena

Skyrmion Dynamics in Thin Films of Chiral Magnets

Stability of skyrmion lattices and symmetries of Dzyaloshinskii-Moriya magnets. Alexey A. Kovalev Utkan Güngördü Rabindra Nepal

Influence of Size on the Properties of Materials

Theory of isolated magnetic skyrmions: From fundamentals to room temperature applications

Magnetic bubblecade memory based on chiral domain walls

Fabrication and Measurement of Spin Devices. Purdue Birck Presentation

MatSci 224 Magnetism and Magnetic. November 5, 2003

spin orbit torques arxiv: v1 [cond-mat.mtrl-sci] 4 May 2017 Technology, Cambridge, Massachusetts 02139, USA 36, Berlin, Germany

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

Magnetoresistance due to Domain Walls in Micron Scale Fe Wires. with Stripe Domains arxiv:cond-mat/ v1 [cond-mat.mes-hall] 9 Mar 1998.

Wide-Range Probing of Dzyaloshinskii Moriya Interaction

Physics in Quasi-2D Materials for Spintronics Applications

Center for Integrated Nanostructure Physics (CINAP)

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

Supplementary Figures

Chapter 103 Spin-Polarized Scanning Tunneling Microscopy

Direct observation of the skyrmion Hall effect

arxiv: v1 [cond-mat.mtrl-sci] 18 Apr 2016

X-Ray Spectro-Microscopy Joachim Stöhr Stanford Synchrotron Radiation Laboratory

(a) (b) Supplementary Figure 1. (a) (b) (a) Supplementary Figure 2. (a) (b) (c) (d) (e)

An alternative to the topological interpretation of the transverse resistivity anomalies in SrRuO 3

0.002 ( ) R xy

Preparation, Structural Characterization, and Dynamic Properties Investigation of Permalloy Antidot Arrays

Cedex, France. 1 Department of Condensed Matter Physics, Brookhaven National Laboratory, Upton, New York 11973, USA

Magnetic skyrmions. See also talks online by Tokura, Tchernyshyov. Institute for Theoretical Physics Utrecht University

Photon Energy Dependence of Contrast in Photoelectron Emission Microscopy of Si Devices

Scanning Tunneling Microscopy: theory and examples

Self-organized growth on the Au(111) surface

X-Ray Magnetic Circular Dichroism: basic concepts and applications for 3d transition metals. Stefania PIZZINI Laboratoire Louis Néel CNRS- Grenoble

arxiv: v1 [cond-mat.mes-hall] 29 Nov 2016

Enhanced spin orbit torques by oxygen incorporation in tungsten films

Supplementary Figure 1: Fitting of the x-ray diffraction data by FULLPROF method. (a) O-LPCMO and (b) R-LPCMO. The orange (red) line is the x-ray

Nanostrukturphysik (Nanostructure Physics)

Spin injection and absorption in antiferromagnets

Room temperature spin-orbit torque switching induced by a

Spin-transfer torques and emergent electrodynamics in magnetic Skyrmion crystals

SUPPLEMENTARY INFORMATION

Spin dynamics in Bi 2 Se 3 /ferromagnet heterostructures

8 Summary and outlook

Supplementary Figure 1 Experimental setup for crystal growth. Schematic drawing of the experimental setup for C 8 -BTBT crystal growth.

arxiv: v1 [cond-mat.mtrl-sci] 10 Apr 2017

MAGNETO-RESISTANCE AND INDUCED DOMAIN STRUCTURE IN TUNNEL JUNCTIONS

Outline. Introduction: graphene. Adsorption on graphene: - Chemisorption - Physisorption. Summary

QS School Summary

arxiv: v1 [cond-mat.mes-hall] 15 Feb 2017

SUPPLEMENTARY INFORMATION

Finite-temperature magnetism of ultrathin lms and nanoclusters PhD Thesis Booklet. Levente Rózsa Supervisor: László Udvardi

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System

Excitations and Interactions

Supplementary Figure 1 Representative sample of DW spin textures in a

ANGULAR DEPENDENCE OF MAGNETIC PROPERTIES IN Co/Pt MULTILAYERS WITH PERPENDICULAR MAGNETIC ANISOTROPY

Multiferroic skyrmions

Black phosphorus: A new bandgap tuning knob

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

Nucleation, stabilization and manipulation of magnetic skyrmions

Surfaces and Interfaces

Exchange bias in core/shell magnetic nanoparticles: experimental results and numerical simulations

Mapping Atomic Structure at Epitaxial Interfaces

Designing Graphene for Hydrogen Storage

Hidden Interfaces and High-Temperature Magnetism in Intrinsic Topological Insulator - Ferromagnetic Insulator Heterostructures

What so special about LaAlO3/SrTiO3 interface? Magnetism, Superconductivity and their coexistence at the interface

III-V nanostructured materials synthesized by MBE droplet epitaxy

Supplementary Figure 1

P. Khatua IIT Kanpur. D. Temple MCNC, Electronic Technologies. A. K. Majumdar, S. N. Bose National Centre for Basic Sciences, Kolkata

Spin Vortex Resonance in Non-planar Ferromagnetic Dots

Skyrmions and Anomalous Hall Effect in a Dzyaloshinskii-Moriya Magnet

Heusler compounds: Tunable materials with non trivial topologies. Claudia Felser

Ni 8 Cu n Ni 9. Lectue 4 Trilayers a prototype of multilayers. for FM1 and FM2 interlayer exchange coupling IEC, J inter

Compositional mapping of semiconductor quantum dots by X-ray photoemission electron microscopy

Self-Assembly of Two-Dimensional Organic Networks Containing Heavy Metals (Pb, Bi) and Preparation of Spin-Polarized Scanning Tunneling Microscope

Magnetism of Atoms and Nanostructures Adsorbed onto Surfaces

Temperature Dependence of the Diffusion. Coefficient of PCBM in Poly(3-hexylthiophene)

Techniques for inferring M at small scales

Atomic Resolution Interfacial Structure of Lead-free Ferroelectric

Recent developments in spintronic

Perpendicular MTJ stack development for STT MRAM on Endura PVD platform

Evolution of magnetic domain reversal with temperature in CoÕ Pt multilayers observed by magneto-optical Kerr imaging

Wouldn t it be great if

Energy Spectroscopy. Ex.: Fe/MgO

Transcription:

Tunable Room Temp. Skyrmions in Ir/Fe/Co/Pt Multilayers Anjan Soumyanarayanan Panagopoulos Group, NTU, Singapore Data Storage Institute, A*STAR, Singapore A.S. et al., arxiv:1606.06034 (2016)

Collaborators M. Raju Anthony Tan Alex Petrovic Bhartendu Satywali NTU, Singapore Films, Transport MFM Transport FMR Christos Panagopoulos DSI, Singapore Anibal Gonzalez Pin Ho Lisen Huang Shikun He Michael Tran Franck Ernult Micromagnetics Nanostructures FMR IHPC, Singapore DFT Calculations Amy Khoo Chee Kwan Gan LBL, USA X-Ray Microscopy Mi-Young Im Technion, Israel Low Temp MFM Alon Yagil Avior Almoalem Ophir Auslaender SERC PHAROS FUND NATIONAL RESEARCH FOUNDATION Data Storage Institute NTU Panagopoulos Group Singapore Ministry of Education 2

DMI & Skyrmions: Bulk Interface Magnetic Skyrmions Competition b/w Exchange & DMI B20 crystals: Bulk DMI Skyrmions o Predicted: Bogdanov, (1992) o Observed: Pfleiderer, Tokura, (2008 - ) Interfacial DMI FM / SOC interface generates DMI o Predicted: Fert (1990) o Observed: Bode/Wiesendanger (2007) Int. DMI can also stabilise skyrmions Pfleiderer Group, Munich (2011) Z.X. Yu, Nature 11 Fert, Nat Nano 13 3

Interfacial DMI Skyrmions Interfacial DMI Neel skyrmions A. Fert, Nat Nano 13 First Observations @ 4 K Pd/Fe/Ir (and Fe/Ir) w/ MBE SP-STM Imaging Pd/Fe/Ir, 8 K (SP-STM) Hamburg, Science 13 Multilayer Skyrmions @ RT Co/Pt based sputtered films XMCD-based techniques (STXM, MTXM, PEEM) RT Skyrmions (STXM) [Ir/Co/Pt] x10 [Ta/Co/Pt] x15 CNRS, PSI, BESSY Nat Nano 16 MIT, LBL, BESSY Nat Mat 16 4

Skyrmion Manipulation 4K: [Pd/Fe/Ir] RT: Ta/CFB/TaO x Nucleation & Deletion Hamburg, Science 13 Argonne, Science 15 RT: [Ir/Co/Pt] x10 RT: MgO/Co/Pt Confinement CNRS, PSI, BESSY Nat Nano 16 SPINTEC, Nat Nano 16 RT: [Ta/Co/Pt] x15 Dynamics Road to Skyrmion Memory? MIT, LBL, BESSY, Nat Mat 16 5

The Path To Functional Skyrmions Vary Magnetic Interactions (e.g. D, K) Tune Skyrmion Properties Size: Towards 10 nm @ RT Stability: Isolated vs Lattice Density Sampaio, Nat Nano 16 Tabletop Detection & Manipulation Electrical Detection Imaging in Device Configuration von Bergmann, Science 15 6

Outline Multilayer Stack w/ Tunable Interactions Ir/Fe(x)/Co(y)/Pt Stack & DFT Calculations Skyrmion Imaging & Electrical Detection MTXM & MFM Imaging Topological Hall Effect Tuning Skyrmion Properties Fe/Co Composition Mag. Interactions Tuning Sk. Stability, Size & Density Thermodynamic Stability & Confinement Exploring Skyrmion Phase Diagram (H,T) Confinement Effects 7

DMI: Interfaces Trilayers FM/SOC Interface DMI Skyrmions Single interfaces low T C A. Fert, Nat Nano 13 Co-based Trilayers tot Co/Pt: Strong DMI (d Co/Pt +2 mev) Co/Ta, Co/Ir: Weak DMI ( d tot < 0.5 mev) Asymmetric trilayer (e.g. Ir/Co/Pt) tot d Ir/Co/Pt 2 mev Moreau-Luchaire, Nat Nano 16 How to enhance DMI? 8

4 Layer Stack for Tunable DMI Use 2 Large DMI Interfaces? Co/Pt: Large, Pos. DMI tot (d Co/Pt +2 mev, H.X. Yang, PRL 15) Fe/Ir: Large, Neg. DMI tot -2 mev, B. Dupe, Nat Comms 15, 16) (d Fe/Ir Combine into 4-Layer Stack w/ larger DMI? Ir / Fe / Co / Pt Multilayer Stack arxiv:1606.06034 9

Ir/Fe/Co/Pt: DMI Calculations Ir/Fe/Co/Pt: Is DMI enhanced w.r.t. Ir/Co/Pt? DFT Calculation of DMI Stack: Ir[3] / Fe[a] / Co[b] / Pt[3] d tot = E CW E CCW /m H.X. Yang, PRL 15 d tot for varying Fe[a]/Co[b] H.X. Yang, PRL 16 Comparison w/ Fe[0]/Co[3] (Ir/Co/Pt) arxiv:1606.06034 10

Ir/Fe/Co/Pt: DMI Enhancement Fe[1]/Co[2] vs. Fe[0]/Co[3] DMI can be substantially enhanced Enhancement wrt. Ir/Co[3]/Pt persists even for ~ 2x FM thickness Similar reported results for Fe[1]/Co[2] Fe[a]/Co[b] Tuning D, K D dome shape K monotonic decrease H.X. Yang, arxiv:1603.01847 ( 16) arxiv:1606.06034 H.X. Yang, arxiv:1603.01847 ( 16) 11

Ir/Fe/Co/Pt: Film Properties Sputtered Film Deposition Chiron System (Bestec GmbH, P ~ 10-8 torr) Sub-monolayer precision Fe (x): 0-6 Å, Co (y): 4-6 Å X-ray: Si 3 N 4 membranes, 20x repeats 20 x Structural Properties (111) texture w/ sub-nm roughness XRR fringes sharp interfaces Magnetic Properties Sheared Hysteresis Loops Zero Field: Labyrinthine Domains arxiv:1606.06034 12

Ir/Fe/Co/Pt: Magnetic Microscopy MTXM (full field) XMCD contrast M z (r) XM1 (ALS, Berkeley), 25 nm resolution RT, OP field: ±250 mt Films on Si 3 N 4 membranes MFM (scanning probe) Deflection M z r stray field Park Systems, 30 nm ULM tip RT, in air, OP field: ±200 mt Films on SiO 2 substrates P. Fischer, Z. Phys B ( 98) Shimadzu Inc. 13

Setup Fe(3)/Co(6): MTXM @ Co Edge Co Edge: 778 ev Saturate @ +250 mt, down sweep Features Co: -100 mt Co: +100 mt Scale Bar: 500 nm +H: Round-ish, < 100 nm 0: Stripe-like -H: Round-ish, < 100 nm Co: 0 mt high low 14

Setup Fe(3)/Co(6): MTXM @ Fe Edge Fe Edge: 708 ev Saturate @ +250 mt, down sweep Features Fe: -100 mt Fe: +100 mt Scale Bar: 500 nm +H: Round-ish, < 100 nm 0: Stripe-like -H: Round-ish, < 100 nm Fe: 0 mt high low 15

Setup Fe(3)/Co(6): MFM MFM Saturate @ +250 mt, down sweep Features Fe: -100 mt Fe: +100 mt Scale Bar: 500 nm +H: Round-ish, < 100 nm 0: Stripe-like -H: Round-ish, < 100 nm Fe: 0 mt high low 16

Fe(3)/Co(6): Comparisons Domain Periodicity Fourier Analysis of Magnetic Contrast MTXM (Fe/Co) agree to ~10 nm MFM & MTXM agree to ~ 15% (SiO 2 vs. Si 3 N 4 substrates) Bubble Width 2D isotropic Gaussian fit Raw widths (no deconvolution) overestimates bubble size 60-75 nm, reduces with increasing H MTXM (Fe/Co) agree to < 5% MTXM & MFM agree to < 10% 17

Ir/Fe/Co/Pt: Bubbles Skyrmions? Ir/Fe/Co/Pt: Bubble Properties Size: d meas ~ 40 100 nm (as measured) Size: d meas reduces with H Density: increases w/ H (< H S ) D est /A est ~ 15-20% (later ) Skyrmions? Similar to Ir/Co/Pt and Ta/Co/Pt results Neel skyrmions from interfacial DMI Ongoing: Image in-plane spin texture with Lorentz TEM arxiv:1606.06034 Woo, Nat Mat 16 Moreau-Luchaire, Nat Nano 16 18

Magneto-transport on Ir/Fe/Co/Pt Transport Expts J exc 10 4 A/m 2, sub-nv resolution Field Offset removal for M H & R(H) ρ xx : constant to 0.05% I exc V xy ρ xy : fit using AHE form ρ fit xy H = R 0 H + M H A ρ xx (H) + B ρ2 xx H Residual Hall Signal ρ TH xy H = ρ xy H ρ fit xy H V xx arxiv:1606.06034 19

Residual Hall Signal Topological Hall Effect ρ TH xy H = ρ xy H ρ fit xy H Consistent with skyrmion phase Topological Hall effect Berry Phase accumulated by electrons traversing skyrmions Max ρ TH xy (~ 30 nω cm) similar to B20 Films S.X. Huang, PRL 12 N.A. Porter, PRB 14 arxiv:1606.06034 20

Quantifying Magnetic Interactions Measure Anisotropy, K (M(H)) Estimate DMI, D & Exchange, A ZF domain periodicity, MFM vs. μ-magnetics simulations C. Moreau-Luchaire, Nat Nano ( 16) S. Woo, Nat Mater ( 16) μ-magnetics: mumax 3, 2 μm size, 4 nm mesh, vary D & A 2D χ 2 fit to get D est and A est Fit Results A est 12 pj/m (across Fe/Co) D est 1.6 2.3 mj/m 2 MFM, 0 T Simulation, 0 T high low 21

DMI Estimation Tuning DMI w/ Fe(x)/Co(y) A est 12 pj/m (across Fe/Co) Ir/Co(6)/Pt: D est ~ 1.6 mj/m 2 consistent w/ CNRS results Ir/Fe(4)/Co(4)/Pt: D est ~2. 3 mj/m 2 enhanced by ~ 50% Dome-shaped D est does not track K eff Tunable Parameters Continuous Tuning of D est and K How does this affect skyrmions? 22

Fe(x)/Co(y): Skyrmion Properties Fe(2)/Co(6) D est ~1.7 mj/m 2, K eff ~0.25 MJ/m 3 Large skyrmions, isolated config. Fe(4)/Co(6) D est ~1.9 mj/m 2, K eff ~0.05 MJ/m 3 Small skyrmions, disordered lattice Skyrmion Lattice Stability D c = 4 A K eff /π S. Rohart, PRB ( 13) FFT 23

Fe(x)/Co(y): Skyrmion Density D/D c (K eff ) skyrmion density Isolated: n Sk ~ 5 10 /μm 2 Lattice: n Sk ~ 40 60 /μm 2 n Sk can be varied by 10x! 24

Fe(x)/Co(y): Skyrmion Size D > D c d Sk reduces as D increases Fe(2)/Co(6): 75-100 nm (D~1.7 mj/m 2 ) Fe(4)/Co(6): 50-60 nm (D~1.9 mj/m 2 ) Fe(4)/Co(4): 40-55 nm (D~2. 3 mj/m 2 ) d Sk can be tuned by ~ 2x d Sk includes MFM tip size (~ 30 nm) real skyrmion size may be smaller! 25

Skyrmions in Nanodots Nano-dot Fabrication EBL (10 nm) and IB Etching Dot Sizes: 0.1 3 μm H = 0 0.6 H S 0.5 μm Nanodots Scale Bar: 0.1 μm 26

Fe(x)/Co(y): Confinement Effects Fe(x)/Co(y): Sk. Density Fe(4)/Co(6): n Sk (H) indep. of dot size Fe(2)/Co(6): n Sk (H) higher for 0.5 μm Consistent w/ CNRS, SPINTEC results Enhanced skyrmion nucleation in geometrically confined structures Confine skyrmions at zero field? H = 0 500 nm 400 nm 300 nm 27

Conclusions Multilayer Stack w/ Tunable Interactions Ir/Fe(x)/Co(y)/Pt Multilayer Stack Skyrmion Imaging & Electrical Detection MTXM & MFM Imaging of Skyrmions Topological Hall Effect Detection Tuning Skyrmion Properties Enhanced D (~ 2.3 mj/m 2 ) & Varying K Sk. Stability (Isolated / Lattice), Density (10x), and Size (40-100 nm) Thermodynamic Stability & Confinement Skyrmion Phase Boundary, Anisotropy Effects Zero Field Skyrmions: Nucleation & Confinement 28