Markov operators, classical orthogonal polynomial ensembles, and random matrices

Similar documents
Exponential tail inequalities for eigenvalues of random matrices

Universality of distribution functions in random matrix theory Arno Kuijlaars Katholieke Universiteit Leuven, Belgium

COMPLEX HERMITE POLYNOMIALS: FROM THE SEMI-CIRCULAR LAW TO THE CIRCULAR LAW

Concentration Inequalities for Random Matrices

Painlevé Representations for Distribution Functions for Next-Largest, Next-Next-Largest, etc., Eigenvalues of GOE, GUE and GSE

DEVIATION INEQUALITIES ON LARGEST EIGENVALUES

A Remark on Hypercontractivity and Tail Inequalities for the Largest Eigenvalues of Random Matrices

o f P r o b a b i l i t y Vol. 9 (2004), Paper no. 7, pages Journal URL ejpecp/

RANDOM MATRIX THEORY AND TOEPLITZ DETERMINANTS

Random Matrix: From Wigner to Quantum Chaos

Central Limit Theorems for linear statistics for Biorthogonal Ensembles

Airy and Pearcey Processes

Beyond the Gaussian universality class

Near extreme eigenvalues and the first gap of Hermitian random matrices

Lecture I: Asymptotics for large GUE random matrices

References 167. dx n x2 =2

Triangular matrices and biorthogonal ensembles

A determinantal formula for the GOE Tracy-Widom distribution

Concentration inequalities: basics and some new challenges

Extreme eigenvalue fluctutations for GUE

Determinantal point processes and random matrix theory in a nutshell

JINHO BAIK Department of Mathematics University of Michigan Ann Arbor, MI USA

Lectures 6 7 : Marchenko-Pastur Law

Eigenvalue variance bounds for Wigner and covariance random matrices

Update on the beta ensembles

Universal Fluctuation Formulae for one-cut β-ensembles

Local semicircle law, Wegner estimate and level repulsion for Wigner random matrices

A Note on the Central Limit Theorem for the Eigenvalue Counting Function of Wigner and Covariance Matrices

Bulk scaling limits, open questions

ORTHOGONAL POLYNOMIALS

A Note on Universality of the Distribution of the Largest Eigenvalues in Certain Sample Covariance Matrices

Large deviations of the top eigenvalue of random matrices and applications in statistical physics

Fluctuations of random tilings and discrete Beta-ensembles

On the concentration of eigenvalues of random symmetric matrices

Universality of local spectral statistics of random matrices

Differential Equations for Dyson Processes

Random matrices and determinantal processes

NUMERICAL CALCULATION OF RANDOM MATRIX DISTRIBUTIONS AND ORTHOGONAL POLYNOMIALS. Sheehan Olver NA Group, Oxford

Universality for random matrices and log-gases

Fluctuations of random tilings and discrete Beta-ensembles

1 Tridiagonal matrices

Free Meixner distributions and random matrices

Statistical Inference and Random Matrices

MATRIX INTEGRALS AND MAP ENUMERATION 2

Fluctuations from the Semicircle Law Lecture 4

The Tracy-Widom distribution is not infinitely divisible.

Maximal height of non-intersecting Brownian motions

Second Order Freeness and Random Orthogonal Matrices

Free Probability and Random Matrices: from isomorphisms to universality

From the mesoscopic to microscopic scale in random matrix theory

Random matrices: Distribution of the least singular value (via Property Testing)

Universal phenomena in random systems

Wigner s semicircle law

Fluctuations of the free energy of spherical spin glass

Comparison Method in Random Matrix Theory

Stochastic Differential Equations Related to Soft-Edge Scaling Limit

Distribution of Eigenvalues of Weighted, Structured Matrix Ensembles

Contraction Principles some applications

Eigenvalue PDFs. Peter Forrester, M&S, University of Melbourne

Free probabilities and the large N limit, IV. Loop equations and all-order asymptotic expansions... Gaëtan Borot

Integrable probability: Beyond the Gaussian universality class

Orthogonal polynomials with respect to generalized Jacobi measures. Tivadar Danka

ON THE CONVERGENCE OF THE NEAREST NEIGHBOUR EIGENVALUE SPACING DISTRIBUTION FOR ORTHOGONAL AND SYMPLECTIC ENSEMBLES

Fredholm determinant with the confluent hypergeometric kernel

Distributions on unbounded moment spaces and random moment sequences

Multiple orthogonal polynomials. Bessel weights

Convergence of spectral measures and eigenvalue rigidity

Random Matrices: Beyond Wigner and Marchenko-Pastur Laws

Insights into Large Complex Systems via Random Matrix Theory

STAT C206A / MATH C223A : Stein s method and applications 1. Lecture 31

On the Central Limit Theorem for the Eigenvalue Counting Function of Wigner and Covariance matrices

Semicircle law on short scales and delocalization for Wigner random matrices

The norm of polynomials in large random matrices

1 Intro to RMT (Gene)

Measures, orthogonal polynomials, and continued fractions. Michael Anshelevich

arxiv: v1 [cond-mat.stat-mech] 18 Aug 2008

Double contour integral formulas for the sum of GUE and one matrix model

Meixner matrix ensembles

The largest eigenvalues of the sample covariance matrix. in the heavy-tail case

Measures, orthogonal polynomials, and continued fractions. Michael Anshelevich

Orthogonal Polynomials, Perturbed Hankel Determinants. and. Random Matrix Models

Density of States for Random Band Matrices in d = 2

Rectangular Young tableaux and the Jacobi ensemble

Uniformly Random Lozenge Tilings of Polygons on the Triangular Lattice

Eigenvalues and Singular Values of Random Matrices: A Tutorial Introduction

Painlevé equations and orthogonal polynomials

Random walks in Beta random environment

Random Matrix Theory for the Wilson-Dirac operator

Valerio Cappellini. References

The circular law. Lewis Memorial Lecture / DIMACS minicourse March 19, Terence Tao (UCLA)

Duality, Statistical Mechanics and Random Matrices. Bielefeld Lectures

ORTHOGONAL POLYNOMIALS IN PROBABILITY THEORY ABSTRACTS MINI-COURSES

Geometric Dyson Brownian motion and May Wigner stability

DLR equations for the Sineβ process and applications

Numerical Methods for Random Matrices

Assessing the dependence of high-dimensional time series via sample autocovariances and correlations

Distributions on matrix moment spaces

MATRIX KERNELS FOR THE GAUSSIAN ORTHOGONAL AND SYMPLECTIC ENSEMBLES

arxiv: v3 [math-ph] 23 May 2017

FREE PROBABILITY THEORY

Transcription:

Markov operators, classical orthogonal polynomial ensembles, and random matrices M. Ledoux, Institut de Mathématiques de Toulouse, France 5ecm Amsterdam, July 2008

recent study of random matrix and random growth models

recent study of random matrix and random growth models new asymptotics common, non central, rate (mean) 1/3 universal limiting Tracy-Widom distribution

recent study of random matrix and random growth models new asymptotics common, non central, rate (mean) 1/3 universal limiting Tracy-Widom distribution random matrices, longest increasing subsequence, random growth models, last passage percolation... P. Forrester, C. Tracy, H. Widom, J. Baik, P. Deift, K. Johansson

invariant random matrix models

invariant random matrix models P(dX ) = 1 Z exp ( Tr ( v(x ) )) dx, v : R R X = X N real symmetric or Hermitian N N matrix

invariant random matrix models P(dX ) = 1 Z exp ( Tr ( v(x ) )) dx, v : R R X = X N real symmetric or Hermitian N N matrix v(x) = β x 2 /4 Gaussian Orthogonal (β = 1) Unitary (β = 2) Ensembles

invariant random matrix models P(dX ) = 1 Z exp ( Tr ( v(x ) )) dx, v : R R X = X N real symmetric or Hermitian N N matrix v(x) = β x 2 /4 Gaussian Orthogonal (β = 1) Unitary (β = 2) Ensembles joint law of the eigenvalues (λ N 1 λn N ) of X N

invariant random matrix models P(dX ) = 1 Z exp ( Tr ( v(x ) )) dx, v : R R X = X N real symmetric or Hermitian N N matrix v(x) = β x 2 /4 Gaussian Orthogonal (β = 1) Unitary (β = 2) Ensembles joint law of the eigenvalues (λ N 1 λn N ) of X N P N (dx) = 1 Z N (x) β N i=1 dµ(x i ), x = (x 1,..., x N ) R N N (x) = i<j (x i x j ), dµ(x) = e v(x) dx

random growth models directed last passage percolation

random growth models directed last passage percolation w ij, 1 i, j N, iid geometric random variables

random growth models directed last passage percolation w ij, 1 i, j N, iid geometric random variables W N = max π (i,j) π w ij π up/right paths from (1, 1) to (N, N)

random growth models directed last passage percolation w ij, 1 i, j N, iid geometric random variables W N = max π (i,j) π w ij π up/right paths from (1, 1) to (N, N) K. Johansson (2000)

random growth models directed last passage percolation w ij, 1 i, j N, iid geometric random variables W N = max π (i,j) π w ij π up/right paths from (1, 1) to (N, N) P ( W N t) = K. Johansson (2000) {max x i t+n 1} 1 Z N(x) 2 N dµ(x i ) i=1

random growth models directed last passage percolation w ij, 1 i, j N, iid geometric random variables W N = max π (i,j) π w ij π up/right paths from (1, 1) to (N, N) P ( W N t) = K. Johansson (2000) {max x i t+n 1} 1 Z N(x) 2 N dµ(x i ) i=1 µ({x}) = (1 q)q x, x N geometric distribution

law of (λ N 1,..., λ N N ) : PN (dx) = 1 Z N (x) β N i=1 dµ(x i )

law of (λ N 1,..., λ N N ) : PN (dx) = 1 Z N (x) β global regime : spectral measure N i=1 dµ(x i )

law of (λ N 1,..., λ N N ) : PN (dx) = 1 Z N (x) β global regime : spectral measure N i=1 dµ(x i ) large deviation asymptotics (every β)

law of (λ N 1,..., λ N N ) : PN (dx) = 1 Z N (x) β global regime : spectral measure N i=1 dµ(x i ) P N (dx) = 1 Z exp ( N v(x i ) + β i<j i=1 ) log x i x j dx

law of (λ N 1,..., λ N N ) : PN (dx) = 1 Z N (x) β global regime : spectral measure N i=1 dµ(x i ) P N (dx) = 1 Z exp ( N v(x i ) + β i<j i=1 ) log x i x j dx spectral measure : λn i = λ N i suitably normalized N µ N = 1 N i=1 δ bλ N i

law of (λ N 1,..., λ N N ) : PN (dx) = 1 Z N (x) β global regime : spectral measure N i=1 dµ(x i ) P N (dx) = 1 Z exp ( N v(x i ) + β i<j i=1 ) log x i x j dx spectral measure : λn i = λ N i suitably normalized µ N = 1 N N i=1 δ bλ N i equilibrium measure

law of (λ N 1,..., λ N N ) : PN (dx) = 1 Z N (x) β global regime : spectral measure N i=1 dµ(x i ) P N (dx) = 1 Z exp ( N v(x i ) + β i<j i=1 ) log x i x j dx spectral measure : λn i = λ N i suitably normalized µ N = 1 N δ bλ N N i i=1 equilibrium measure minimizer of 2 v dν β log x y dν(x)dν(y) weighted logarithmic potential theory

local regime : individual behavior (spacings, extreme values)

local regime : individual behavior (spacings, extreme values) β = 2 orthogonal polynomial method

local regime : individual behavior (spacings, extreme values) β = 2 orthogonal polynomial method P l, l N orthogonal polynomials for µ

local regime : individual behavior (spacings, extreme values) β = 2 orthogonal polynomial method P l, l N orthogonal polynomials for µ N (x) = C n det ( P l 1 (x k ) ) 1 k,l N

local regime : individual behavior (spacings, extreme values) β = 2 orthogonal polynomial method P l, l N orthogonal polynomials for µ N (x) 2 = C 2 n det 2( P l 1 (x k ) ) 1 k,l N

local regime : individual behavior (spacings, extreme values) β = 2 orthogonal polynomial method P l, l N orthogonal polynomials for µ N (x) 2 = C 2 n det 2( P l 1 (x k ) ) 1 k,l N P N (dx) = 1 Z N(x) 2 N i=1 dµ(x i)

local regime : individual behavior (spacings, extreme values) β = 2 orthogonal polynomial method P l, l N orthogonal polynomials for µ N (x) 2 = C 2 n det 2( P l 1 (x k ) ) 1 k,l N P N determinantal random point field structure

local regime : individual behavior (spacings, extreme values) β = 2 orthogonal polynomial method P l, l N orthogonal polynomials for µ N (x) 2 = C 2 n det 2( P l 1 (x k ) ) 1 k,l N P N determinantal random point field structure marginals of P N : determinants of the kernel K N (x, y) = N 1 l=0 P l (x)p l (y)

local regime : individual behavior (spacings, extreme values) β = 2 orthogonal polynomial method P l, l N orthogonal polynomials for µ N (x) 2 = C 2 n det 2( P l 1 (x k ) ) 1 k,l N P N determinantal random point field structure marginals of P N : determinants of the kernel K N (x, y) = N 1 l=0 P l (x)p l (y) orthogonal polynomial ensemble

(common) asymptotics of orthogonal polynomials universal local regime : spacings and edge behavior

(common) asymptotics of orthogonal polynomials universal local regime : spacings and edge behavior top edge behavior largest eigenvalue (particle) fluctuates at the rate (mean) 1/3 limiting Tracy-Widom distribution F TW

(common) asymptotics of orthogonal polynomials universal local regime : spacings and edge behavior top edge behavior largest eigenvalue (particle) fluctuates at the rate (mean) 1/3 limiting Tracy-Widom distribution F TW C. Tracy, H. Widom, P. Deift, X. Zhou, J. Baik, K. Johansson,. Kriecherbauer, K. McLaughlin, P. Miller, S. Venakides, M. Vanlessen, D. Gioev, P. Bleher, A. Its, A. Kuijlaars, M. Shcherbina, L. Pastur...

example : Gaussian Unitary Ensemble (GUE)

example : Gaussian Unitary Ensemble (GUE) dµ(x) = e x2 /2 dx 2π, K N Hermite kernel, λn i = λ N i / N

example : Gaussian Unitary Ensemble (GUE) dµ(x) = e x2 /2 dx 2π, K N Hermite kernel, λn i = λ N i / N spectral measure µ N = 1 N N i=1 δ bλ N 1 4 x i 2π 2 dx on ( 2, +2) Wigner semi-circle law

example : Gaussian Unitary Ensemble (GUE) dµ(x) = e x2 /2 dx 2π, K N Hermite kernel, λn i = λ N i / N spectral measure µ N = 1 N N i=1 δ bλ N 1 4 x i 2π 2 dx on ( 2, +2) Wigner semi-circle law largest eigenvalue λ N N

example : Gaussian Unitary Ensemble (GUE) dµ(x) = e x2 /2 dx 2π, K N Hermite kernel, λn i = λ N i / N spectral measure µ N = 1 N N i=1 δ bλ N 1 4 x i 2π 2 dx on ( 2, +2) Wigner semi-circle law largest eigenvalue λ N N / N 2

example : Gaussian Unitary Ensemble (GUE) dµ(x) = e x2 /2 dx 2π, K N Hermite kernel, λn i = λ N i / N spectral measure µ N = 1 N N i=1 δ bλ N 1 4 x i 2π 2 dx on ( 2, +2) Wigner semi-circle law largest eigenvalue λ N N / N 2 N 1/6[ λ N N 2 N ] F TW Tracy-Widom distribution

example : Gaussian Unitary Ensemble (GUE) dµ(x) = e x2 /2 dx 2π, K N Hermite kernel, λn i = λ N i / N spectral measure µ N = 1 N N i=1 δ bλ N 1 4 x i 2π 2 dx on ( 2, +2) Wigner semi-circle law largest eigenvalue λ N N / N 2 N 1/6[ λ N N 2 N ] F TW Tracy-Widom distribution ( F TW (s) = exp u = 2u 3 + xu s (x s)u(x) 2 dx Painlevé II equation ), s R

example : last passage percolation W N = max π (i,j) π w ij

example : last passage percolation W N = max π (i,j) π w ij µ geometric, K N Meixner kernel, λn i = λ N i /N

example : last passage percolation W N = max π (i,j) π w ij µ geometric, K N Meixner kernel, λn i = λ N i /N spectral measure µ N = 1 N N δ bλ N equilibrium measure on (a, b) i i=1

example : last passage percolation W N = max π (i,j) π w ij µ geometric, K N Meixner kernel, λn i = λ N i /N spectral measure µ N = 1 N N δ bλ N equilibrium measure on (a, b) i i=1 largest particle λ N N W N

example : last passage percolation W N = max π (i,j) π w ij µ geometric, K N Meixner kernel, λn i = λ N i /N spectral measure µ N = 1 N N δ bλ N equilibrium measure on (a, b) i i=1 largest particle λ N N W N/N b

example : last passage percolation W N = max π (i,j) π w ij µ geometric, K N Meixner kernel, λn i = λ N i /N spectral measure µ N = 1 N N δ bλ N equilibrium measure on (a, b) i i=1 largest particle λ N N W N/N b N 1/3[ W N bn ] F TW Tracy-Widom distribution K. Johansson (2000)

Markov operator tools

Markov operator tools for classical orthogonal polynomial ensembles of random matrix and random growth models

Markov operator tools for classical orthogonal polynomial ensembles of random matrix and random growth models non asymptotic results

Markov operator tools for classical orthogonal polynomial ensembles of random matrix and random growth models non asymptotic results spectral description (universal arcsine law)

Markov operator tools for classical orthogonal polynomial ensembles of random matrix and random growth models non asymptotic results spectral description (universal arcsine law) recurrence equations for moments (map enumeration)

Markov operator tools for classical orthogonal polynomial ensembles of random matrix and random growth models non asymptotic results spectral description (universal arcsine law) recurrence equations for moments (map enumeration) recurrence equations for real symmetric models (Gaussian Orthogonal Ensemble)

Markov operator tools for classical orthogonal polynomial ensembles of random matrix and random growth models non asymptotic results spectral description (universal arcsine law) recurrence equations for moments (map enumeration) recurrence equations for real symmetric models (Gaussian Orthogonal Ensemble) non asymptotic tail inequalities for largest eigenvalues (optimal rate)

classical orthogonal polynomial ensembles Hermite, Laguerre, Jacobi, Charlier, Meixner, Krawtchouk, Hahn

classical orthogonal polynomial ensembles Hermite, Laguerre, Jacobi, Charlier, Meixner, Krawtchouk, Hahn differential equations and operators

classical orthogonal polynomial ensembles Hermite, Laguerre, Jacobi, Charlier, Meixner, Krawtchouk, Hahn differential equations and operators mean spectral measure µ N = E ( 1 N i=1 δ λ N ) i

classical orthogonal polynomial ensembles Hermite, Laguerre, Jacobi, Charlier, Meixner, Krawtchouk, Hahn differential equations and operators mean spectral measure µ N = E ( 1 N i=1 δ λ N ) i f, µ N = f (x) 1 N K N(x, x) dµ(x) = f N 1 1 Pl 2 N dµ l=0

classical orthogonal polynomial ensembles Hermite, Laguerre, Jacobi, Charlier, Meixner, Krawtchouk, Hahn differential equations and operators mean spectral measure µ N = E ( 1 N i=1 δ λ N ) i f, µ N = f (x) 1 N K N(x, x) dµ(x) = f N 1 1 Pl 2 N dµ l=0 example : Gaussian Unitary Ensemble (GUE)

classical orthogonal polynomial ensembles Hermite, Laguerre, Jacobi, Charlier, Meixner, Krawtchouk, Hahn differential equations and operators mean spectral measure µ N = E ( 1 N i=1 δ λ N ) i f, µ N = f (x) 1 N K N(x, x) dµ(x) = f N 1 1 Pl 2 N dµ l=0 example : Gaussian Unitary Ensemble (GUE) P l, l N Hermite polynomials for dµ(x) = e x2 /2 dx 2π normalized in L 2 (µ)

f, µ N = f N 1 1 Pl 2 N dµ l=0

f, µ N = f N 1 1 Pl 2 N dµ l=0 preliminary investigation : measure P 2 N dµ

f, µ N = f N 1 1 Pl 2 N dµ l=0 preliminary investigation : measure P 2 N dµ Laplace transform : ϕ(t) = e tx P 2 N dµ, t R

f, µ N = f N 1 1 Pl 2 N dµ l=0 preliminary investigation : measure P 2 N dµ Laplace transform : ϕ(t) = e tx P 2 N dµ, t R Hermite operator : Lf = f x f

f, µ N = f N 1 1 Pl 2 N dµ l=0 preliminary investigation : measure P 2 N dµ Laplace transform : ϕ(t) = e tx P 2 N dµ, t R Hermite operator : Lf = f x f Gaussian integration by parts : f ( Lg)dµ = f g dµ

f, µ N = f N 1 1 Pl 2 N dµ l=0 preliminary investigation : measure P 2 N dµ Laplace transform : ϕ(t) = e tx P 2 N dµ, t R Hermite operator : Lf = f x f Gaussian integration by parts : f ( Lg)dµ = f g dµ LP N = N P N eigenvectors

Laplace transform : ϕ(t) = e tx P 2 N dµ second order differential equation tϕ + ϕ t(t 2 + 4N + 2)ϕ = 0

Laplace transform : ϕ(t) = e tx P 2 N dµ second order differential equation tϕ + ϕ t(t 2 + 4N + 2)ϕ = 0 under the GUE scaling : t t/ N ( λ N i = λ N i / N)

Laplace transform : ϕ(t) = e tx P 2 N dµ second order differential equation tϕ + ϕ t(t 2 + 4N + 2)ϕ = 0 under the GUE scaling : t t/ N ( λ N i = λ N i / N) limiting differential equation t Φ + Φ 4t Φ = 0

Laplace transform : ϕ(t) = e tx P 2 N dµ second order differential equation tϕ + ϕ t(t 2 + 4N + 2)ϕ = 0 under the GUE scaling : t t/ N ( λ N i = λ N i / N) limiting differential equation t Φ + Φ 4t Φ = 0 Φ Laplace transform of the arcsine law dx π 4 x 2 on ( 2, +2)

common behavior, with the limiting arcsine law for the classical orthogonal polynomials of (normalized) measures P 2 N dµ

common behavior, with the limiting arcsine law for the classical orthogonal polynomials of (normalized) measures P 2 N dµ continuous variable : Hermite, Laguerre, Jacobi

common behavior, with the limiting arcsine law for the classical orthogonal polynomials of (normalized) measures P 2 N dµ continuous variable : Hermite, Laguerre, Jacobi discrete variable : Charlier, Meixner, Krawtchouk, Hahn

common behavior, with the limiting arcsine law for the classical orthogonal polynomials of (normalized) measures P 2 N dµ continuous variable : Hermite, Laguerre, Jacobi discrete variable : Charlier, Meixner, Krawtchouk, Hahn varying parameters (in N)

common behavior, with the limiting arcsine law for the classical orthogonal polynomials of (normalized) measures P 2 N dµ continuous variable : Hermite, Laguerre, Jacobi discrete variable : Charlier, Meixner, Krawtchouk, Hahn varying parameters (in N) compact case : A. Maté, P. Nevai, V. Totik (1985)

spectral measure : averaging procedure

spectral measure : averaging procedure GUE E ( f, µ N ) = 1 N N 1 l=0 ( ) l f N x Pl 2 dµ l

spectral measure : averaging procedure GUE E ( f, µ N ) = 1 N N 1 l=0 ( ) l f N x Pl 2 dµ l µ N = 1 N N i=1 δ bλ N i U ξ U uniform, ξ arcsine, independent

spectral measure : averaging procedure GUE E ( f, µ N ) = 1 N N 1 l=0 ( ) l f N x Pl 2 dµ l µ N = 1 N N i=1 δ bλ N i U ξ U uniform, ξ arcsine, independent U ξ semi-circle law on ( 2, +2)

spectral measure : averaging procedure GUE E ( f, µ N ) = 1 N N 1 l=0 ( ) l f N x Pl 2 dµ l µ N = 1 N N i=1 δ bλ N i U ξ U uniform, ξ arcsine, independent U ξ semi-circle law on ( 2, +2) Meixner example (µ geometric) : equilibrium measure

example : last passage percolation W N = max π (i,j) π w ij µ geometric, K N Meixner kernel, λn i = λ N i /N spectral measure µ N = 1 N N δ bλ N equilibrium measure on (a, b) i i=1 largest particle λ N N W N/N b N 1/3[ W N bn ] F TW Tracy-Widom distribution K. Johansson (2000)

spectral measure : averaging procedure GUE E ( f, µ N ) = 1 N N 1 l=0 ( ) l f N x Pl 2 dµ l µ N = 1 N N i=1 δ bλ N i U ξ U uniform, ξ arcsine, independent U ξ semi-circle law on ( 2, +2) Meixner example (µ geometric) : equilibrium measure

spectral measure : averaging procedure GUE E ( f, µ N ) = 1 N N 1 l=0 ( ) l f N x Pl 2 dµ l µ N = 1 N N i=1 δ bλ N i U ξ U uniform, ξ arcsine, independent U ξ semi-circle law on ( 2, +2) Meixner example (µ geometric) : equilibrium measure 1 ( [ ] ) qu(1 + U) ξ + U + q(1 + U) 1 q

moment recursion formula

moment recursion formula E ( e t Tr(X N ) ) = ψ(t) = N 1 e tx l=0 P 2 l dµ, t R differential equation

moment recursion formula E ( e t Tr(X N ) ) = ψ(t) = N 1 e tx l=0 P 2 l dµ, t R differential equation GUE tψ + 3ψ t(t 2 + 4N)ψ = 0 U. Haagerup, S. Thorbjørnsen (2003)

moment recursion formula E ( e t Tr(X N ) ) = ψ(t) = N 1 e tx l=0 P 2 l dµ, t R differential equation GUE tψ + 3ψ t(t 2 + 4N)ψ = 0 U. Haagerup, S. Thorbjørnsen (2003) recurrence equation on moments ( E Tr ( (X N ) p ) ) = N 1 x p l=0 P 2 l dµ, p N

( ap N = E Tr ( (X N ) 2p ) ), X N GUE three term recurrence equation (p + 1)a N p = (4p 2)Na N p 1 + (p 1)(2p 1)(2p 3)aN p 2 J. Harer, D. Zagier (1986)

( ap N = E Tr ( (X N ) 2p ) ), X N GUE three term recurrence equation (p + 1)a N p = (4p 2)Na N p 1 + (p 1)(2p 1)(2p 3)aN p 2 J. Harer, D. Zagier (1986) map enumeration (Wick products)

( ap N = E Tr ( (X N ) 2p ) ), X N GUE three term recurrence equation (p + 1)a N p = (4p 2)Na N p 1 + (p 1)(2p 1)(2p 3)aN p 2 J. Harer, D. Zagier (1986) map enumeration (Wick products) a N p = g 0 ε g (p) N p+1 2g genus series (oriented case)

( ap N = E Tr ( (X N ) 2p ) ), X N GUE three term recurrence equation (p + 1)a N p = (4p 2)Na N p 1 + (p 1)(2p 1)(2p 3)aN p 2 J. Harer, D. Zagier (1986) map enumeration (Wick products) a N p = g 0 ε g (p) N p+1 2g genus series (oriented case) ε 0 (p) Catalan numbers

Markov operator technology similar recursion formulas for the classical orthogonal polynomial ensembles

Markov operator technology similar recursion formulas for the classical orthogonal polynomial ensembles continuous variable : Hermite, Laguerre, Jacobi

Markov operator technology similar recursion formulas for the classical orthogonal polynomial ensembles continuous variable : Hermite, Laguerre, Jacobi discrete variables : Charlier, Meixner, Krawtchouk, Hahn explicit expressions for the (factorial) moments

Gaussian Orthogonal Ensemble β = 1

Gaussian Orthogonal Ensemble β = 1 P N (dx) = 1 Z N (x) N dµ(x i ), x = (x 1,..., x N ) R N i=1 dµ(x) = e x2 /2 dx 2π

Gaussian Orthogonal Ensemble β = 1 P N (dx) = 1 Z N (x) N dµ(x i ), x = (x 1,..., x N ) R N i=1 dµ(x) = e x2 /2 dx 2π Pfaffian instead of determinant

Gaussian Orthogonal Ensemble β = 1 P N (dx) = 1 Z N (x) N dµ(x i ), x = (x 1,..., x N ) R N i=1 dµ(x) = e x2 /2 dx 2π Pfaffian instead of determinant limiting spectral distribution : Wigner semi-circle law Tracy-Widom edge asymptotics

moment recursion formula?

moment recursion formula? mean spectral measure ( E Tr ( f (X N ) )) = f (x) µ N GOE(x)dµ(x)

moment recursion formula? mean spectral measure ( E Tr ( f (X N ) )) = f (x) µ N GOE(x)dµ(x) P l, l N Hermite polynomials µ N GOE = N 1 Pl 2 l=0

moment recursion formula? mean spectral measure ( E Tr ( f (X N ) )) = f (x) µ N GOE(x)dµ(x) P l, l N Hermite polynomials µ N GOE = N 1 l=0 P 2 l + ex2 /4 P N 1 e x 2 /4 P N 1 dµ 1 N odd πn + /4 8 ex2 P N 1 sgn (x y) e x2 /4 (y)p N (y)dµ(y)

Markov operator tools : differential equation on the Laplace transform of the spectral measure

Markov operator tools : differential equation on the Laplace transform of the spectral measure b N p moment recursion formula ( = E Tr ( (X N ) 2p ) ), p N

Markov operator tools : differential equation on the Laplace transform of the spectral measure b N p moment recursion formula ( = E Tr ( (X N ) 2p ) ), p N recursion formula coupled with the moments a N p of the GUE b N p = (4N 2)b N p 1 + 4(2p 2)(2p 3)b N p 2 + a N p (4N 3)a N p 1 (2p 2)(2p 3)a N p 2

effective values a0 N = N a1 N = N 2 GUE a2 N = 2N 3 + N a3 N = 5N 4 + 10N 2 a N 4 = 14N 5 + 70N 3 + 21N b0 N = N b1 N = N 2 + N GOE b2 N = 2N 3 + 5N 2 + 5N b3 N = 5N 4 + 22N 3 + 52N 2 + 41N b4 N = 14N 5 + 93N 4 + 374N 3 + 690N 2 + 509N

b N p ( = E Tr ( (X N ) 2p ) ), X N GOE recursion formula coupled with the moments a N p of the GUE b N p = (4N 2)b N p 1 + 4(2p 2)(2p 3)b N p 2 + a N p (4N 3)a N p 1 (2p 2)(2p 3)a N p 2

b N p ( = E Tr ( (X N ) 2p ) ), X N GOE recursion formula coupled with the moments a N p of the GUE b N p = (4N 2)b N p 1 + 4(2p 2)(2p 3)b N p 2 + a N p (4N 3)a N p 1 (2p 2)(2p 3)a N p 2 b N p five term recurrence equation

b N p ( = E Tr ( (X N ) 2p ) ), X N GOE recursion formula coupled with the moments a N p of the GUE b N p = (4N 2)b N p 1 + 4(2p 2)(2p 3)b N p 2 + a N p (4N 3)a N p 1 (2p 2)(2p 3)a N p 2 b N p five term recurrence equation closed form : I. Goulden, D. Jackson (1997)

b N p ( = E Tr ( (X N ) 2p ) ), X N GOE recursion formula coupled with the moments a N p of the GUE b N p = (4N 2)b N p 1 + 4(2p 2)(2p 3)b N p 2 + a N p (4N 3)a N p 1 (2p 2)(2p 3)a N p 2 b N p five term recurrence equation closed form : I. Goulden, D. Jackson (1997) map enumeration : unoriented case

b N p ( = E Tr ( (X N ) 2p ) ), X N GOE recursion formula coupled with the moments a N p of the GUE b N p = (4N 2)b N p 1 + 4(2p 2)(2p 3)b N p 2 + a N p (4N 3)a N p 1 (2p 2)(2p 3)a N p 2 b N p five term recurrence equation closed form : I. Goulden, D. Jackson (1997) map enumeration : unoriented case duality with Symplectic Ensemble (β = 4)

recursion formulas lead to sharp moment bounds

recursion formulas lead to sharp moment bounds Gaussian Unitary Ensemble (GUE) three term recurrence equation

recursion formulas lead to sharp moment bounds Gaussian Unitary Ensemble (GUE) three term recurrence equation ( E Tr ( (X N ) 2p)) C (4N) p e Cp3 /N 2, p 3 N 2

recursion formulas lead to sharp moment bounds Gaussian Unitary Ensemble (GUE) three term recurrence equation ( E Tr ( (X N ) 2p)) C (4N) p e Cp3 /N 2, p 3 N 2 similar bounds for classical orthogonal polynomial ensembles (β = 2) Gaussian Orthogonal Ensemble (GOE) (β = 1)

non asymptotic small deviation inequalities

non asymptotic small deviation inequalities P ( λ N N 2 N + s N 1/6) F TW (s), s R

non asymptotic small deviation inequalities P ( λ N N 2 N + s N 1/6) F TW (s), s R C 1 e C s3/2 1 F TW (s) C e s3/2 /C (s )

non asymptotic small deviation inequalities P ( λ N N 2 N + s N 1/6) F TW (s), s R C 1 e C s3/2 1 F TW (s) C e s3/2 /C (s ) moment bounds (GUE, GOE) P ( λ N N 2 N + ε ) C e N1/4 ε 3/2 /C, 0 < ε N

non asymptotic small deviation inequalities P ( λ N N 2 N + s N 1/6) F TW (s), s R C 1 e C s3/2 1 F TW (s) C e s3/2 /C (s ) moment bounds (GUE, GOE) P ( λ N N 2 N + ε ) C e N1/4 ε 3/2 /C, 0 < ε N fits the Tracy-Widom asymptotics (ε = s N 1/6 )

non asymptotic small deviation inequalities P ( λ N N 2 N + s N 1/6) F TW (s), s R C 1 e C s3/2 1 F TW (s) C e s3/2 /C (s ) moment bounds (GUE, GOE) P ( λ N N 2 N + ε ) C e N1/4 ε 3/2 /C, 0 < ε N fits the Tracy-Widom asymptotics (ε = s N 1/6 ) deviation inequality on last passage percolation W N K. Johansson (2000)

moment comparison Wigner matrices (independent entries)

moment comparison Wigner matrices (independent entries) example : sign matrix Y N = Y N ij = ±1

moment comparison Wigner matrices (independent entries) example : sign matrix Y N = Y N ij = ±1 asymptotic result : Y. Sinai, A. Soshnikov (1998-99) P ( λ N N (Y ) 2 N + s N 1/6) F TW (s), s R

moment comparison Wigner matrices (independent entries) example : sign matrix Y N = Y N ij = ±1 asymptotic result : Y. Sinai, A. Soshnikov (1998-99) P ( λ N N (Y ) 2 N + s N 1/6) F TW (s), s R ( E Tr ( (Y N ) 2p)) ( E Tr ( (X N ) 2p)), X N GOE

moment comparison Wigner matrices (independent entries) example : sign matrix Y N = Y N ij = ±1 asymptotic result : Y. Sinai, A. Soshnikov (1998-99) P ( λ N N (Y ) 2 N + s N 1/6) F TW (s), s R ( E Tr ( (Y N ) 2p)) ( E Tr ( (X N ) 2p)), X N GOE P ( λ N N (Y ) 2 N + ε ) C e N1/4 ε 3/2 /C, 0 < ε N