Relief is on the Way: Status of the Line Positions and Intensities for Nitric Acid

Similar documents
New analysis of the 3 & 4 bands of HNO 3 by high resolution Fourier transform spectroscopy in the 7.6 µm region

Infrared quantitative spectroscopy and atmospheric satellite measurements

Journal of Quantitative Spectroscopy & Radiative Transfer

A Spectroscopic Database for MIPAS

The Smithsonian Astrophysical Observatory Database SAO92

RESULTS OF MID-LATITUDE MIPAS VALIDATION MEASUREMENTS OBTAINED BY THE SAFIRE-A AIRBORNE SPECTROMETER

Quantitative spectroscopy of several tropospheric or statospheric molecules: recent updates performed in the GEISA database

RESULTS OF MID-LATITUDE MIPAS VALIDATION MEASUREMENTS OBTAINED BY THE SAFIRE-A AIRBORNE SPECTROMETER

ASSESSMENT OF THE GEISA AND GEISA/IASI SPECTROSCOPIC DATA QUALITY: trough comparisons with other public database archives

Jacquinet-Husson N., Capelle V., Crépeau L., Scott N.A., Armante R., Chédin A.

OVERVIEW OF MIPAS OPERATIONAL PRODUCTS

DIODE- AND DIFFERENCE-FREQUENCY LASER STUDIES OF ATMOSPHERIC MOLECULES IN THE NEAR- AND MID-INFRARED: H2O, NH3, and NO2

Jacquinet-Husson N., Capelle V., Crépeau L., Scott N.A., Armante R., Chédin A.

COMBINED OZONE RETRIEVAL USING THE MICHELSON INTERFEROMETER FOR PASSIVE ATMOSPHERIC SOUNDING (MIPAS) AND THE TROPOSPHERIC EMISSION SPECTROMETER (TES)

Remote Sensing of the Atmosphere for Environmental Security

MIPAS Level 2 Near Real Time processor performances

MIPAS level 2 operational analysis

Molecular spectroscopy, besides its own interest. Infrared Spectroscopy and the Atmosphere

Journal of Quantitative Spectroscopy & Radiative Transfer ] (]]]]) ]]] ]]] Contents lists available at ScienceDirect

FIRST HIGH-RESOLUTION ANALYSIS OF PHOSGENE 35 Cl 2. CO AND 35 Cl 37 ClCO FUNDAMENTALS IN THE CM -1 SPECTRAL REGION

GEISA 2013 Ozone and related atmospheric species contents description and assessment

MIPAS LEVEL 2 PROCESSOR PERFORMANCE AND VERIFICATION

Spectroscopic database GEISA-08 : content description and assessment through IASI/MetOp flight data

An Improved Version of the CO2 Line-mixing Database and Software: Update and Extension

Submillimeter measurements of isotopes of nitric acid

NEW IG2 SEASONAL CLIMATOLOGIES FOR MIPAS

New MIPAS V7 products

Geo-fit approach to the analysis of limb-scanning satellite measurements

A sensitivity study on spectroscopic parameter accuracies for a mm/sub-mm limb sounder instrument

Linda R. Brown. Jet Propulsion Laboratory California Institute of Technology Pasadena, CA

Long-term validation of MIPAS ESA operational products using MIPAS-B measurements: L1v7/L2v8 T, H 2 O, and O 3

A tool for IASI hyperspectral remote sensing applications: The GEISA/IASI database in its latest edition

RTMIPAS: A fast radiative transfer model for the assimilation of infrared limb radiances from MIPAS

CONTRIBUTION TO ATMOSPHERIC ECVs

Weak water absorption lines around and 1.66 lm by CW-CRDS

Emission Limb sounders (MIPAS)

Comparison of Column Abundances from Three Infrared Spectrometers During AASE II

Tropospheric trace gas concentrations using infrared spectroscopy from space. Meeting report

Impact of Spectroscopic Parameter Archive on Second Generation Vertical Sounders Radiance Simulation: the GEISA/IASI Database as an example

Measurements of State-to-State Collision Rates for Water

Registered for 10 th HITRAN Conference

Updates to Spectroscopy for OCO-2

Recent spectroscopy updates to the line-by-line radiative transfer model LBLRTM evaluated using IASI case studies

N. Jacquinet-Husson, N.A. Scott, A. Chédin, R. Armante, K. Garceran, Th. Langlois.

Appendix IV: Spectroscopy of polyatomic molecules. Determination of the. rotational constants.

N. Jacquinet-Husson, R. Armante, T. Langlois, N.A. Scott, A. Chédin

CLOUD DETECTION AND DISTRIBUTIONS FROM MIPAS INFRA-RED LIMB OBSERVATIONS

The HITRAN 2004 molecular spectroscopic database

Radiative transfer modeling in the far-infrared with emphasis on the estimation of H2O continuum absorption coefficients

Line shape modeling and application to remote sensing

Rejuvenated spectroscopy of simple diatomic molecules in HITRAN

The Quest for Consistency and Accuracy of Spectroscopic Parameters in HITRAN:

Detection of ozone for use as an extrasolar biosignature

Line Intensities in the ν 6 Fundamental Band of CH 3 Br at 10 µm

Development of an Optimised Algorithm for Routine p, T and VMR Retrieval from MIPAS Limb Emission Spectra. Technical Note on.

UNCORRECTED PROOF. The HITRAN 2004 molecular spectroscopic database ARTICLE IN PRESS

High sensitivity CW-cavity ring down spectroscopy of N 2 O near 1.5lm (I)

Improved diode laser spectrometer for ortho/para ratio measurements in water vapor

Impact of different spectroscopic datasets on CH 4 retrievals from Jungfraujoch FTIR spectra

The rotational spectrum of chlorine nitrate (ClONO 2 ): The m 5 /m 6 m 9 dyad

Remote Measurement of Emissions by Scanning Imaging Infrared Spectrometry

Validation of H2O line and continuum spectroscopic parameters in the far infrared wave number range

Spectroscopic study of CH 4 at 3.24 µm for atmospheric applications. Development of the PicoSDLA-CH 4 sensor and the TRO-Pico balloon campaign

Atmospheric Remote Sensing in the Terahertz Region

An assessment of the accuracy of the RTTOV fast radiative transfer model using IASI data

Measurements and empirical modeling of pure CO 2 absorption in the 2.3- m region at room temperature: far wings, allowed and collision-induced bands

The Rotational Spectrum of Chlorine Nitrate (CIONO 2 ): v 6 and the v 5 /v 6 v 9 Dyad

ENVISAT VALIDATION RESULTS OBTAINED WITH LPMA AND IASI-BALLOON FTIR

Assessment of the horizontal resolution of retrieval products derived from MIPAS observations

Ground-based nitric acid measurements at Arrival Heights, Antarctica, using solar and lunar Fourier transform infrared observations

MODELING OF NO AND OH INFRARED RADIATION ON A CONVERGENT-DIVERGENT NOZZLE

ABSTRACT 1 INTRODUCTION

Rotational dependences of the self, N 2, O 2 broadening coefficients of CH. by cw-thz spectroscopy

HARVARD-SMITHSONIAN CENTER

Sensitive multiplex spectroscopy in the molecular fingerprint 2.4 µm region with a Cr 2+ :ZnSe femtosecond laser

arxiv: v1 [astro-ph.ga] 17 Jul 2015

IASI-METOP and MIPAS-ENVISAT data fusion

Laboratory Data, Line Confusion and Other Unique Opportunities and Challenges for ALMA Line Surveys. John Pearson JPL

GEISA Release of updated database and way forward

High Sensitivity Gas Sensor Based on IR Spectroscopy Technology and Application

GeoFIS (Geostationary

Edinburgh Research Explorer

Improved ground-state spectroscopic parameters of CH2FI and assignment of the rotational spectrum of the v6=1 state

An Overview of Molecular Opacities

Moderate Spectral Resolution Radiative Transfer Modeling Based on Modified Correlated-k Method

ANNAlS Of GEOPHYSICS, 61, fast Track 8, 2018; doi: /ag-7524

ARTICLE IN PRESS. Journal of Quantitative Spectroscopy & Radiative Transfer

International TOVS Study Conference-XIV Proceedings

ВЛИЯНИЕ ТОЧНОСТИ СПЕКТРОСКОПИЧЕСКОЙ ИНФОРМАЦИИ В ЗАДАЧАХ МОНИТОРИНГА МЕТАНА

Validation of statistical clustering on TES dataset using synthetic Martian spectra

Observations of OH, HO 2, H 2 O, and O 3 in the upper stratosphere: implications for HO x photochemistry

DEVELOPMENT OF A NEW RADIATION SCHEME FOR THE GLOBAL ATMOSPHERIC NWP MODEL

THE HITRAN MOLECULAR SPECTROSCOPIC DATABASE AND HAWKS (HITRAN ATMOSPHERIC WORKSTATION): 1996 EDITION

Methane and nitrous oxide retrievals from MIPAS-ENVISAT

12-14 June 2002 Phillips Auditorium Harvard-Smithsonian Center for Astrophysics Cambridge MA

Journal of Molecular Spectroscopy

RECENT VALIDATION RESULTS FOR THE ATMOSPHERIC CHEMISTRY EXPERIMENT (ACE)

E. V. Karlovets ab, A. Campargue a*, D. Mondelain a, S. Kassi a, S. A. Tashkun b, V. I. Perevalov b

PROD. TYPE: COM ARTICLE IN PRESS. Total internal partition sums for molecules of astrophysical interest. Jonathan Fischer, Robert R.

MEASURING TRACE GAS PROFILES FROM SPACE

Transcription:

Relief is on the Way: Status of the Line Positions and Intensities for Nitric Acid Agnés Perrin, J.M.Flaud, J.Orphal Laboratoire Interuniversitaire des Systémes Atmosphériques (LISA), CNRS, Université Paris XII, Créteil Perrin@lisa.univ-paris12.fr F. Mencaraglia, G. Bianchini, A. Boscaleri, B. Carli, Ceccherini, P. Raspollini, Istituto di Fisica Applicata Carrara, Via Panciatichi 64-50127 Firenze - Italy G. Brizzi, M. Carlotti, and M. Ridolfi Dipartimento di Chimica Fisica e Inorganica, Università di Bologna, Viale del Risorgimento, 4 40136 Bologna, Italia

Thank you very much for the committee (and to Larry Rothman) for giving me the opportunity to present this talk which I want to dedicate.. to the memory of Chuck Chackerian.

Outlines Status of HNO 3 in HITRAN Improved parameters for HNO 3 in the MIPAS spectral range (700-2400cm -1 ) Validation of the HNO 3 atmospheric (MIPAS measurements (@11µm) IBEX (Infrared Balloon EXperiment) in the far infrared). First observation of H 15 NO 3 in MIPAS spectra

Intensities in 10-17 cm -1 /(molecule.cm-2) 2.8 µm (~3551cm -1 ) ν 1 band NOT INCLUDED Int 1.2 5.9 µm (1710cm -1 ) ν 2 band Int 5.6 7.5µm (1303, 1326cm -1 ) ν 4, ν 3 bands Int 5.0 8.3 µm (1205 cm -1 ) ν 8 +ν 9 band Int 0.1 11 µm (879, 896cm -1 ) ν 5, 2ν 9 bands + H.B. Int 2.4 13.1µm (763cm -1 ) ν 8 Int 0.1 15.5µm (647cm -1 ) ν 6 (not updated) Int 0.1 17.2µm: (580cm -1 ) ν 7 Int 0.1 22 µm (458cm -1 ) ν 9 band + H.B. Int 1?? MW to far infrared: (rotation in v=0 + H.B.) Int 0.06 H.B.: Hot bands

The pure rotation band HITRAN-04: was updated using the 2004- version of the JPL catalog For the v=0 v=0 (ground ground) only In HITRAN-04 all the «hot bands» are missing (as compared to JPL) (Total contribution of the hot bands 13% @ 296K ) Intensities were incorrect for atmospheric uses in JPL-04 & therefore in HITRAN-04 This problem in now fixed in the JPL catalog (Brian Drouin)

JPL catalog in 2004 : status of the intensities (@300K) Int(300K) JPL = (e -E /kt -e -E /kt )1/Z JPL (T) <φ' µ 0 φ"> 2 Z JPL rotation partition function Z Tot (T) =Z Rot (T)*Z Vib (T) 3 3hc4 8 π σ πε 0 This problem in now fixed in the JPL catalog (Brian Drouin) Z Vib (T=300K) 1.30 Not accounted for Int(T) JPL = Int TRUE (T)*Z Vib (T=300K) Intensities overestimated of 30% Picket, Poynter, Cohen, Delisky, Agnes Perrin Pearson HITRAN & Müller, JQSRT;60, 1998

HITRAN Sigma Int v v J Ka Kc J Ka Kc 3.00218400 0.108E-23 Gr Gr 21 20 2 21 19 3 3.00258200 0.325E-25 Gr Gr 6 4 3 5 5 0 3.00344000 0.137E-23 Gr Gr 23 21 2 23 20 3 3.00564100 0.165E-23 Gr Gr 29 23 7 29 22 8 3.00566600 0.590E-24 Gr Gr 40 30 10 40 29 11 3.00206715 0.711E-24 V9 V9 19 13 7 19 11 8 3.00207102 0.159E-25 V5 V5 27 23 4 27 22 5 3.00214123 0.438E-25 V6 V6 30 25 5 30 24 6 3.00218310 0.832E-24 Gr Gr 21 20 2 21 19 3 3.00223280 0.956E-25 V5 V5 19 12 7 19 12 8 3.00258254 0.250E-25 Gr Gr 6 4 3 5 5 0 3.00300660 0.540E-25 V6 V6 28 23 6 28 22 7 3.00343830 0.105E-23 Gr Gr 23 21 2 23 20 3 3.00423271 0.238E-25 V5 V5 19 12 7 19 11 8 3.00426177 0.328E-24 V9 V9 24 19 6 24 17 7 3.00466625 0.166E-24 V8 V8 18 11 7 18 11 8 3.00471698 0.261E-25 V6 V6 14 13 2 14 11 3 3.00507343 0.105E-24 V9 V9 33 24 9 33 23 10 3.00529572 0.477E-25 V8 V8 18 11 7 18 10 8 3.00564046 0.127E-23 Gr Gr 29 23 7 29 22 8 #Molecular line parameters for the MASTER database, Perrin, Puzzarini, Colmont, Verdes, Wlodarczak, Cazzoli, JuneBuehler, 2006 Flaud, and Demaison Agnes (J. of Atmospheric Perrin HITRAN Chemistry, 2004)

Status in HITRAN 5.9 µm (1710cm -1 ) ν 2 band Int 5.6 7.5µm (1303, 1326cm -1 ) ν 4, ν 3 bands Int 5.0 8.3 µm (1205 cm -1 ) ν 8 +ν 9 band Int 0.1 11 µm (879, 896cm -1 ) ν 5, 2ν 9 bands + H.B. Int 2.4 Intensities in 10-17 cm -1 / (molecule.cm -2 ) 22 µm (458cm -1 ) ν 9 band + H.B. Int 1?? MW to far infrared: (rotation in v=0 + H.B.) Int 0.06 H.B.: Hot bands

The 22 µm region.ν 9 cold band: not updated.ν 5 -ν 9 & 2ν 9 -ν 9 hot bands (updated recently using Petkie et al. (2003)) Two problems for the 22 µm region: -Absolute intensities: it is necessary to compare HNO 3 measurements in the 22µm (balloon-borne FIRS-2 instrument, Ken Jucks of the Harvard-Smithsonian Center for Astrophysics and and 11µm regions (2) -Update of the ν 5 -ν 9 & 2ν 9 -ν 9 hot bands (1) (need clarifications) (1) Petkie, Helminger,Winnewisser, Winnewisser, Agnes Perrin Butler HITRAN Jucks & De Lucia. JQSRT (2003)

Situation of the MIPAS-PF3.2 database Michelson Interferometer for Passive Atmospheric Sounding (on ENVISAT satellite) MIPAS 5.9 µm (1710cm -1 ) ν 2 band Int 5.6 7.5µm (1303, 1326cm -1 ) ν 4, ν 3 bands Int 5.0 8.3 µm (1205 cm -1 ) ν 8 +ν 9 band Int 0.1 11 µm (879, 896cm -1 ) ν 5, 2ν 9 bands + H.B. Int 2.4 22 µm (458cm -1 ) ν 9 band + H.B. Int 1?? MW to far infrared: (rotation in v=0 + H.B.) Int 0.06 H.B.: Hot bands Intensities in 10-17 cm -1 /(molecule.cm-2)

Michelson Interferometer for Passive Atmospheric Sounding HNO 3 is measured in «real time» using an «operational code» which use «limited» microwindows (11µm for HNO 3 ) MIPAS is an high resolution IR FTS spectrometer onboard the ENVISAT satellite since march 2002 Futur projects: to use more of the informations included in MIPAS spectra (26km) To extend the range of the microwindows 11µm ν 5,2ν 9 8.3µm.ν 8 +ν 9 7.6µm ν 3, ν 4 5.8µm ν 2 MIPAS dedicated Database J-M.Flaud, C.Piccolo, B.Carli, A.Perrin, L.Coudert, J.L.Teffo, L.Brown, J. of Atmos. Ocean and Optics, 16, 172-182 (2003).

For the MIPAS-PF3.2 database 5.9 µm (1710cm -1 ) ν 2 band Int 4 7.5µm (1303, 1326cm -1 ) ν 4, ν 3 bands Int 4 8.3 µm (1205 cm -1 ) ν 8 +ν 9 band Int 0.1 11 µm (879, 896cm -1 ) ν5, 2ν 9 bands + H.B. Int 2 - Improved line positions (11µm & 8.3µm) - Improved line intensities (all), (but no change for ν 2 ) - Improved line air-broadening parameters (all)

Improved line positions 11µm (improved) Cold ν 5, 2ν 9 ; Hot ν 5 +ν 9 -ν 5 #Perrin, Flaud, Keller, Goldman, Blatherwick, Murcray, & Rinsland, J. Mol. Spectr 194 (1999) 113. Perrin, Orphal, Flaud, Klee, Mellau, Mäder, Walbrodt, Winnewisser, J. Mol. Spect. 228 (2004) 375 Flaud, June Piccolo, 2006 Carli, Perrin, Coudert, Teffo & Brown Agnes,J. Atmospheric Perrin and HITRAN Ocean Optics, 16 (2003), 172. Flaud, Perrin, Orphal, Kou, Durkiewick & Piccolo, J.Q.S.R.T. 77 (2003) 355. Flaud, Brizzi, Carlotti, Perrin, Ridolfi, Atmos. Chem. Phys. Discuss, 6 (2006) 4251

Improved line positions 11µm (improved) Cold ν 5, 2ν 9 ; Hot ν 5 +ν 9 -ν 5 8.3µm (weak) ν 8 +ν 9 (improved) {ν 8 +ν 9, ν 6 +ν 7 } (interactions accounted for # ) No change (line positions) 7.6µm {ν 3,ν 4 } (strong) need to be improved!!!!! 5.8 µm ν 2 (strong)?? need to be improved???? #Perrin, Flaud, Keller, Goldman, Blatherwick, Murcray, & Rinsland, J. Mol. Spectr 194 (1999) 113. Perrin, Orphal, Flaud, Klee, Mellau, Mäder, Walbrodt, Winnewisser, J. Mol. Spect. 228 (2004) 375 Flaud, Piccolo, Carli, Perrin, Coudert, Teffo & Brown,J. Atmospheric and Ocean Optics, 16 (2003), 172. Flaud, Perrin, Orphal, Kou, Durkiewick & Piccolo, J.Q.S.R.T. 77 (2003) 355. Flaud, Brizzi, Carlotti, Perrin, Ridolfi, Atmos. Chem. Phys. Discuss, 6 (2006) 4251

Improved line intensities for the 700-2400cm -1

Improved HNO 3 line intensities

Improved HNO 3 line intensities

Improved HNO 3 line intensities

Intensities for the 11 µm bands.decrease of 14% Giver et al. J. Opt. Soc. Am. B1, 715 (1984) Chackerian, Sharpe & Blake, JQSRT 82, 429 (2003) Toth, Brown & Cohen J.Mol. Spectr 218, 151 (2003) HIT-2K & HIT-04: Rothman et al. Agnes JQSRT Perrin 82, 5 (2003), HITRAN 96, 139 (2005) MIPAS: Flaud et al. Atmos Oceanic Opt. 16, 172 (2003)

First validations

Comparison of observed and simulated MIPAS spectra in band A for an altitude of 24km 2ν 9 Q branch 2ν 9 Q branch Old database New database

Status of the ν 3 & ν 4 bands (7.5µm) still unsatisfactory!!!!!!!!!.ν 3 Q branch.ν 3 Q branch

Improved line broadening parameters for HNO 3 Numerous excellent line broadening measurements were performed mainly in the millimeter wave spectral range Strong rotational dependence of the broadenings Sometime, the n- temperature dependance of the γ was also measured. Goyette T.M., W.L.Ebenstein, F.C. De Lucia and P.Helminger, J. Mol. Spectrosc. 128, (1988) 108. Goyette T.M., W.Guo, F.C. De Lucia and P.Helminger, J.Q.S.R.T. 46, (1991) 293. Goyette T.M., E.A.Cohen, and F.De Lucia, J.Q.S.R.T. 60, (1998) 377. Zu L., P.A.Hamilton and P.B.Davies, J.Q.S.R.T. 73, (2002) 545. Colmont, Bakri, Rohart, Wlodarczak, J. Mol. Spectr. 220 (2003) 52. Cazzoli, Dore, Puzzarini, Bakri, Colmont, Rohart and Wlodarczak J. Mol. Spect 229 (2005) 158.

Model for HNO 3 line broadening γ air in MHz/torr at 296K γ air (J)= a air + b air.(j +J ) 5,0 4,8 Calc Obs (literature) 4,6 4,4 4,2 4,0 3,8 3,6 10 15 20 25 30 35 40 45 (J'+J")/2 γ air (J)= constant There is need for a «correct» model for the broadening.

Validation of the HNO3 atmospheric measurements: (MIPAS measurements (@11µm) Ù IBEX (Infrared Balloon EXperiment) in the far infrared

Comparison MIPAS IBEX Because of geographical and time dependence of the atmospheric composition correlative measurements should done over the same air mass; Exact rendez-vous Agnes Perrin satellite HITRAN balloon.

Preliminary intercomparison of HNO 3 profiles MIPAS FTS on ENVISAT 11µm 900cm -1 Line parameters From HITRAN-2K IBEX FTS on a balloon Far infrared 20cm -1 Parameters from JPL catalog

Concentration profile of HNO 3 MIPAS IBEX These two profiles desagree.., this may be due to a different geographical or time dependence of HNO 3.. In our case this required an exact rendez-vous between two moving platforms: satellite and balloon..or to spectroscopic problems June in 2006 the 11µm (or/and) in the far infrared

Final results 11 µm New line positions Overall intensities were divided by 1.14 Far infrared (~22cm -1 ) New line positions Overall intensities were divided by 1.30

MIPAS: 11µm IBEX: Far IR

First observation of H 15 NO 3 in MIPAS spectra June «Theν5 2006 & 2ν9 interacting bands Agnes of HPerrin 15 NO 3,» HITRAN Perrin, Mbiake, J. Mol. Spectros. 237 (2006) 27

H 14 NO 3 and H 15 NO 3 simulated spectra. H 14 NO 3 Int(ν 5 /TOTAL)~0.57 H 15 NO 3 Perrin, Mbiake, J. Mol. Spectros. 237 (2006) 27 H 15 NO 3 Int(ν 5 /TOTAL)~0.8 Isotopic abundance only: a~0.003 For H 15 NO 3 : isotopic shift to the low frequency range only weak part of the ν 5 band intensity is transfered to the 2ν 9 band

First observation of H 15 NO 3 in an atmospheric spectrum (MIPAS on the ENVISAT satellite).ν 5 Q branch of H 15 NO 3 =>

Conclusion Status of HNO 3 in HITRAN Improved parameters for HNO 3 in the MIPAS spectral range (700-2400cm -1 ) in term of line positions, line intensities & line broadening parameters. Status of HNO 3 for the 7.6µm ({ν 3,ν 4 }) not satisfactory No update for the 5.8µm region (ν 2 band). Validation of the HNO 3 atmospheric (MIPAS measurements (@11µm) IBEX (Infrared Balloon EXperiment) in the far infrared). First observation of H 15 NO 3 in MIPAS spectra